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 The present paper deals with healthy and improper bearing lubrication signals analysis 

using Discrete Wavelet Transform (DWT) enhanced by MATLAB/ Wavelets toolbox 

analysis. The identification of bearing faults from the time or the frequency domain are 

difficult due to non stationary vibration signal. Therefore, for more accurate faults 

information and identification of bearing with lubrication defects (improper or absence of 

lubrication), the DWT is used. The validation of this procedure is conducted by an 

experimental setup designed for vibration signal acquisition and the complete analysis is 

finalized by MATLAB/ Wavelets toolbox. The recorded data used for the validation are 

the signals of healthy and un-lubricated bearing driven at a rotation speed of 1500 rpm by 

0.78 KW three phase induction motor. From the obtained results it can be observed that, 

for medium speeds DWT decomposition enhanced by MATLAB Wavelets Toolbox 

procedure is efficient for improper lubricated bearing related faults diagnosis and 

detection.  
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1. INTRODUCTION 

 

Rotating machines such as induction motors reliability 

depends on bearing elements and components condition. In 

bearing, the reduced quantity or the absence of lubrication will 

produce high friction and vibration level due to contact 

between bearing elements. Thus, bearing wear occurs, leading 

to an increase in temperature and eventually bearing failure. 

Different defects in bearing are mainly inner race, outer race, 

balls and lubrication. Therefore, the lubricant defect can cause 

important bearing elements damage with downtime 

consequences so, it is an interesting issue in monitoring 

rotating machines. In the reported literature many works have 

studied and methods were proposed to solve the problems 

related to bearing defects in induction motors. 

Vibratory signal analysis was applied in many mechanical 

faults detection and localization such as bearing elements 

(outer race, inner race, ball and train cage of the bearing) [1-3] 

and gear damage [4]. Many works carried out on bearing 

defects were reviewed [3, 5] and have showed that defects in 

bearings are identified with the help of signal parameters for 

the sound and vibration signals. Discrete Wavelet Transform 

(DWT) was also used to detect defect features from defected 

bearings as they produce vibrations [6], stator current 

signature analysis is also used [7]. Some techniques such as 

dual-tree complex wavelet transform (DTCWT), permutation 

entropy (PE) using the fuzzy means clustering (FCM) to 

identify fault types [8] and shaft-bearing model is also 

developed in order to investigate the rolling element vibrations 

[9]. Signal processing tools such as Gaussian function, 

convolution, Fast Fourier transform and comparison of 

methods of short-circuit fault diagnostic based on FFT and 

DWT approaches [10-15] were conducted to detect various 

bearing faults. Recent developments and applications of 

computational intelligence to condition monitoring and fault 

diagnosis are presented in ref. [16-19]. 

As lubrication failures are the primary cause of bearing 

elements defects. This interesting and important issue is 

studied in the literature, an overview of the bearing early 

failure in the mechanical systems with typical modes of 

electrical bearing failure including various damages and 

lubrication failures, were discussed by He et al. [20]. The work 

reported by Yusof and Ripin [21], investigates roller bearings 

with and without lubrication. The authors have concluded that 

overall vibration level of the bearing can be related to the 

surface degradation and low film thickness. The detection of 

poor lubricant bearings by applying both cyclo-stationary 

analysis and spectral kurtosis for the selection of a frequency 

band is presented by Pavle Boškoski et al. [22]. The authors 

concluded that improper lubrication is expressed as an 

increase in the spectral components at bearing cage and ball 

spin frequency. But Vadim et al. [23] have stated that the 

influence of the improper lubrication of friction pair can be 

detected as an increase in the vibration velocity amplitude 

spectral components. The work described by Onkar and Abhay 

[24] deals with the effect of lubricant contamination by solid 

particles on the dynamic behavior of rolling bearings. 

Vibration signals were analyzed in terms of Root Mean Square 

(RMS) values and also in terms of defect frequencies. The 

effect of this contamination on inner and outer races is given.  

There are many causes for lubrication failures as poor 

lubricant or viscosity, increase in temperatures, contamination 

by external substances, pollution by dust or water and over-

lubricating. However improper or/and poor lubrication with 
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difficult operating conditions can lead to bearing failure. In 

addition, if a bearing has a poor lubrication, or if the lubricant 

has lost its lubricating properties, the result is metal-to-metal 

contact between rolling elements and inner and outer races 

causing an important wear. 

However, in all these works, attention and focus on the 

problem of lubrication in particular, especially in terms of 

diagnosis and inspection using DWT in our knowledge has not 

been considered previously. In order to fulfill the objective of 

finding an efficient, simple and easy method for lubricant 

faults detection in induction motors an approach based on an 

experimental setup designed for vibratory signal acquisition 

with an additional tool of analysis performed in MATLAB/ 

wavelets toolbox is proposed. 

The present paper is organized as follows: The first section 

is reserved to the introduction whereas the second explains the 

theoretical development and the experiments. The third 

section is focused on data acquisition and experimental 

procedure description. The fourth section presents the 

application of DWT for real vibratory signals analysis of 

healthy and improper lubricated bearing. The fifth section 

provides a discussion and an analysis of the results to show the 

effectiveness of the proposed approach. Finally, the 

concluding remarks and observations are given in section six.  

 

 

2. METHOD AND EXPERIMENTS   

 

The theory and the detailed information of Discrete Wavelet 

Transform (DWT) are reported in the literature [10-15, 20]. 

The overall flow of wavelet decomposition process is 

conducted in many steps, firstly the raw vibration signal 

(original signal) x [n] is decomposed into several levels of 

frequency bands, then the approximate and detail coefficients 

in each level with standard deviation values for approximate 

and detail coefficients are found, finally, a comparison of 

standard deviation values for normal and faulty bearings is 

carried out [7]. The approximation part h [n] is obtained by 

passing the signal through Low Pass Filter (LPF) and Detail 

part g [n] is obtained by passing the signal through High Pass 

Filter (HPF). Thus, approximation corresponds to frequency 

band while detail covers the frequency range. 

 

 
 

Figure 1. DWT decomposition process 

 

The use of wavelet transform is of a particular interest since 

it gives information about the signal both in frequency and 

time domains. For reliable results, wavelet packet 

decomposition is used thus low frequency and high frequency 

characteristic components are obtained simultaneously. The 

decomposition process is illustrated in Figure 1, in discrete 

wavelet analysis, filters of different cut off frequencies are 

employed to analyze the signal at different levels. The output 

is implemented by scaling filter h(n) and g(n), which is a low-

pass and high-pass filter related to scaling values. However, 

this operation doubles the frequency resolution, since the 

frequency band of the signal now spans only half the previous 

frequency band, effectively reducing the uncertainty in the 

frequency by half. Reduction of uncertainty in the signal will 

help to induce more exact information out of signal and that is 

the key point in DWT [10, 24-26]. 

The level of decomposition can be expressed as following: 

 

𝑦ℎ𝑖𝑔ℎ [𝑘] = ∑ 𝑥

𝑛

[𝑛]. 𝑔[2𝑘 𝑛] 

𝑦𝑙𝑜𝑤  [𝑘] = ∑ 𝑥

𝑛

[𝑛]. ℎ[2𝑘 𝑛] 

 

 
 

Figure 2. Double filtering process of original input signal 

x(n) 

 

x(n) denotes the original input signal producing two signals 

A and D using two filters, A is the approximation of input 

signal and D is the detail value of x(n), this process is 

illustrated in Figure 2. A signal can be successively 

approximated by DWT with different scales [14]. A discrete 

signal x[n] can be decomposed as follows [26]: 

 

x[n] = ∑ aj0,kφ
j0,k

[n] +

k

 ∑ ∑ dj,kϕ
j,k

[n]

k

J−1

j=j0

 

 

𝜑𝑗0,𝑘[𝑛] = 2
𝑗0
2 𝜑(2𝑗0𝑛 − 𝑘) : is the scaling function at a 

scale 𝑠 = 2𝑗0 shifted by k. 

ϕ(n): is the mother wavelet 

𝜙𝑗,𝑘[𝑛] = 2
𝑗

2𝜙(2𝑗𝑛 − 𝑘) is the mother wavelet at scale 𝑠 =

2𝑗0  shifted by k. 

𝑎𝑗0,𝑘: Coefficients of approximation at 𝑠 = 2𝑗0 

𝑑𝑗,𝑘: Coefficients of detail at 𝑠 = 2𝑗 

 

𝑁 = 2𝑗 the number of samples of x[n]. In other words, a 

discrete signal could be constructed by means of a sum of a j-

jo details plus a one approximation of a signal at a scale 𝑠 =
2𝑗0 . 

 

 

3. DATA ACQUISITION 

 

The experimental work is conducted by the measurement 

setup presented in Figure 3. The different vibration movement 

are generated by the shaft of the experimental setup driven by 

a three phase induction motor through a coupling, a bearing 

unit and a balanced flywheel (load). The vibration signal is 

detected and acquired for the analysis test bearings at a 

rotational speed of 1500 rpm.  
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Figure 3. Experimental setup 

 

The setup chain is composed from a PC, an induction motor, 

USB measuring device, accelerometer, bearing unit and 

balanced flywheel (load). The vibration sensor used in the 

experiment is an accelerometer which measures the vibration 

movements generated by a three phase induction motor 

driving a load (mechanism). The vibratory signals are 

measured and recorded with a rotational speed of 1500 rpm on 

a healthy bearing and a faulty (improper lubrication) bearing, 

lubricant is polluted by injecting a special liquid inside the 

bearing for 48 hours. These testes represent a constraint that 

bearing can be exposed in daily life.  

In the first step both vibratory signals of healthy and 

improper lubricated bearing are measured at a rotational speed 

of 1500 rpm. The obtained signals are analyzed by DWT 

technique and then finalized by MATLAB/ Wavelets toolbox. 

 

 

4. DWT FOR VIBRATORY SIGNALS ANALYSIS  

 

In order to validate the proposed procedure, experimental 

data (vibratory signals) obtained from the experimental setup 

for healthy and improper lubricated bearing are presented in 

this section. Discrete Wavelet Transform (DWT enhanced by 

MATLAB/ Wavelets toolbox signal analysis is proposed as a 

tool for improper or poor lubrication fault detection. The 

recorded data used for the validation of this method are the 

signals of healthy and faulty bearing under a running rotational 

speed of 1500 rpm presented in Figure 4 and Figure 6, 

respectively.  

 

 
 

Figure 4. Measured vibratory signal of bearing in healthy 

condition 

 
 

Figure 5. Frequency spectrum of healthy bearing  

 

 
 

Figure 6. Measured vibratory signal of improper lubricated 

bearing 

 

 
 

Figure 7. Frequency spectrum of improper lubricated bearing 

 

On the spectrum of Figure 5, no significant peak is observed 

(the important peak has an amplitude of 0.23), this confirms 

that the bearing is in healthy condition. On the spectrum of 

Figure 7 it is can be noticed an increase in the peaks that 

already exist in the case of a healthy bearing (all important 

peaks exceeding the amplitude of 0.5). In the case of improper 

lubricated bearing, the bearing introduces additional space 

when a ball passes through the load area. As a result of these 

changes, the vibrations produced by the bearing balls passing 

through the load zone must be greater than those produced by 

a properly lubricated bearing. Thus, the increase in the 

amplitude of the vibrations produced by the balls of the 
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rotating bearing can be used as an indication of deteriorated 

lubrication quality or a complete lack of lubricant. 

But it is difficult to identify the frequency of fault 

appearance, there are changes in the magnitude of energy at 

different frequency bands. It can be concluded that the 

identification of bearing faults from the frequency spectrum 

are difficult due to non stationary vibration signal.  

Therefore, further analysis of vibration data for healthy and 

improper lubricated bearing is needed. For more accuracy and 

precise identification of faults related to bearing lubricant, the 

DWT enhanced MATLAB Wavelets Toolbox is used for 

vibration signals analysis.  

 

 
a) Approximation coefficient                 b) Detail coefficients 

 

Figure 8. Eight-level wavelet decomposition of healthy bearing 

 

 
a) Approximation coefficients             b) Detail coefficients  

 

Figure 9. (a) Histogram of a) approximation coefficients and (b) detail coefficients for healthy bearing 
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a) Wavelet decomposition of vibration signal with healthy 

bearing at a rotational speed of 1500 rpm 

 

The wavelet decomposition was carried out on the bearing 

data obtained from the designed experimental setup. The 

decomposition levels with values of approximate and detail 

coefficients for each level are obtained. De-Noising the 

original recoded signals using MATLAB Wavelets Toolbox 

[10, 16], the exact values of all detail coefficients at different 

levels are obtained. The results of approximation and detailed 

coefficients of wavelet transform and their histogram at each 

level of decomposition for healthy bearing are graphically 

illustrated in Figure 8 and Figure 9, respectively. 

 

 
a) Approximation coefficients       b) Detail coefficients 

 

Figure 10. Eight-level wavelet decomposition of improper lubricated bearing  

 

Table 1. Summarized results of computed approximation coefficients magnitude and ranges of healthy and faulty bearing 

 
ApprLevel Magnitude range of each level (healthy 

bearing) 

Range Magnitude range of each level (improper lubricated 

bearing) 

Range 

a1 (-16.46) - (+11.35) 27.81 (-6.657) -(+4.983) 11.64 

a2 (-19.1)- (+14.49) 33.59 (-10.21)-(+10.79) 21 

a3 (-21.26)-(+12.41) 33.67 (-16.05)-(+14.48) 30.45 

a4 (-10.94)-(+7.577) 18.517 (-23.71)-(+15.77) 39.48 

a5 (-6.261)-(+4.445) 10.706 (-11.51)-(+8.876) 20.38 

a6 (-3.509)- (+1.536) 5.045 (-7.081)-(+6.82) 13.90 

a7 (-1.897)- (+2.144) 4.041 (-0.964)-(+3.191) 4.15 

a8 (-0.86)- (+3.041) 3.917 (-1.58)-(+0.88) 2.46 

 

Table 2. Summarized results of computed detail coefficients magnitude and ranges of healthy and faulty bearing 

 
Detail 

Level 

Magnitude range of each level (healthy 

bearing) 
Range 

Magnitude range of each level (improper lubricated 

bearing) 
Range 

d1 (-5.69) - (+5.505) 11.19 (-15.81) - (+15.26) 31.07 

d2 (-11.23)-(+11.52) 22.75 (-16.86)-(+13.31) 30.17 

d3 (-13.18)-(+12.71) 25.35 (-20.37)-(+11.49) 31.86 

d4 (-22.68)-(+12.73) 35.41 (-12.28)-(+9.113) 21.39 

d5 (-13.21)-(+10.47) 23.68 (-6.582)-(+5.25) 11.83 

d6 (-7.025)-(+5.525) 12.55 (-3.424)-(+4.393) 7.81 

d7 (-2.827)-(+2.901) 5.728 (-3.033)-(+5.534) 8.56 

d8 (-2.017)-(+4.424) 6.441 (-2.697)-(+2.949) 5.64 
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a) Approximation coefficients              b) Detail coefficients 

 

Figure 11. Histogram of approximation coefficients and detail coefficients of improper lubricated bearing 

 

The ordinates a1 to a8 are the approximate coefficients for 

each level (eight levels) whereas the ordinates d1 to d8 are the 

detail coefficients for each level.  

The approximation part h [n] of the original signal x(n) is 

obtained by passing the signal through Low Pass Filter (LPF) 

and the detail part g [n] of the original signal x(n) is obtained 

by passing the signal through High Pass Filter (HPF). Thus, 

approximation corresponds to frequency band while detail 

covers the frequency range.  

 

b) Wavelet decomposition of vibration signal of improper 

lubricated bearing at a rotational speed of 1500 rpm 

 

The results of approximation and detailed coefficients of 

wavelet transform and their histogram at each level of 

decomposition for improper lubricated bearing are graphically 

illustrated in Figure 10 and Figure 11, respectively. Computed 

values of magnitude ranges and ranges of approximation and 

detail coefficients for healthy and improper lubricated bearing 

for eight levels of signal wavelet decomposition are compared 

and presented in Table 1 and Table 2. 

 

 

5. RESULTS AND DISCUSSIONS 

 

It is noticed that the vibration signal of healthy bearing has 

low magnitude peaks compared to the vibration signal of 

improper lubricated bearing. It is also observed that 

signal of healthy bearing has no periodic peaks whereas signal 

of improper lubricated bearing has periodic peaks. 

It is observed from Figures 8 and 10, that the decomposed 

signal obtained from healthy bearing has less magnitude of 

approximation coefficients for all levels compared to the 

magnitude of faulty bearing (-2 to 2) and (-4 to 6) respectively. 

The same observation can be made for the detail coefficients 

(-2 to 2) for healthy bearing and (-4 to 6) for improper 

lubricated bearing. The results showed that the magnitudes of 

wavelet coefficients are sensitive to faulty bearing (improper 

lubricated bearing). 

From Figures 9 and 11, it can be seen that the magnitude 

range is found to be lesser for healthy bearing condition than 

the un-lubricated bearing condition. These results show the 

sensitivity of detailed and approximation coefficients of DWT 

for identifying improper lubricated bearing. 

According to Table 1, the approximation coefficient of 

healthy bearing reaches its maximum range value at level 3 

(33.67) than decreases reaching its minimum range value at 

level 8 (3.917), whereas the approximation coefficient of 

faulty bearing (un-lubricated) reaches its maximum range 

value at level 4 (39.48) than decreases reaching its minimum 

value at level 8 (2.4681). It is observed from these results that 

the maximum value of healthy bearing (33.67) is less than the 

maximum value of faulty bearing (39.48) which means the 

approximation coefficient at level 5 is sensitive to un-

lubricated bearing. 

According to Table 2, the detail coefficient of healthy 

bearing reaches its maximum range value at level 4 (33.41) 

than decreases reaching its minimum range value at level 8 

(6.441), while the detail coefficient of faulty bearing (un-

lubricated) reaches its maximum range value at level 3 (31.86) 

than decreases reaching its minimum value at level 8 (5.646). 

It is can be concluded that the maximum value of healthy 

bearing (35.41) is higher than the maximum value of improper 

lubricated bearing (31.86) which means that the detail 
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coefficient range value at level 3 is sensitive to bearing fault. 

For the approximation coefficients, the maximum range 

value of healthy bearing should be less than the approximation 

coefficients of the maximum range value of faulty bearing. In 

contrast, the maximum range value of detail coefficient of 

healthy bearing should be higher than the maximum range 

value of detail coefficient of faulty bearing. Therefore, the 

obtained results are in compete concordance with the theory of 

DWT decomposition. Thus, it can be concluded that, for 

medium speeds DWT decomposition enhanced by MATLAB 

Wavelets Toolbox procedure is an efficient tool for fault 

detection. However, the wavelet approximation and detail 

coefficients can be easily used for the detection of lubricant 

defects, since the maximum range value of healthy bearing is 

less than that of improper lubricated bearing case for the 

approximation coefficients but for detail coefficient, the 

maximum range value of healthy bearing is higher than that of 

improper lubricated bearing. The obtained results are in 

agreements with the results of the previously reported 

literature [25, 26]. 

 

 

6. CONCLUSION 

 

As failures related to lubricant are not previously widely 

investigated using DWT, the present work is conducted to 

consider this issue knowing that improper lubricated bearing 

is the main cause of bearing elements defects. In this paper, 

the wavelet decomposition procedure was discussed and 

applied to healthy and improper lubricated bearing for faults 

detection. The approximation and detail coefficients were 

found for eight levels of wavelet decomposition of the signal. 

According to the results, it can be concluded that, for medium 

speeds DWT decomposition procedure is efficient for 

improper lubricated bearing detection. Therefore, the wavelet 

approximation and detail coefficients can be easily used for 

the detection of lubrication defects. 

Although the DWT decomposition has shown its 

effectiveness as it provides better accuracy in fault detection, 

future works will be focused on intelligent techniques as a 

promising method in bearing faults detection and monitoring.  
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