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Non-holonomic path planning is to solve the two point boundary value problem under 

constraints. Since it is offline and open-loop, the path planning cannot compensate for the 

disturbances and eliminate the errors. To solve the problems, this paper puts forward an 

iterative learning control algorithm that adjusts the control parameters of the path planner 

online through the multiple iterative computations of the target configuration error 

equation, under the initial configuration error and model error, and thus enhancing the 

accuracy of non-holonomic system path planning. Then, a simulation experiment on path 

planning was carried out for a chainable three-joint, non-holonomic manipulator. The 

results show that the iterative learning controller can eliminate the interference of initial 

configuration error and model error, such that each joint can move to the target 

configuration. 
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1. INTRODUCTION

The actual control of non-holonomic system suffers from 

various disturbances, due to the error in the fabrication and 

assembly of non-holonomic machines, the insufficient 

resolution of the transmission system, and the uncertain 

accuracy of the measuring instrument [1, 2]. As a result, the 

actual result of motion control often deviates from the 

theoretical simulation value, that is, the final configuration of 

the system does not coincide with the target configuration [3]. 

The most direct solution is to plan the path again for the system 

to move from the actual configuration to the target 

configuration [4-6]. However, the secondary path planning 

may not yield a feasible path, not to mention achieving the 

desired result, under the strong nonlinearity of the 

mathematical models for some non-holonomic systems [7, 8]. 

The iterative learning control is a possible way to improve 

the secondary path planning. By this method, the current 

control input is corrected repeatedly based on the error 

between the previous control output and the theoretical control 

output, i.e. the current control input is learned from the 

previous control output of the system, such that the error of 

system control output can converge to the pre-set value [9]. 

Compared with state feedback [10], variable structure [11, 12] 

and adaptive methods [13, 14], the iterative learning control 

algorithm enjoys certain advantages in the motion control of 

nonlinear system with uncertainties, thanks to its 

independence from the mathematical model of the system and 

fast convergence speed. Considering the initial configuration 

error, this paper attempts to improve the motion control 

accuracy by designing an iterative learning controller suitable 

for chainable non-holonomic system, according to the iterative 

root-finding of nonlinear equations. 

2. INITIAL CONFIGURATION ERROR OF 

CHAINABLE NON-HOLONOMIC SYSTEM 

The trajectory of chainable non-holonomic system can be 

obtained through inverse transformation of the path of the 

chain variable. Let θe(t) and ze be the trajectory of the joint 

with initial configuration error and the corresponding chain 

variable, respectively. Then, the error of the joint trajectory 

θe(t) can be mapped as ze. Thus, the control of the error from 

the target configuration is equivalent to compensating the 

error-containing chain variable ze in the chain space. The 

mathematical model of the n+1 dimensional single-chain 

system can be expressed as [15]: 

1 1( ) ( )

( ) ( ) ( ) ( )2

z t v t

z t A t z t B v t

=


=  + 
(1) 

where, 𝐴(𝑡) =

[

0 0 ⋯ 0 0
𝑣1(𝑡) 0 ⋯ 0 0

0 𝑣1(𝑡) ⋯ 0 0
⋮ ⋮ ⋯ ⋮ ⋮
0 0 ⋯ 𝑣1(𝑡) 0]

 (𝐴(𝑡) ∈ 𝑅𝑛 × 𝑅𝑛 ); 

𝐵 =

[

1
0
0
⋮
0]

( 𝐵 ∈ 𝑅𝑛 ); 𝑧(𝑡) = [𝑧2(𝑡), 𝑧2(𝑡),⋯ , 𝑧𝑛+1(𝑡)]
𝑇  is the

chain variable at time t (𝑡 ∈ [0, 𝑇]). The initial and target 

configurations of z(t) can be denoted as 𝑧0 ∈ 𝑅𝑛 and 𝑧𝑓 ∈ 𝑅𝑛,

respectively. If A(t)=A is a constant matrix, i.e. the control 

input v1(t) is constant, then Eq. (1) is a first-order linear time-

invariant system. According to the time polynomial control 

law [4], the following can be derived from Eq. (1): 

0( , , )v t v t b c=( ) (2) 
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where, 𝑣(𝑡, 𝑏0, 𝐶) = [𝑣1(𝑡), 𝑣2(𝑡)]
𝑇 , 𝑏0 ∈ 𝑅 ; 𝑐 =

[𝑐0, 𝑐1 ⋯𝑐𝑛−1] is the control parameter vector with the same 

number of dimensions as the chain variable z(t). Let 

𝜆𝑖(𝑡): [0, 𝑇] → 𝑅𝑚−1 be an input mapping, with m being the 

number of dimensions (m=2 for single-chain system) and 𝑖 ∈
{0,2,⋯ , 𝑛 − 1}  being linearly independent. Then, the input 

basis function in the linear space of the time constant input 

control function can be constructed as: 

 

1 0

1

2

0

( )

( ) ( )
n

i i

i

v t b

v t c t
−

=

=



=



 (3) 

 

Then, the path planning of chain system is equivalent to 

choosing a proper v(t), such that the chain system can move 

from z0 to point zf in the chained-form space within the 

specified time. Solving Eq. (1), we have: 
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A T A T t

i i

i

z e z e B v t dt

e z c e B dt
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

−

−

=

= + 

= + 

= +



 

0

0

0

(t)

        

 (4) 

 

where, P=eA(T) and 𝑄 = ∫ 𝑒𝐴(𝑇−𝑡)𝐵
𝑇

0
⋅ 𝜆(𝑡)𝑑𝑡  are both 𝑅𝑛 ×

𝑅𝑛  constant matrices; 𝜆(𝑡) = [𝜆0(𝑡), 𝜆1(𝑡),⋯ , 𝜆𝑛−1(𝑡)]
𝑇  is 

the basis function vector. Eq. (4) shows that the state zf of the 

chain system at time T can be derived from the given initial 

condition z0 and a corresponding set of parameter vectors c. 

 

 

3. ITERATIVE LEARNING CONTROL ALGORITHM 

 

It is assumed that the configuration variable of a chainable 

non-holonomic system has an initial error. This initial 

configuration error is denoted as 𝑧𝑒
0 after being mapped to the 

chain space. Under the error 𝑧𝑒
0, the target configuration of the 

system can be expressed as a function of the parameter vector 

c. Let 𝑧𝑒
𝑓
(𝑐[𝑘]) be the target configuration after k iterations. 

Then, the linear invariant homogeneous equation with respect 

to parameter vector c at time T can be expressed as: 

 
[ ] [ ]( ) ( ) 0k f f k

ee c z z c= −   (5) 

 

where, c[k] is the parameter vector after k iterations; e(c[k]) is 

the target configuration error function of the chain variable. 

Then, the iterative expressions for the control parameter vector 

and the velocity input can be defined as: 

 
[ ] [ 1] [ 1]

( )
k k k

c c F e c
− −

= +   (6) 

 
-1

[ ] [ ]

0

( ) ( )
n

k k

i i

i

v t c t
=

=  (7) 

 

where, matrix 𝐹 ∈ 𝑅𝑛 × 𝑅𝑛 . To ensure the iterative 

convergence of Eq. (5), the general method is to judge the 

convergence features by the eigenvalues of the iterative matrix. 

In many cases, however, it is difficult and even impossible to 

solve the eigenvalues of the iterative matrix. Hence, the range 

of eigenvalues is estimated in engineering practices, rather 

than determine the exact eigenvalues. The Gershgorin circle 

theorem [16] is often adopted to prove that all the eigenvalues 

of the iterative matrix fall within the open set of the unit circle 

on the complex plane. 

Lemma 1 (Iterative convergence) For the update Eq. (6) 

for the control parameter vector of the time polynomial control 

input, there exists an iterative matrix I-QF whose eigenvalues 

are located in the open unit Gershgorin disc of the complex 

plane, such that the target configuration error function e(c[k]) 

of the chain variable converges exponentially to zero. 

Proof: Substituting Eq. (4) into Eq. (5), we have 

 
[ 1] [ ] [ 1] [ ] [ 1] [ ]( ) - ( ) - ( ) ( ) ( )k k k k k ke c e c z c z c Q c c+ + += + = − −  (8) 

 

Sorting equation (6) into 𝑐[𝑘+1] − 𝑐[𝑘] = 𝐹 ⋅ 𝑒(𝑐[𝑘+1]) and 

substituting it into the above equation, we have: 

 
[ 1] [ ] [ ] [ ]( ) ( ) - ( ) ( ) ( )k k k ke c e c QF e c I QF e c+ =  = −   (9) 

 

The controllability of the chain system (1) guarantees that, 

the parameter vector in Eq. (4) has a unique set of solutions 

under the time polynomial input and the known initial and 

target configurations z0 and zf. Thus, matrix Q is not singular. 

Let F=ηQ-, with 𝜂 ∈ 𝑅 . According to the Gershgorin circle 

theorem, the eigenvalues of the iterative matrix I-QF of Eq. (8) 

at 𝜂 ∈ (0,2) can be estimated as: 

 

 0,iiD a C  = −    (10) 

 

where, aii is the main diagonal element of the iterative matrix 

I-QF and aii≡η. Therefore, the eigenvalues λ of the iterative 

matrix fall within the unit circle in the complex plane, 

indicating that Eq. (5) can converge to zero at any speed. 

Q.E.D. 

Since the mathematical structure of the chain system (1) 

guarantees the linearity of Eq. (5) is linear, Eq. (1) can also be 

expressed as: 

 

( ) ( ) ( ) ( )z t A t z t B v t=  +   (11) 

 

where,𝐴(𝑡) =

[
 
 
 
 
 

0 0 0 ⋯ 0 0
0 0 0 ⋯ 0 0

𝑣1(𝑡) 0 0 ⋯ 0 0
0 𝑣1(𝑡) 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋯ ⋮ ⋮
0 0 0 ⋯ 𝑣1(𝑡) 0]

 
 
 
 
 

 (𝐴(𝑡) ∈ 𝑅𝑛+1 ×

𝑅𝑛+1 ); 𝐵 =

[
 
 
 
 
 
1 0
0 1
0 0
0 0
⋮ ⋮
0 0]

 
 
 
 
 

 ( 𝐵 ∈ 𝑅𝑛+1 × 𝑅2 ); 𝑧(𝑡) =

[𝑧1(𝑡), 𝑧2(𝑡),⋯ , 𝑧𝑛+1(𝑡)]
𝑇 (𝑧(𝑡) ∈ 𝑅𝑛+1); 𝑣(𝑡) = [𝑣1(𝑡), 𝑣2(𝑡)]

𝑇. 

The Eq. (5) thus constructed is a set of nonlinear fixed-

length homogeneous equations with respect to the parameter 

vector c. This equation can be solved iteratively by the root-

finding method for nonlinear equations, and its convergence 

can still be evaluated by Lemma 1.

 

748



 

4. APPLICATION OF ITERATIVE LEARNING 

CONTROLLER TO PATH PLANNING WITH INITIAL 

CONFIGURATION ERROR 

 

Taking a chainable three-joint non-holonomic manipulator 

as the object [17], the iterative learning controller was applied 

to the path planning with initial configuration error. The 

control parameter vector c was adjusted through the iterative 

calculation of the target configuration error function, such that 

the actual configuration θa of the three-joint manipulator can 

converge to the expected value at time T, despite the initial 

configuration error. Figure 1 illustrates the iterative learning 

control system. 

 

 
 

Figure 1. Block diagram of our iterative learning control system 

 

The iterative learning control algorithm can be implemented 

in the following steps: 

Step 1. According to the polynomial path planner, calculate 

the theoretical value zf and the chain variable under initial 

configuration error 𝑧𝑒
𝑓
 of the chain system Eq. (1), and solve 

the target configuration error function e(c[0]) of the chain 

variable. 

Step 2. Solve the matrices P and Q in Eq. (4). It can be seen 

from Eq. (3) that the input basis function vector can be 

expressed as 𝜆(𝑡) = [𝜆0(𝑡), 𝜆1(𝑡), 𝜆2(𝑡)]
𝑇 = [1, 𝑡, 𝑡2]𝑇  

(t∈[0,T]). According to Eq. (4), there exists an exponential 

mapping 𝛷𝑒: 𝐴(𝑇) → 𝑃 ∈ 𝑅3×3 . Then, P=eA(T) can be 

expanded as: 

 

2 3
2 3

0

2

0 0

1 0 0
( ) ( )

( ) 1 0
2! 3!

( ) / 2 1

A T A T
P I A T T T T b T

b T b T

 
 

= + + + + =
 
  

 
(12) 

 

where, 𝐴(𝑇) = [

0 0 0
𝑏0 0 0
0 𝑏0 0

] . The following can be derived 

from Eq. (4): 

 

2

0
0

2 2

0 0

2 3

2 3 4

0 0 0

2 3 2 4 2 5

0 0 0

1 0 0 1

( ) 1 0 0 [1 ]

( ) / 2 ( ) 1 0

/ 2 / 3

/ 2 / 6 /12

/ 6 / 24 / 60

T

Q b T t t t dt

b T t b T t

T T T

b T b T b T

b T b T b T

   
   

= −  
   
   − −   

 
 

=  
 
 


 

(13) 

 

Step 3. Establish the termination condition of the iteration. 

According to the configuration error of the chain variable after 

k iterations, the norm of the target configuration error function 

can be defined as: 

 
[ ] [ ]( ) ( )
k f f k

epe e c z z c= = −  (14) 

 

The iteration should be terminated when pe≤δ, where δ∈R+ 

is a sufficiently small given positive value. 

Step 4. Substitute the condition F=ηQ- of Lemma 1 into the 

iterative calculation of Eq. (6), and iteratively update the 

parameter vector c[i] according to Step 3 until the target 

configuration error function in Eq. (5) satisfies the termination 

condition. Then, the value of c[k+1] can be obtained as: 

 
[ 1] [ ] [ ]

( )
k k k

c c Q e c
+

−= +   (15) 

 

Step 5. Substitute c[k+1] into the expression of zi(t), and solve 

the iteratively corrected trajectory via inverse transformation. 

If F=ηQ- in Eq. (6) equals the negative of the Jacobian inverse 

matrix of parameter vector c in Eq. (5) at η=1, we have: 

 

( )Q Jab c − −= −  (16) 

 

Obviously, the iterative error correction algorithm in Eq. (6) 

for the parameter vector c is a Newton’s iteration method. The 

geometric meaning is: the linear operator described by Jab(c) 

optimizes the approximation of c[k] to c[k+1]. 

The chain equations and input equations of three-joint non-

holonomic manipulator can be obtained as follows through 

coordinate transformation of the kinematics equation of the 

manipulator (the mechanical form, kinematics equation and 

coordinate transformation method are described in Reference 

[17]):  

 

4 3

334

3 4 3 2

4

2 23 3 2

2 3 2 1 2 22

3

1 2

3

g

g

z

kz
z f q

q k

z k k
z f q

q k

z





  



 =



= =

 


 − = =
 

 =

( ) ( )cos

( ) cos cos sin

 
(17) 

 

1 1 2

2

4 2 3 22 3 2 3

2 1 2 2 2 1 1 1 2 2 23 2

3 6
2( )

g g

v u

k k k k
v c c s c u c s c s u

k k

 = =



= − +


 (18) 
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where, k2, k3 and k3 are the structural size coefficients of the 

manipulator; θ=[θ1 θ2 θ3)]T and [u1 u2]T are the joint space and 

input space of the manipulator, respectively. 

For the three-joint non-holonomic manipulator, the path 

planning based on iterative learning control is to determine the 

angular velocity inputs u1 and u2 of the servo motor, such that 

all the joints can move from the error-containing initial 

configuration 𝜃𝑒
0  accurately to the target configuration θf, 

under the joint action of the polynomial control law (2) and 

iterative update parameter vector c[k+1]. Unlike the path 

planning of manipulator under holonomic constraint, the path 

planning of each joint of non-holonomic manipulator must 

satisfy the non-holonomic constraint, instead of being random. 

Let 𝜃𝑒
0=[9°, 11°, 9°]T, θ0=[10°, 10°, 10°]T and θf=[30°, 30°, 

30°]T be the error-containing initial configuration, the 

theoretical initial configuration and the target configuration, 

respectively. Then, the initial configuration error is 1°. Under 

these configurations, the path planning of three-joint 

manipulator was simulated with and without initial 

configuration errors and the results were recorded in Figures 2 

and 3 below. The results show that the small initial 

configuration error (1°) has a great impact on the path planning 

result of the system, twisting the geometric shape of the path 

and preventing the joints from reaching the target 

configuration in the specified time. 

 

 
 

Figure 2. Angular displacement trajectories of the joints in 

the simulation without initial configuration error 

 

 
 

Figure 3. Angular displacement trajectories of the joints in 

the simulation with initial configuration error of 1° 

 

Then, the iterative learning algorithm was applied to the 

simulation with initial configuration error of 1°. The 

simulation results after four iterations are displayed in Figures 

4 and 5 below. It can be seen that the three-joint non-

holonomic manipulator moved from the error-containing 

initial configuration θ0=[9°, 11°, 9°]T to the target 

configuration θf=[30°, 30°, 30°]T after a period of time. The 

position error 𝑝𝑒  of the chain variable changed with the 

number of iterations, in that the target configuration error 

function e(c[k]) of the system converged exponentially to the 

target configuration. 

 

 
 

Figure 4. Iterative simulation curve with 1° error 

 

 
 

Figure 5. Iterative convergence rate of the error (exponential 

convergence) 

 

According to the evaluation index of linear approximation 

of non-holonomic systems [18], the iterative trajectory of the 

system is not satisfactory at φ2=36.6°, and the planned path of 

joint 1 deviated from the linear reference path (the segment 

between the initial and target configurations) by 59.63° at the 

most. There were 2 extreme values on the trajectory relative to 

the reference path, indicating that joint 1 turned twice during 

the movement. 

Although the iterative learning algorithm can eliminate the 

error of the target configuration, the path planning result of the 

system is greatly affected by a small initial error (1°), as 

evidenced by the significant distortion of the geometric shape 

of the planned path. This means the system has a poor fault 

tolerance, which hinders the iterative linear approximation of 

the path. Compared with linear path, the non-holonomic path 

fluctuates and zigzags along the way. To solve the problem, it 

is necessary to identify the nonlinear mapping between the 

chain space and configuration space, and select the input 

parameters based on the error tolerance coefficient, thus 

reducing the sensitivity of the manipulator system to the initial 

error and enhancing the open-loop robustness and operability 

of path planning. The specific steps are detailed in Reference 

[18]. 
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5. ITERATIVE LEARNING CONTROL UNDER 

MODEL ERROR 

 

Under continuous disturbance, formula (1) can be rewritten 

as: 

 

( ) ( ) ( ) ( ) ( ( ), ( ), )z t A t z t B v t z t v t t=  +  +  (19) 

 

where, δ is a disturbance function that is continuously 

differentiable about z(t) and v(t). Solving formula (19) in 

interation interval i=([k], [k+1]): 

 

,[ ] [ ] ( ) [ ] ( ) [ ] [ ]

0
0 0

( ) ( ( ), ( ), )
T T

f i AT i A T t i A T t i i

ez e z e B v t dt e z t v t t dt− −= +  +   (20) 

 

where, the first two terms are the steady-state output of the 

undisturbed chain system; the last term is the steady-state 

output difference between the disturbed chain system at time 

T in the iteration interval ([k], [k+1]) and the undisturbed chain 

system. Then, the error function of the steady-state output of 

the system can be expressed as: 

 

[ ] ( ) [ ] [ ]

0
( ( ), ( ), )

T
i A T t i ie z t v t t dt −=   (21) 

 

Formula (21) is essentially a partial solution of formula (20). 

From the nature of the slution to first-order differential 

equation and the controllable condition of the nonholonomic 

system, it can be seen that formula (21) is a continuously 

differentiable function of the parameter vector c. Under 

continuous interference, the target configuration of system (19) 

after k iterations can be written as: 

 
,[ ] 0 [ ] [ ]f i k k

ez Pz Qc = + +  (22) 

 

where, 𝑃 = 𝑒𝐴(𝑇) ; 𝑄 = ∫ 𝑒𝐴(𝑇−𝑡)𝐵
𝑇

0
⋅ 𝜆(𝑡)𝑑𝑡 ; ε[k] is the 

residual error between the actual target configuration and 

theoretical target configuration. Then, the error function of the 

target configuration can be expressed as: 

 
[ ] [ ]

0 [ ] [ ]

[ 1]
0 [ 1] [ ]

( ) ( ) ( )

( ( ( )) )

k k
d d k k

e

k
d k k

e c z z T z Pz Qc

z Pz Q c F e c




−

−

= − = − + +

= − + +  +

 (23) 

 

Substituting this into formula (5): 

 
[ ] [ 1] [ 1]

[ ] [ 1]

[ 1]
[ 1] [ ]

( ) ( ) ( )

( ) ( ) ( )

k k k
k k

k
k k

e c e c QFe c

I QF e c

 

 

− −
−

−
−

= − − +

= − + −

 (24) 

 

After k iterations, the system error induced by dynamic 

disturbance can be expressed as: 

 
[ 1] [ 1] [ ]k k k  − −= −  (25) 

 

where, 𝜁[𝑘] is the bounded continuous differentiable function 

about parameter vector c (which guarantees boundedness). 

According to the Lipschitz condition, there exists a Lipschitz 

constant k>0 in the definition domain of c. Then, 𝜁[𝑘] satisfies: 

 

[ ]
[ ] [ ] [ 1] [ ] [ 1] ( )

k
k k k k kk c c k F e c   + += −   − =  −   (26) 

 

Let F=ηQ-. Then, formula (26) can be rewritten as: 

 
[ 1]

[ ] ( )
k

k k p e c 
−

  (27) 

 

where, 𝑝 = |𝑄−| . Obviously, if the consistency index 

perturbation term |𝜁[𝑘]|  induced by dynamic disturbance 

through iterations can converge to zero, there always exists a 

coefficient 𝜎 ∈ 𝑅+  that makes 
𝜎

𝑘𝜂𝑝
≪ 1 . Substituting this 

coefficient into formula (21): 

 
[ ] [ ] [ ] [ 1]-k k k k      += =  (28) 

 

According to formula (28), the chain system can be 

reconstructed to satisfy the relevant conditions: 

 

( ) ( ) ( ) ( ) ( ( ), ( ), )z t A t z t B v t z t v t t =  +  +   (29) 

 

where, σ is a sufficiently small positive real number that needs 

to satisfy 
𝜎

𝑘𝜂𝑝
≪ 1, such that the consistency index of formula 

(24) can converge to zero after the system iterates by formula 

(6) under dynamic disturbance. 

As shown in formula (27), the perturbation term of the chain 

system is completely decoupled. Hence, the chain system (1) 

can be divided into two parts for iterative calculation. This not 

only improves the efficiency of iterative convergence, but also 

reduces the algorithm difficulty. On the contrary, chain system 

(11) complicates the algorithm and slows down the iterative 

convergence. 

Suppose the two contacting discs (A1 and C1) on the rotation 

axis of joint 1 in three-joint non-holonomic manipulator [17] 

have model errors with the corresponding turntables (B1 and 

D1): the working radius r1e of each disc is 103% of the nominal 

radius; the actual distance Re from the contact point of each 

disc and turntable B1 to the rotation axis of that turntable is 

105% of the design distance; the actual distance r3e from the 

contact point of each disc and turntable D1 to the rotation axis 

of that turntable is 107% of the design distance.  

Since joint 1 is directly driven by motor, its angular 

displacement θ1 is not affected by the initial configuration 

error. The increase of radius r1e of disc A1 causes the linear 

velocity and displacement of the disc to increase 

proportionally. Whereas the manipulator has an open motion 

transmission chain, the model errors of the two discs will 

propagate along the chain, and affect the trajectories of all 

joints, except the angular displacement θ1 of joint 1. In 

addition, the initial configuration error will induce time-

variation in the control input of the chain system, according to 

the input feedback transformation formula of chain 

transformation. 

Except for model error, the parameters are consistent with 

those in Li’s work [17]. The simulation results show that the 

actual target configuration 𝜃𝑎
𝑓

= [30°，28°，28°]𝑇 of the 

three-joint manipulator at the end of movement deviated from 

the specified target configuration, owing to the presence of 

model error (Figure 6). 
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Figure 6. The simulation curves under model error 

(φ2=32.8°, da=22.84°, tp=1) 

 

Through iterative learning, the coefficients in formula (27) 

can be expressed as: 
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Figure 7. The iterative simulation curves under model error 

(φ2=32.8°, da=28.05°, tp=1) 

 

 
 

Figure 8. The iterative convergence speed of model error 

(exponential convergence) 

Figure 7 presents the simulation results at t=T and kηp=η. 

Figure 8 is the iteratively convergence speed. After four 

iterations, the non-holonomic manipulator can converge near 

the target configuration θf, under the conditions of formula 

(14). 

 

 

6. CONCLUSIONS 

 

Based on the root-finding method for nonlinear equations, 

this paper proposes an iterative learning control algorithm, and 

proves through mathematical deduction that the controller can 

make the chain system converge to the target value at any 

speed with the initial configuration error and model error. Then, 

the author carried out a simulation experiment on path 

planning for a chainable three-joint manipulator. The results 

show that the iterative learning control algorithm ensures that 

each joint variable moves to the target configuration within the 

specified time, despite the disturbance of the initial 

configuration error. 
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