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In the information society, data explosion has led to more congestion in the core network, 

dampening the network performance. Random early detection (RED) is currently the 

standard algorithm for active queue management (AQM) recommended by the Internet 

Engineering Task Force (IETF). However, RED is particularly sensitive to both service 

load and algorithm parameters. The algorithm cannot fully utilize the bandwidth at a low 

service load, and might suffer a long delay at a high service load. This paper designs the 

reinforcement learning AQM (RLAQM), a simple and practical variant of RED, which 

controls the average queue length to the predictable value under various network loads, 

such that the queue size is no longer sensitive to the level of congestion. Q-learning was 

adopted to adjust the maximum discarding probability, and derive the optimal control 

strategy. Simulation results indicate that RLAQM can effectively overcome the deficiency 

of RED and achieve better congestion control; RLAQM improves the network stability 

and performance in complex environment; it is very easy to migrate from RED to RLAQM 

on Internet routers: the only operation is to adjust the discarding probability. 
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1. INTRODUCTION

The data volumes are exploding due to the expansion of 

network scale and the growing number of users. Congestion 

will occur in the network, when the volume of data being 

transmitted approaches the maximum processing capacity of 

the network [1]. In the event of a congestion, the traditional 

congestion control strategy, transmission control protocol 

(TCP), can no longer satisfy the quality of service (QoS) 

requirements. To avoid congestion, the packets in the router 

buffer can be marked or discarded by a specific queue 

management mechanism configured on the router, or resume 

the normal network state as soon as possible. 

There are two kinds of queue management schemes: passive 

queue management (PQM) and active queue management 

(AQM). The most representative PQM algorithm is Drop-Tail, 

which only discards packets when the router queue is saturated. 

Despite its simplicity, Drop-Tail is prone to problems like 

deadlock, queue saturation, and global synchronization. As a 

result, AQM [2] has become the popular queue management 

scheme in practice. The core idea of AQM is to control the 

queue length of the router cache by collecting and predicting 

the network state prior to congestion. 

Over the years, AQM has been continuously improved by 

experts and scholars. The improved AQM algorithms fall into 

three categories: heuristic algorithms, optimization algorithms, 

and control algorithms [3]. Depending on intuition, the 

heuristic algorithm includes RED, gentle RED (GRED) [4], 

three-section RED (TRED) [5], fair weighted multi-level RED 

(FWMRED) [6], AQM with random dropping (AQMRD) [7], 

and new modified dropping function (NMDF) [8]. Specifically, 

GRED increases network stability by replacing the 

discontinuous change of discarding probability from Pmax to 1 

should with a gentle slope. To manage congestion level, 

FWMRED redefines the discarding probability in multi-level 

RED (MRED), and produces dynamic weighted traffic to 

enhance the stability of parameters [9]. AQMRD incorporates 

the change rate of average queue size as a parameter to capture 

the time variation of average queue size. The heurism 

algorithms significantly outperform the Drop-Tail. However, 

many heuristic algorithms need to configure their parameters 

as per the specific network conditions. The influence of their 

parameters is not fully known. If the parameters are not 

configured properly, the heuristic algorithms will quickly 

enter the unstable state, failing to respond timely to the 

dynamic changes of the network. This will result in reduced 

network utilization and deteriorated network performance. 

Aiming to maximize network utilization, the optimization 

algorithms are essentially solvers of the gradient optimization 

problem. Typical optimization algorithms are random 

exponential marking (REM) [10], adaptive virtual queue 

(AVQ) [11], delay utilization knee (DUK) [12], artificial 

neural network-based AQM (ANB-AQM) [13], and 

deterministic perceptron-based AQM (DPB) [14]. Among 

them, DUK relies on measured runtime of the network, a 

natural threshold, and the knee on delay-utilization curve, 

rather than preset or pre-tuned parameters. To control 

congestion and ensure QoS, ANB-AQM tunes the parameters 

through self-learning to adapt to network nonlinearity. On the 

upside, the optimization algorithms perform well in analysis; 

on the downside, these algorithms are too complex to 

implement, and require the network parameters (e.g. the 

number of streams, and round-trip time) to be known in 

advance. But these parameters often change frequently, 
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making it difficult to design such algorithms. 

Many AQM control algorithms have been developed under 

different control strategies, namely, proportional-integral (PI) 

controller [15], proportional–derivative (PD) controller [16], 

feedforward AQM (FF-AQM) [17], self-tuning compensated 

proportional-integral-derivative (ST-CPID) controller [18], 

and stable AQM (SAQM) [19]. Hollot et al. [15] designed a 

stabilizing PI controller that uses instantaneous samples of the 

queue size, and successfully overcame the instability and low-

frequency oscillations of the low-pass filter design of RED in 

the regulated output. Wang et al. [17] proposed the FFAQM 

under feedforward model predictive control (MPC), which 

stabilizes the queue length at a target value as quickly as 

possible and smooths out the burst traffic. Kahe and Jahangir 

[18] put forward the ST-CPID to address the time-variation of 

network conditions induced by parameter changes and 

unresponsive connections. The control algorithms based on 

classical control theory can effectively control queue length, 

but their designs depend on approximate linear model or 

specific network model. The network performance will 

deteriorate, if the network environment changes or the model 

does not fit. In addition, the control algorithms are sensitive to 

the setting of system parameters. 

In recent years, reinforcement learning (RL) has been 

introduced to network congestion control. Being a learning 

process through trial and error, RL attaches great importance 

to the interaction between the agents and the environment, and 

continuously adjusts the action selection strategy based on the 

feedback from the environment. The main advantage of RL is 

the elimination of the need for prior knowledge of the network 

or precise mathematical model of the control object. Through 

RL, the controller can be designed robustly, regardless of the 

model accuracy. Therefore, RL is highly suitable for networks 

with significant time variations and emergent properties. 

In general, the optimization and control algorithms have 

better AQM performance than heuristic algorithms. 

Nevertheless, these algorithms are too complex to be 

implemented easily. Besides, any new implementation of 

AQM will greatly affect the design of router structure and 

software flow [20]. At present, AQM algorithms on Internet 

routers are mostly under the standard of RED. Therefore, it is 

of great significance to simplify and improve the practicality 

of RED-based AQM algorithms. 

This paper presents the a simple and practical AQM 

algorithm called RLAQM based on RED algorithm. In this 

algorithm, Q-learning is employed to adaptively adjust the 

maximum discarding probability, making the algorithm less 

sensitive to parameter setting. Moreover, the network 

performance was optimized through learning under the 

dynamic network environment, thereby preventing congestion. 

Simulation results show that the RLAQM achieved stable and 

excellent performance under complex network environment. 

The remainder of this paper is organized as follows: Section 

2 summarizes the problems of RED algorithm; Section 3 

introduces the RLAMQ algorithm; Section 4 simulates the 

performance of the proposed algorithm; Section 5 concludes 

the entire research. 

 

 

2. PROBLEMS OF RED ALGORITHM 

 

The RED algorithm detects congestion by monitoring the 

average queue length (avg) in the router cache. After detecting 

any sign of congestion, the algorithm will discard or mark 

individual groups at a certain probability, and inform the 

source to avoid congestion. To prevent global synchronization 

and bias against burst flows, the RED algorithm adopts a 

random strategy in the discarding or marking process. In 

addition, a reasonable queue length is maintained by imposing 

an upper bound on the average queue length. Any incoming 

packets longer than the upper bound will be discarded. The 

average queue length is calculated by exponentially weighted 

moving average (EWMA): 

 

𝑎𝑣𝑔𝑛 = (1 − 𝜔𝑞)𝑎𝑣𝑔𝑛−1 + 𝜔𝑞𝑞 (1) 

 

where, q is the instantaneous queue length; ωq ∈ [0, 1] is the 

sensitivity of average queue length to q. The recommended 

value of ωq is 0.002. 

The discarding or marking probability must be a function of 

average queue length, which reflects the congestion situation. 

In the packet loss mode, the discarding probability can be 

calculated by: 

 

𝑝𝑏 =

{
 
 

 
 0   𝑎𝑣𝑔 ∈ [0,𝑚𝑖𝑛𝑡ℎ]

𝑚𝑎𝑥𝑝×(
𝑎𝑣𝑔 −𝑚𝑖𝑛𝑡ℎ
𝑚𝑎𝑥𝑡ℎ−𝑚𝑖𝑛𝑡ℎ

)     𝑎𝑣𝑔 ∈ [𝑚𝑖𝑛𝑡ℎ,𝑚𝑎𝑥𝑡ℎ)

1   𝑎𝑣𝑔 ∈ [𝑚𝑎𝑥𝑡ℎ, + ∞)

 (2) 

 

where, maxp is the maximum discarding probability; minth and 

maxth are the lower and upper bounds of average queue length, 

respectively. Figure 1 shows the relationship between average 

queue length and the discarding probability pb. 

 

1

maxp

0 minth maxth avg

pb

 
 

Figure 1. The curve of discarding probability in RED 

algorithm 

 

To disperse the discarded groups, the discarded probability 

pb needs to be modified as: 

 

𝑝𝑎 =
𝑝𝑏

1 − 𝑐𝑜𝑢𝑛𝑡 × 𝑝𝑏
 (3) 

 

where, count is the number of packets entering the router cache 

queue since the previous packet loss. 

RED algorithm can solve most problems of the Drop-Tail, 

namely, deadlocks, full queues, and global synchronization. 

However, low link utilization or forced packet loss may arise 

from improper setting of algorithm parameters. In severe cases, 

the algorithm might suffer queue oscillation, throughput 

degradation, and delay jitter deterioration [5].  

To overcome the above defects, this paper proposes the 

RLAQM algorithm, which stabilizes the overall throughput 

and delay and optimizes the data transmission in the network 

by adaptively adjusting the maximum discarding probability 

under different network loads. 
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3. ALGORITHM DESIGN 

 

3.1 Q-learning 

 

Inspired by Markov decision process (MDP) [21], RL 

emphasizes the interaction between agents and the 

environment. The action execution is determined as per the 

current state of the environment, and the performance is 

evaluated based on the return value of the environment on the 

action, and the migration from the current state to the next state. 

The optimal decision is learned through the accumulation of 

experience. The standard RL model involves the following 

factors: 

(1) S={s1, s2, … sm}: the set of environmental states; 

(2) A={a1, a2, …an}: the set of agent actions; 

(3) r: the return value of the environment on the action; 

(4) π: S→A: the strategy executed by the agent. 

Figure 2 illustrates the relationship between these factors 

[22]: 

 

           Agent

Strategy 

Environment

Return

 value

r

Action

a

State

s

: S A →
 

 

Figure 2. The relationship between factors of the standard 

RL model 

 

The learning process is completed iteratively. In each 

iteration, the agent collects the current environmental state 

st∈S, selects an action a∈A according to the strategy π, and 

executes the action in the environment. Then, the environment 

state changes to s'∈S, while a return value r is generated at 

time t, and fed back to the agent. Based on the return value r 

and the environment state s', the agent updates its strategy π, 

kicking off the next iteration. Through continuous iterations, 

the agent searches for the optimal strategy π*(s) ∈A under each 

environmental state s∈S, thus maximizing the cumulative 

expectation of the return value: 

 

𝑉𝜋(𝑠) = 𝐸 {∑𝛾𝑡𝑟(𝑠𝑡 , 𝜋(𝑠𝑡))|𝑠0

∞

𝑡=0

= 𝑠} (4) 

 

where, γ∈[0, 1) is a discount factor, reflecting the importance 

of future return value to the current state. The discount factor 

can be solved by the Bellman criterion. The maximum of 

formula (4) can be obtained by: 

 

𝑉∗(𝑠) = 𝑉𝜋
∗
(𝑠) = 𝑚𝑎𝑥

𝑎∈𝐴
[𝑅(𝑠, 𝑎) + 𝛾∑𝑃𝑠,𝑠′(𝑎)𝑉

∗(𝑠′)

𝑠′∈𝑆

] (5) 

 

where, R(s, a) is the expectation of r(st, at); Ps,s’ (a) is the state 

transition probability, reflecting the probability for the 

environmental state s to reach the next state s' under the action 

a. 

Q-learning, a model-free RL algorithm extended from 

SARSA (state-action-reward-state-action), represents the 

experience of the agent with the state-action pair function Q (s, 

a). The algorithm can find the optimal strategy π* without 

knowing the specific values of R (s, a) and Ps,s’ (a). The Q (s, 

a) in strategy π can be expressed as Qπ (s, a): 

 

𝑄𝜋(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾∑𝑃𝑠,𝑠′(𝑎)𝑉
𝜋(𝑠′)

𝑠′∈𝑆

 (6) 

 

Under the optimal decision condition: 

 

𝑄∗(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾∑𝑃𝑠,𝑠′(𝑎)𝑉
∗(𝑠′)

𝑠′∈𝑆

 (7) 

 

From formulas (5) and (6): 

 

𝑉∗(𝑠) = 𝑚𝑎𝑥
𝑎∈𝐴

𝑄∗(𝑠, 𝑎) (8) 

 

𝜋∗(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎∈𝐴

𝑄∗(𝑠, 𝑎) (9) 

 

Q-learning iteratively updates the Q value at each moment:  

 

𝑄𝑡+1(𝑠, 𝑎) = (1 − 𝛼)𝑄𝑡(𝑠, 𝑎) + 𝛼(𝑟𝑡
+ 𝛾𝑚𝑎𝑥

𝑎′∈𝐴
𝑄𝑡(𝑠′, 𝑎′)) (10) 

 

where, α∈[0, 1) is learning rate. When t→∞, if α decreases to 

zero, Qt (s, a) will converge to the optimal value of Q* (s, a). 

Following formula (4), the agent can obtain the optimal 

strategy π* [23]. 

 

3.2 RLAQM 

 

Besides being applicable to various loads, a reasonable 

AQM strategy must avoid forced packet loss and low link 

utilization. In RED algorithm, the discarding probability is 

linearly corelated with the average queue length. If the 

maximum discarding probability maxp is too large, the 

congestion level will be overestimated, and many useful 

packets will be discarded; if the probability is too small, the 

congestion level will be underestimated, and some redundant 

packets will be retained. It is difficult to adapt to various 

network loads with a fixed maximum discarding probability. 

To adaptively adjust maximum discarding probability, this 

paper presents the RLAQM algorithm based on Q-learning, 

which is highly practical and low in complexity. Specifically, 

a Q-learning controller was added to the original RED to 

adjust maximum discarding probability as per network 

congestion level, making the algorithm less sensitive to 

parameter setting and more adaptive to networks with different 

loads. 

 

RLAQM 

Controller

Router queue

ras

Sender Receiver

 
 

Figure 3. The block diagram of RLAQM controller 
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As shown in Figure 3, the learning process of RLAQM 

controller is defined by {S, A, r}, where S is the set of network 

states s (avg, ∆avg) (avg is the average queue length of the 

buffer; ∆avg is the change of the average queue length), A is 

the set of maximum discarding probabilities maxp, and r is the 

return value. 

The RLAQM controller is embedded with the Q value table 

of network state-action pairs. Taking the current network state 

s(avg, ∆avg) as the input, the learning unit of the controller 

outputs the corresponding maximum discarding probability 

maxp for the action. 

In each round of learning, the learning unit collects the 

current network state s and selects action a, i.e. the maximum 

discarding probability maxp of RED algorithm, according to 

the Q value table and action selection strategy. Then, the 

network state changes under the adjusted discarding 

probability from s(avg, ∆avg)→s'(avg', ∆avg'), and calculates 

the return value r on action a(maxp). After that, the Q value of 

the current state-action pair (s, a) is updated, completing this 

round of learning. This process is repeated until the Q value 

table is optimized. 

The running speed of the algorithm is partly dependent on 

the number of network states. Hence, this number should be 

controlled within a reasonable range. To reduce algorithm 

complexity, the state s(avg, ∆avg) in the Q-learning controller 

was quantified to 14×10 levels. That is, the state set of learning 

units can be expressed as S={si,j}={avgi , ∆avgj}, i=1,2,3…14, 

j=1,2,3…10. Similarly, the action a(maxp) was divided into 14 

levels, creating an action set of learning units A={an}, 

n=1,2,3…14maxp0, where maxp0 is the maximum discarding 

probability of RED algorithm. 

The objective of the RLAQM controller is to find the 

optimal maximum discarding probability maxp that maximizes 

the network throughput while minimizing network delay. The 

objective function can be defined as a utility function [24]: 

 

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 = 𝛿 𝑙𝑜𝑔 𝑇𝑎𝑣𝑒 − 𝜂 𝑙𝑜𝑔 𝐷𝑎𝑣𝑒  (11) 

 

where, δ and η are the weights of throughput and delay, 

respectively; Tave is the average network throughput in the 

learning cycle; Dave is the average system delay in the learning 

cycle. 

During the learning, each learning unit of RLAQM 

controller measures the algorithm effect by the return value r 

of state-action pair (s, a). The return value can be defined as 

the difference between successive utility values: 

 

𝑟 = 𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑘 − 𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑘−1

= 𝛿 𝑙𝑜𝑔
𝑇𝑎𝑣𝑒 𝑘
𝑇𝑎𝑣𝑒 𝑘−1

+ 𝜂 𝑙𝑜𝑔
𝐷𝑎𝑣𝑒 𝑘−1
𝐷𝑎𝑣𝑒 𝑘

 
(12) 

 

As shown in formula (12), the return value increases with 

the utility value. The function of the return value aims to 

maximize network throughput and minimize network delay. In 

this function, Q-learning strategy is adopted to iteratively 

converge to high throughput and low delay. 

In each round, the learning starts once a new data packet 

arrives in the network. The specific flow of the RLAQM 

algorithm is as follows: 

Step 1. Parameter initialization 

The Q value table was initialized as zero; the discount factor 

γ, initial learning rate α0, and initial exploration probability ε0 

were configured. The exploration probability is mainly used 

for strategy update, that is, the iterative optimization of the 

strategy. This requires the algorithm to traverse the strategy 

space in an efficient manner. Hence, an epsilon greedy strategy 

was adopted for action selection. In each iteration, the agent 

executes the action with the highest Q value in the current state 

at the probability of (1-ε), and selects one of the remaining 

actions at the probability of ε. 

Step 2. Obtaining the current network state 

The current state s(avg, ∆avg) was calculated after the 

arrival of a new packet. 

Step 3. Selecting actions for execution 

By the epsilon greedy strategy, an action was selected for 

execution, according to the Qt(s, a) that corresponds to each 

action of s(avg, ∆avg) in the current state. In other words, the 

maximum discarding probability maxp was selected under the 

current network state, and the executed actions were cached 

for further use when the Q value is updated. 

Step 4. Obtaining the return value r 

The router discards packets according to the new discarding 

probability function, and derives the return value r of the state-

action pair (s, a) by formula (11). 

Step 5. Predicting the next network state and updating the Q 

value 

According to the current state and the selected action, the 

optimal 𝑚𝑎𝑥
𝑎∈𝐴

𝑄∗(𝑠, 𝑎) of the next network state s' was obtained, 

and Qt(s, a) was updated by formula (10). 

Step 6. Parameter update 

The learning rate α and the exploration probability ε were 

updated after each iteration to ensure the convergence of the 

algorithm. The updating rule was gradually reduced to zero, 

following the negative exponential law. 

Step 7. Termination 

The convergence or nonconvergence of Q value was judged. 

If the value does not converge, the Q value table was taken as 

the initial value, and the next iteration was executed from Step 

2. If the value converges, the learning process was terminated, 

and the current Q value table was used to select the actions 

according to states. 

 

 

4. SIMULATION ANALYSIS 

 

The performance of the proposed RLAQM algorithm was 

verified through simulations on NS2 simulator. The network 

topology for simulation is described in Figure 4, where S1~Sn 

are n senders, D1~Dn are n receivers, and R1~R2 are two 

routers [25]. The bandwidth and delay between each sender 

and R1, and between each receiver and R2, were set to 20 

Mbps and 20 ms, respectively 

For comparison, RED algorithm and RLAQM algorithm 

were simulated under single load and variable load, and their 

queue lengths, throughputs, delays, and discarding 

probabilities were measured. During the simulation, the 

common parameters of the two algorithms were configured as 

follows: 

The lower bound of average queue length minth is 24 packets, 

the upper bound of average queue length maxth is 72 packets, 

the weight ωq is 0.002, the buffer size is 120 packets the 

maximum discarding probability maxp of RED algorithm is 0.1, 

the initial maximum discarding probability maxp0 of RLAQM 

algorithm is 0.1, and the initial values of α, γ, and ε are 0.01, 

0.8, and 0.5, respectively. Both algorithms were executed on 

the links between the two routers, while the Drop-Tail was 

executed on the other links [26]. The application layer is based 

on TCP and file transfer protocol (FTP).  
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Figure 4. The topology of the simulation network 

 

4.1 Single load simulations 

 

4.1.1 Light load 

During single load simulations, RED algorithm and 

RLAQM algorithm were firstly simulated under light load 

with the number of network connections fixed at 16 and the 

simulation time at 100s. 

Figure 5 compares the queue lengths of the two algorithms: 

the average queue length of RED algorithm fell between 22 

and 30, while that of RLAQM algorithm fell between 30 and 

38. RLAQM had a longer average queue length than RED. 

This is because RED has a short average queue length under 

light network load, and faces light network congestion; 

RLAQM increases the average queue length and improves 

network throughput, by reducing the maximum discarding 

probability and thus the discarding probability. 

 

 
(a) RED algorithm 

 
(b) RLAQM algorithm 

 

Figure 5. The comparison of queue length under light load 

 

Table 1 compares the throughputs, delays, and packet loss 

rate of RED algorithm and RLAQM algorithm. Obviously, 

RLAQM achieved higher average throughput than RED at the 

cost of a slightly longer delay, which meets the theoretical 

design. Overall, RLAQM increased network throughput by 

0.20%, extended the delay by 2.6%, and reduced the packet 

loss rate by 8.6% from the levels of RED. 

 

Table 1. The performance comparison under light load 

 
Performance 

 

Algorithm 

Throughput 

(Kbps) 

Delay 

(ms) 

Packet loss rate 

(%) 

RED 19,900.76 54.05 0.35 

RLAQM 19,941.08 55.48 0.32 

 

4.1.2 Moderate load 

Next, RED algorithm and RLAQM algorithm were 

simulated under moderate load with the number of network 

connections fixed at 64 and the simulation time at 100 s. 

Figure 6 compares the queue lengths of the two algorithms: 

the average queue lengths of both algorithms ranged between 

50 and 60. The average queue length of RLAQM was not 

significantly different from that of RED. The main reason is 

that, under moderate network load, the congestion remains on 

the moderate level. In this case, RLAQM does not need to 

adjust the discarding probability from the level of RED. Thus, 

the maximum discarding probabilities of the two algorithms 

are similar, which greatly limits their difference in network 

performance. 

 

 
(a) RED algorithm 

 
(b) RLAQM algorithm 

 

Figure 6. The comparison of queue length under moderate 

load 

 

Table 2 compares the throughputs, delays, and packet loss 

rates of RED algorithm and RLAQM algorithm. It can be seen 

that, RLAQM achieved basically the same performance as 

RED, which meets the theoretical design. Overall, RLAQM 
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increased network throughput by 0.0009%, shortened the 

delay by 0.23%, and elevated the packet loss rate by 1.1% from 

the levels of RED. 

 

Table 2. The performance comparison under moderate load 

 
Performance 

 

Algorithm 

Throughput 

(Kbps) 

Delay 

(ms) 

Packet loss rate 

(%) 

RED 19,961.14 64.96 4.64 

RLAQM 19960.96 64.81 4.69 

 

4.1.3 Heavy load 

Further, RED algorithm and RLAQM algorithm were 

simulated under heavy load with the number of network 

connections fixed at 128 and the simulation time at 100 s. 

Figure 7 compares the queue lengths of the two algorithms: 

the average queue length of RED algorithm changed from 68 

to 72, while that of RLAQM algorithm varied from 62 to 68. 

RLAQM had a shorter average queue length than RED. This 

is attributable to the following facts: Under a heavy network 

load, RED has a long average queue length and the network is 

severely congested; RLAQM packet loss rate by increasing the 

maximum value, thereby reducing the average queue length 

and network delay. 

 

 
(a) RED algorithm 

 
(b) RLAQM algorithm 

 

Figure 7. The comparison of queue length under heavy load 

 

Table 3 compares the throughputs, delays, and packet loss 

rates of RED algorithm and RLAQM algorithm. It can be seen 

that, RLAQM achieved slightly higher average throughput and 

shorter network delay than RED, which meets the theoretical 

design. Overall, RLAQM increased network throughput by 

0.005%, shortened the delay by 1.6%, and reduced the packet 

loss rate by 12% from the levels of RED. 

 

Table 3. The performance comparison under heavy load 

 
Performance 

 

Algorithm 

Throughput 

(Kbps) 

Delay 

(ms) 

Packet loss rate 

(%) 

RED 19,972.69 72.02 13.07 

RLAQM 19,973.71 70.84 11.54 

 

4.2 Variable load simulations 

 

RED algorithm and RLAQM algorithm were also simulated 

under variable load, with the number of connections changing 

between 64, 16, and 128 every 40 s, and the simulation time 

of 120 s. 

 

 
(a) Radical early detection (maxp=0.3) 

 
(b) Moderate early detection (maxp=0.1) 

 
(c) Conservative early detection (maxp=0.01) 

 

Figure 8. The variation of queue length in RED algorithm 

 

The stability of queue length is an important indicator of 

network performance. To disclose the impact of maximum 

discarding probability on queue length under variable load, the 

queue lengths of RED under different early detection 

performance (i.e. maximum discarding probabilities) were 

captured and plotted into Figure 8. 
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Under radical early detection (maxp=0.3) (Figure 8(a)), the 

queue length of RED was relatively stable in the first 40s under 

64 connections and the last 40 s under 128 connections. 

However, the queue was almost empty in the 16 s~40 s under 

16 connections. Hence, RED has a very low efficiency under 

radical early detection. 

Under conservative early detection (maxp=0.01) (Figure 

8(c)), the queue length of RED was stable only under 16 

connections, and almost saturated under 64 and 128 

connections. In the latter two scenarios, RED queue oscillated 

continuously between continuous packet loss and subsequent 

low utilization.  

Under moderate early detection (maxp=0.1) (Figure 8(b)), 

the queue length of RED was stable under 64 connection, but 

empty or almost saturated under 16 and 128 connections. In 

the latter two scenarios, RED queue continued to oscillate. 

Figure 9 presents the variation of queue length of RLAQM 

under the same simulation environment. It can be seemed that 

the queue of RLAQM was adjusted adaptively according to 

the changing network load, and the overall queue length 

remained relatively stable. 

 

 
 

Figure 9. The variation of queue length in RLAQM 

algorithm 

 

In addition, the throughputs, delays, and packet loss rates of 

RED and RLAQM algorithms were tested under the initial 

maximum discarding probability of 0.1. As shown in Table 4, 

RLAQM outshined RED under each load in the dynamic 

network environment. 

 

Table 4. The comparison of dynamic network performance 

 
Performance 

 

Algorithm 

Throughput 

(Kbps) 

Delay 

(ms) 

Packet loss rate 

(%) 

RED 19,852.68 64.75 6.34 

RLAQM 19,883.24 63.46 5.79 

 

 

5. CONCLUSIONS 

 

To reduce the sensitivity of RED to parameter setting and 

improve network performance, this paper improves RED into 

RLAQM, an algorithm that adaptively updates its parameters 

as per network conditions. The control strategy of network 

performance was optimized through iterative learning: the 

maximum discarding probability is adjusted adaptively to 

avoid network congestion and improve network performance. 

Simulation results show that RLAQM can maintain the queue 

stable in dynamic network environment, reduce network delay, 

and improve network throughput. The future research will 

introduce explicit congestion notification (ECN) to RLAQM, 

and further improve the action adjustment accuracy of 

RLAQM through fuzzy Q-learning.  
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