
Performance Analysis of Active Queue Management Algorithm Based on Reinforcement

Learning

Fuchun Jiang, Chenwei Feng*, Chen Zhu, Yu Sun

Fujian Key Laboratory of Communication Network and Information Processing, Xiamen University of Technology, Xiamen

361024, China

Corresponding Author Email: cwfeng@xmut.edu.cn

https://doi.org/10.18280/jesa.530506 ABSTRACT

Received: 17 May 2020

Accepted: 2 September 2020

In the information society, data explosion has led to more congestion in the core network,

dampening the network performance. Random early detection (RED) is currently the

standard algorithm for active queue management (AQM) recommended by the Internet

Engineering Task Force (IETF). However, RED is particularly sensitive to both service

load and algorithm parameters. The algorithm cannot fully utilize the bandwidth at a low

service load, and might suffer a long delay at a high service load. This paper designs the

reinforcement learning AQM (RLAQM), a simple and practical variant of RED, which

controls the average queue length to the predictable value under various network loads,

such that the queue size is no longer sensitive to the level of congestion. Q-learning was

adopted to adjust the maximum discarding probability, and derive the optimal control

strategy. Simulation results indicate that RLAQM can effectively overcome the deficiency

of RED and achieve better congestion control; RLAQM improves the network stability

and performance in complex environment; it is very easy to migrate from RED to RLAQM

on Internet routers: the only operation is to adjust the discarding probability.

Keywords:

congestion control, active queue management

(AQM), random early detection (RED),

reinforcement learning AQM (RLAQM)

1. INTRODUCTION

The data volumes are exploding due to the expansion of

network scale and the growing number of users. Congestion

will occur in the network, when the volume of data being

transmitted approaches the maximum processing capacity of

the network [1]. In the event of a congestion, the traditional

congestion control strategy, transmission control protocol

(TCP), can no longer satisfy the quality of service (QoS)

requirements. To avoid congestion, the packets in the router

buffer can be marked or discarded by a specific queue

management mechanism configured on the router, or resume

the normal network state as soon as possible.

There are two kinds of queue management schemes: passive

queue management (PQM) and active queue management

(AQM). The most representative PQM algorithm is Drop-Tail,

which only discards packets when the router queue is saturated.

Despite its simplicity, Drop-Tail is prone to problems like

deadlock, queue saturation, and global synchronization. As a

result, AQM [2] has become the popular queue management

scheme in practice. The core idea of AQM is to control the

queue length of the router cache by collecting and predicting

the network state prior to congestion.

Over the years, AQM has been continuously improved by

experts and scholars. The improved AQM algorithms fall into

three categories: heuristic algorithms, optimization algorithms,

and control algorithms [3]. Depending on intuition, the

heuristic algorithm includes RED, gentle RED (GRED) [4],

three-section RED (TRED) [5], fair weighted multi-level RED

(FWMRED) [6], AQM with random dropping (AQMRD) [7],

and new modified dropping function (NMDF) [8]. Specifically,

GRED increases network stability by replacing the

discontinuous change of discarding probability from Pmax to 1

should with a gentle slope. To manage congestion level,

FWMRED redefines the discarding probability in multi-level

RED (MRED), and produces dynamic weighted traffic to

enhance the stability of parameters [9]. AQMRD incorporates

the change rate of average queue size as a parameter to capture

the time variation of average queue size. The heurism

algorithms significantly outperform the Drop-Tail. However,

many heuristic algorithms need to configure their parameters

as per the specific network conditions. The influence of their

parameters is not fully known. If the parameters are not

configured properly, the heuristic algorithms will quickly

enter the unstable state, failing to respond timely to the

dynamic changes of the network. This will result in reduced

network utilization and deteriorated network performance.

Aiming to maximize network utilization, the optimization

algorithms are essentially solvers of the gradient optimization

problem. Typical optimization algorithms are random

exponential marking (REM) [10], adaptive virtual queue

(AVQ) [11], delay utilization knee (DUK) [12], artificial

neural network-based AQM (ANB-AQM) [13], and

deterministic perceptron-based AQM (DPB) [14]. Among

them, DUK relies on measured runtime of the network, a

natural threshold, and the knee on delay-utilization curve,

rather than preset or pre-tuned parameters. To control

congestion and ensure QoS, ANB-AQM tunes the parameters

through self-learning to adapt to network nonlinearity. On the

upside, the optimization algorithms perform well in analysis;

on the downside, these algorithms are too complex to

implement, and require the network parameters (e.g. the

number of streams, and round-trip time) to be known in

advance. But these parameters often change frequently,

Journal Européen des Systèmes Automatisés
Vol. 53, No. 5, October, 2020, pp. 637-644

Journal homepage: http://iieta.org/journals/jesa

637

https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.530506&domain=pdf

making it difficult to design such algorithms.

Many AQM control algorithms have been developed under

different control strategies, namely, proportional-integral (PI)

controller [15], proportional–derivative (PD) controller [16],

feedforward AQM (FF-AQM) [17], self-tuning compensated

proportional-integral-derivative (ST-CPID) controller [18],

and stable AQM (SAQM) [19]. Hollot et al. [15] designed a

stabilizing PI controller that uses instantaneous samples of the

queue size, and successfully overcame the instability and low-

frequency oscillations of the low-pass filter design of RED in

the regulated output. Wang et al. [17] proposed the FFAQM

under feedforward model predictive control (MPC), which

stabilizes the queue length at a target value as quickly as

possible and smooths out the burst traffic. Kahe and Jahangir

[18] put forward the ST-CPID to address the time-variation of

network conditions induced by parameter changes and

unresponsive connections. The control algorithms based on

classical control theory can effectively control queue length,

but their designs depend on approximate linear model or

specific network model. The network performance will

deteriorate, if the network environment changes or the model

does not fit. In addition, the control algorithms are sensitive to

the setting of system parameters.

In recent years, reinforcement learning (RL) has been

introduced to network congestion control. Being a learning

process through trial and error, RL attaches great importance

to the interaction between the agents and the environment, and

continuously adjusts the action selection strategy based on the

feedback from the environment. The main advantage of RL is

the elimination of the need for prior knowledge of the network

or precise mathematical model of the control object. Through

RL, the controller can be designed robustly, regardless of the

model accuracy. Therefore, RL is highly suitable for networks

with significant time variations and emergent properties.

In general, the optimization and control algorithms have

better AQM performance than heuristic algorithms.

Nevertheless, these algorithms are too complex to be

implemented easily. Besides, any new implementation of

AQM will greatly affect the design of router structure and

software flow [20]. At present, AQM algorithms on Internet

routers are mostly under the standard of RED. Therefore, it is

of great significance to simplify and improve the practicality

of RED-based AQM algorithms.

This paper presents the a simple and practical AQM

algorithm called RLAQM based on RED algorithm. In this

algorithm, Q-learning is employed to adaptively adjust the

maximum discarding probability, making the algorithm less

sensitive to parameter setting. Moreover, the network

performance was optimized through learning under the

dynamic network environment, thereby preventing congestion.

Simulation results show that the RLAQM achieved stable and

excellent performance under complex network environment.

The remainder of this paper is organized as follows: Section

2 summarizes the problems of RED algorithm; Section 3

introduces the RLAMQ algorithm; Section 4 simulates the

performance of the proposed algorithm; Section 5 concludes

the entire research.

2. PROBLEMS OF RED ALGORITHM

The RED algorithm detects congestion by monitoring the

average queue length (avg) in the router cache. After detecting

any sign of congestion, the algorithm will discard or mark

individual groups at a certain probability, and inform the

source to avoid congestion. To prevent global synchronization

and bias against burst flows, the RED algorithm adopts a

random strategy in the discarding or marking process. In

addition, a reasonable queue length is maintained by imposing

an upper bound on the average queue length. Any incoming

packets longer than the upper bound will be discarded. The

average queue length is calculated by exponentially weighted

moving average (EWMA):

𝑎𝑣𝑔𝑛 = (1 − 𝜔𝑞)𝑎𝑣𝑔𝑛−1 + 𝜔𝑞𝑞 (1)

where, q is the instantaneous queue length; ωq ∈ [0, 1] is the

sensitivity of average queue length to q. The recommended

value of ωq is 0.002.

The discarding or marking probability must be a function of

average queue length, which reflects the congestion situation.

In the packet loss mode, the discarding probability can be

calculated by:

𝑝𝑏 =

{

 0 𝑎𝑣𝑔 ∈ [0,𝑚𝑖𝑛𝑡ℎ]

𝑚𝑎𝑥𝑝×(
𝑎𝑣𝑔 −𝑚𝑖𝑛𝑡ℎ
𝑚𝑎𝑥𝑡ℎ−𝑚𝑖𝑛𝑡ℎ

)     𝑎𝑣𝑔 ∈ [𝑚𝑖𝑛𝑡ℎ,𝑚𝑎𝑥𝑡ℎ)

1 𝑎𝑣𝑔 ∈ [𝑚𝑎𝑥𝑡ℎ, + ∞)

 (2)

where, maxp is the maximum discarding probability; minth and

maxth are the lower and upper bounds of average queue length,

respectively. Figure 1 shows the relationship between average

queue length and the discarding probability pb.

1

maxp

0 minth maxth avg

pb

Figure 1. The curve of discarding probability in RED

algorithm

To disperse the discarded groups, the discarded probability

pb needs to be modified as:

𝑝𝑎 =
𝑝𝑏

1 − 𝑐𝑜𝑢𝑛𝑡 × 𝑝𝑏
 (3)

where, count is the number of packets entering the router cache

queue since the previous packet loss.

RED algorithm can solve most problems of the Drop-Tail,

namely, deadlocks, full queues, and global synchronization.

However, low link utilization or forced packet loss may arise

from improper setting of algorithm parameters. In severe cases,

the algorithm might suffer queue oscillation, throughput

degradation, and delay jitter deterioration [5].

To overcome the above defects, this paper proposes the

RLAQM algorithm, which stabilizes the overall throughput

and delay and optimizes the data transmission in the network

by adaptively adjusting the maximum discarding probability

under different network loads.

638

3. ALGORITHM DESIGN

3.1 Q-learning

Inspired by Markov decision process (MDP) [21], RL

emphasizes the interaction between agents and the

environment. The action execution is determined as per the

current state of the environment, and the performance is

evaluated based on the return value of the environment on the

action, and the migration from the current state to the next state.

The optimal decision is learned through the accumulation of

experience. The standard RL model involves the following

factors:

(1) S={s1, s2, … sm}: the set of environmental states;

(2) A={a1, a2, …an}: the set of agent actions;

(3) r: the return value of the environment on the action;

(4) π: S→A: the strategy executed by the agent.

Figure 2 illustrates the relationship between these factors

[22]:

 Agent

Strategy

Environment

Return

 value

r

Action

a

State

s

: S A →

Figure 2. The relationship between factors of the standard

RL model

The learning process is completed iteratively. In each

iteration, the agent collects the current environmental state

st∈S, selects an action a∈A according to the strategy π, and

executes the action in the environment. Then, the environment

state changes to s'∈S, while a return value r is generated at

time t, and fed back to the agent. Based on the return value r

and the environment state s', the agent updates its strategy π,

kicking off the next iteration. Through continuous iterations,

the agent searches for the optimal strategy π*(s) ∈A under each

environmental state s∈S, thus maximizing the cumulative

expectation of the return value:

𝑉𝜋(𝑠) = 𝐸 {∑𝛾𝑡𝑟(𝑠𝑡 , 𝜋(𝑠𝑡))|𝑠0

∞

𝑡=0

= 𝑠} (4)

where, γ∈[0, 1) is a discount factor, reflecting the importance

of future return value to the current state. The discount factor

can be solved by the Bellman criterion. The maximum of

formula (4) can be obtained by:

𝑉∗(𝑠) = 𝑉𝜋
∗
(𝑠) = 𝑚𝑎𝑥

𝑎∈𝐴
[𝑅(𝑠, 𝑎) + 𝛾∑𝑃𝑠,𝑠′(𝑎)𝑉

∗(𝑠′)

𝑠′∈𝑆

] (5)

where, R(s, a) is the expectation of r(st, at); Ps,s’ (a) is the state

transition probability, reflecting the probability for the

environmental state s to reach the next state s' under the action

a.

Q-learning, a model-free RL algorithm extended from

SARSA (state-action-reward-state-action), represents the

experience of the agent with the state-action pair function Q (s,

a). The algorithm can find the optimal strategy π* without

knowing the specific values of R (s, a) and Ps,s’ (a). The Q (s,

a) in strategy π can be expressed as Qπ (s, a):

𝑄𝜋(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾∑𝑃𝑠,𝑠′(𝑎)𝑉
𝜋(𝑠′)

𝑠′∈𝑆

 (6)

Under the optimal decision condition:

𝑄∗(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾∑𝑃𝑠,𝑠′(𝑎)𝑉
∗(𝑠′)

𝑠′∈𝑆

 (7)

From formulas (5) and (6):

𝑉∗(𝑠) = 𝑚𝑎𝑥
𝑎∈𝐴

𝑄∗(𝑠, 𝑎) (8)

𝜋∗(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎∈𝐴

𝑄∗(𝑠, 𝑎) (9)

Q-learning iteratively updates the Q value at each moment:

𝑄𝑡+1(𝑠, 𝑎) = (1 − 𝛼)𝑄𝑡(𝑠, 𝑎) + 𝛼(𝑟𝑡
+ 𝛾𝑚𝑎𝑥

𝑎′∈𝐴
𝑄𝑡(𝑠′, 𝑎′)) (10)

where, α∈[0, 1) is learning rate. When t→∞, if α decreases to

zero, Qt (s, a) will converge to the optimal value of Q* (s, a).

Following formula (4), the agent can obtain the optimal

strategy π* [23].

3.2 RLAQM

Besides being applicable to various loads, a reasonable

AQM strategy must avoid forced packet loss and low link

utilization. In RED algorithm, the discarding probability is

linearly corelated with the average queue length. If the

maximum discarding probability maxp is too large, the

congestion level will be overestimated, and many useful

packets will be discarded; if the probability is too small, the

congestion level will be underestimated, and some redundant

packets will be retained. It is difficult to adapt to various

network loads with a fixed maximum discarding probability.

To adaptively adjust maximum discarding probability, this

paper presents the RLAQM algorithm based on Q-learning,

which is highly practical and low in complexity. Specifically,

a Q-learning controller was added to the original RED to

adjust maximum discarding probability as per network

congestion level, making the algorithm less sensitive to

parameter setting and more adaptive to networks with different

loads.

RLAQM

Controller

Router queue

ras

Sender Receiver

Figure 3. The block diagram of RLAQM controller

639

As shown in Figure 3, the learning process of RLAQM

controller is defined by {S, A, r}, where S is the set of network

states s (avg, ∆avg) (avg is the average queue length of the

buffer; ∆avg is the change of the average queue length), A is

the set of maximum discarding probabilities maxp, and r is the

return value.

The RLAQM controller is embedded with the Q value table

of network state-action pairs. Taking the current network state

s(avg, ∆avg) as the input, the learning unit of the controller

outputs the corresponding maximum discarding probability

maxp for the action.

In each round of learning, the learning unit collects the

current network state s and selects action a, i.e. the maximum

discarding probability maxp of RED algorithm, according to

the Q value table and action selection strategy. Then, the

network state changes under the adjusted discarding

probability from s(avg, ∆avg)→s'(avg', ∆avg'), and calculates

the return value r on action a(maxp). After that, the Q value of

the current state-action pair (s, a) is updated, completing this

round of learning. This process is repeated until the Q value

table is optimized.

The running speed of the algorithm is partly dependent on

the number of network states. Hence, this number should be

controlled within a reasonable range. To reduce algorithm

complexity, the state s(avg, ∆avg) in the Q-learning controller

was quantified to 14×10 levels. That is, the state set of learning

units can be expressed as S={si,j}={avgi , ∆avgj}, i=1,2,3…14,

j=1,2,3…10. Similarly, the action a(maxp) was divided into 14

levels, creating an action set of learning units A={an},

n=1,2,3…14maxp0, where maxp0 is the maximum discarding

probability of RED algorithm.

The objective of the RLAQM controller is to find the

optimal maximum discarding probability maxp that maximizes

the network throughput while minimizing network delay. The

objective function can be defined as a utility function [24]:

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 = 𝛿 𝑙𝑜𝑔 𝑇𝑎𝑣𝑒 − 𝜂 𝑙𝑜𝑔 𝐷𝑎𝑣𝑒 (11)

where, δ and η are the weights of throughput and delay,

respectively; Tave is the average network throughput in the

learning cycle; Dave is the average system delay in the learning

cycle.

During the learning, each learning unit of RLAQM

controller measures the algorithm effect by the return value r

of state-action pair (s, a). The return value can be defined as

the difference between successive utility values:

𝑟 = 𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑘 − 𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑘−1

= 𝛿 𝑙𝑜𝑔
𝑇𝑎𝑣𝑒 𝑘
𝑇𝑎𝑣𝑒 𝑘−1

+ 𝜂 𝑙𝑜𝑔
𝐷𝑎𝑣𝑒 𝑘−1
𝐷𝑎𝑣𝑒 𝑘

(12)

As shown in formula (12), the return value increases with

the utility value. The function of the return value aims to

maximize network throughput and minimize network delay. In

this function, Q-learning strategy is adopted to iteratively

converge to high throughput and low delay.

In each round, the learning starts once a new data packet

arrives in the network. The specific flow of the RLAQM

algorithm is as follows:

Step 1. Parameter initialization

The Q value table was initialized as zero; the discount factor

γ, initial learning rate α0, and initial exploration probability ε0

were configured. The exploration probability is mainly used

for strategy update, that is, the iterative optimization of the

strategy. This requires the algorithm to traverse the strategy

space in an efficient manner. Hence, an epsilon greedy strategy

was adopted for action selection. In each iteration, the agent

executes the action with the highest Q value in the current state

at the probability of (1-ε), and selects one of the remaining

actions at the probability of ε.

Step 2. Obtaining the current network state

The current state s(avg, ∆avg) was calculated after the

arrival of a new packet.

Step 3. Selecting actions for execution

By the epsilon greedy strategy, an action was selected for

execution, according to the Qt(s, a) that corresponds to each

action of s(avg, ∆avg) in the current state. In other words, the

maximum discarding probability maxp was selected under the

current network state, and the executed actions were cached

for further use when the Q value is updated.

Step 4. Obtaining the return value r

The router discards packets according to the new discarding

probability function, and derives the return value r of the state-

action pair (s, a) by formula (11).

Step 5. Predicting the next network state and updating the Q

value

According to the current state and the selected action, the

optimal 𝑚𝑎𝑥
𝑎∈𝐴

𝑄∗(𝑠, 𝑎) of the next network state s' was obtained,

and Qt(s, a) was updated by formula (10).

Step 6. Parameter update

The learning rate α and the exploration probability ε were

updated after each iteration to ensure the convergence of the

algorithm. The updating rule was gradually reduced to zero,

following the negative exponential law.

Step 7. Termination

The convergence or nonconvergence of Q value was judged.

If the value does not converge, the Q value table was taken as

the initial value, and the next iteration was executed from Step

2. If the value converges, the learning process was terminated,

and the current Q value table was used to select the actions

according to states.

4. SIMULATION ANALYSIS

The performance of the proposed RLAQM algorithm was

verified through simulations on NS2 simulator. The network

topology for simulation is described in Figure 4, where S1~Sn

are n senders, D1~Dn are n receivers, and R1~R2 are two

routers [25]. The bandwidth and delay between each sender

and R1, and between each receiver and R2, were set to 20

Mbps and 20 ms, respectively

For comparison, RED algorithm and RLAQM algorithm

were simulated under single load and variable load, and their

queue lengths, throughputs, delays, and discarding

probabilities were measured. During the simulation, the

common parameters of the two algorithms were configured as

follows:

The lower bound of average queue length minth is 24 packets,

the upper bound of average queue length maxth is 72 packets,

the weight ωq is 0.002, the buffer size is 120 packets the

maximum discarding probability maxp of RED algorithm is 0.1,

the initial maximum discarding probability maxp0 of RLAQM

algorithm is 0.1, and the initial values of α, γ, and ε are 0.01,

0.8, and 0.5, respectively. Both algorithms were executed on

the links between the two routers, while the Drop-Tail was

executed on the other links [26]. The application layer is based

on TCP and file transfer protocol (FTP).

640

Figure 4. The topology of the simulation network

4.1 Single load simulations

4.1.1 Light load

During single load simulations, RED algorithm and

RLAQM algorithm were firstly simulated under light load

with the number of network connections fixed at 16 and the

simulation time at 100s.

Figure 5 compares the queue lengths of the two algorithms:

the average queue length of RED algorithm fell between 22

and 30, while that of RLAQM algorithm fell between 30 and

38. RLAQM had a longer average queue length than RED.

This is because RED has a short average queue length under

light network load, and faces light network congestion;

RLAQM increases the average queue length and improves

network throughput, by reducing the maximum discarding

probability and thus the discarding probability.

(a) RED algorithm

(b) RLAQM algorithm

Figure 5. The comparison of queue length under light load

Table 1 compares the throughputs, delays, and packet loss

rate of RED algorithm and RLAQM algorithm. Obviously,

RLAQM achieved higher average throughput than RED at the

cost of a slightly longer delay, which meets the theoretical

design. Overall, RLAQM increased network throughput by

0.20%, extended the delay by 2.6%, and reduced the packet

loss rate by 8.6% from the levels of RED.

Table 1. The performance comparison under light load

Performance

Algorithm

Throughput

(Kbps)

Delay

(ms)

Packet loss rate

(%)

RED 19,900.76 54.05 0.35

RLAQM 19,941.08 55.48 0.32

4.1.2 Moderate load

Next, RED algorithm and RLAQM algorithm were

simulated under moderate load with the number of network

connections fixed at 64 and the simulation time at 100 s.

Figure 6 compares the queue lengths of the two algorithms:

the average queue lengths of both algorithms ranged between

50 and 60. The average queue length of RLAQM was not

significantly different from that of RED. The main reason is

that, under moderate network load, the congestion remains on

the moderate level. In this case, RLAQM does not need to

adjust the discarding probability from the level of RED. Thus,

the maximum discarding probabilities of the two algorithms

are similar, which greatly limits their difference in network

performance.

(a) RED algorithm

(b) RLAQM algorithm

Figure 6. The comparison of queue length under moderate

load

Table 2 compares the throughputs, delays, and packet loss

rates of RED algorithm and RLAQM algorithm. It can be seen

that, RLAQM achieved basically the same performance as

RED, which meets the theoretical design. Overall, RLAQM

641

increased network throughput by 0.0009%, shortened the

delay by 0.23%, and elevated the packet loss rate by 1.1% from

the levels of RED.

Table 2. The performance comparison under moderate load

Performance

Algorithm

Throughput

(Kbps)

Delay

(ms)

Packet loss rate

(%)

RED 19,961.14 64.96 4.64

RLAQM 19960.96 64.81 4.69

4.1.3 Heavy load

Further, RED algorithm and RLAQM algorithm were

simulated under heavy load with the number of network

connections fixed at 128 and the simulation time at 100 s.

Figure 7 compares the queue lengths of the two algorithms:

the average queue length of RED algorithm changed from 68

to 72, while that of RLAQM algorithm varied from 62 to 68.

RLAQM had a shorter average queue length than RED. This

is attributable to the following facts: Under a heavy network

load, RED has a long average queue length and the network is

severely congested; RLAQM packet loss rate by increasing the

maximum value, thereby reducing the average queue length

and network delay.

(a) RED algorithm

(b) RLAQM algorithm

Figure 7. The comparison of queue length under heavy load

Table 3 compares the throughputs, delays, and packet loss

rates of RED algorithm and RLAQM algorithm. It can be seen

that, RLAQM achieved slightly higher average throughput and

shorter network delay than RED, which meets the theoretical

design. Overall, RLAQM increased network throughput by

0.005%, shortened the delay by 1.6%, and reduced the packet

loss rate by 12% from the levels of RED.

Table 3. The performance comparison under heavy load

Performance

Algorithm

Throughput

(Kbps)

Delay

(ms)

Packet loss rate

(%)

RED 19,972.69 72.02 13.07

RLAQM 19,973.71 70.84 11.54

4.2 Variable load simulations

RED algorithm and RLAQM algorithm were also simulated

under variable load, with the number of connections changing

between 64, 16, and 128 every 40 s, and the simulation time

of 120 s.

(a) Radical early detection (maxp=0.3)

(b) Moderate early detection (maxp=0.1)

(c) Conservative early detection (maxp=0.01)

Figure 8. The variation of queue length in RED algorithm

The stability of queue length is an important indicator of

network performance. To disclose the impact of maximum

discarding probability on queue length under variable load, the

queue lengths of RED under different early detection

performance (i.e. maximum discarding probabilities) were

captured and plotted into Figure 8.

642

Under radical early detection (maxp=0.3) (Figure 8(a)), the

queue length of RED was relatively stable in the first 40s under

64 connections and the last 40 s under 128 connections.

However, the queue was almost empty in the 16 s~40 s under

16 connections. Hence, RED has a very low efficiency under

radical early detection.

Under conservative early detection (maxp=0.01) (Figure

8(c)), the queue length of RED was stable only under 16

connections, and almost saturated under 64 and 128

connections. In the latter two scenarios, RED queue oscillated

continuously between continuous packet loss and subsequent

low utilization.

Under moderate early detection (maxp=0.1) (Figure 8(b)),

the queue length of RED was stable under 64 connection, but

empty or almost saturated under 16 and 128 connections. In

the latter two scenarios, RED queue continued to oscillate.

Figure 9 presents the variation of queue length of RLAQM

under the same simulation environment. It can be seemed that

the queue of RLAQM was adjusted adaptively according to

the changing network load, and the overall queue length

remained relatively stable.

Figure 9. The variation of queue length in RLAQM

algorithm

In addition, the throughputs, delays, and packet loss rates of

RED and RLAQM algorithms were tested under the initial

maximum discarding probability of 0.1. As shown in Table 4,

RLAQM outshined RED under each load in the dynamic

network environment.

Table 4. The comparison of dynamic network performance

Performance

Algorithm

Throughput

(Kbps)

Delay

(ms)

Packet loss rate

(%)

RED 19,852.68 64.75 6.34

RLAQM 19,883.24 63.46 5.79

5. CONCLUSIONS

To reduce the sensitivity of RED to parameter setting and

improve network performance, this paper improves RED into

RLAQM, an algorithm that adaptively updates its parameters

as per network conditions. The control strategy of network

performance was optimized through iterative learning: the

maximum discarding probability is adjusted adaptively to

avoid network congestion and improve network performance.

Simulation results show that RLAQM can maintain the queue

stable in dynamic network environment, reduce network delay,

and improve network throughput. The future research will

introduce explicit congestion notification (ECN) to RLAQM,

and further improve the action adjustment accuracy of

RLAQM through fuzzy Q-learning.

ACKNOWLEDGMENT

This work was supported by High-level Talent Project of

Xiamen University of Technology (Grant No.: YKJ17021R);

Scientific Research Climbing Project of Xiamen University of

Technology (Grant No.: XPDKT19006).

REFERENCES

[1] Molnár, S., Vágó, L. (2020). Networking in the absence

of congestion control. Stochastic Models, 36(3): 401-427.

https://doi.org/10.1080/15326349.2020.1742160

[2] Zheng, W., Li, Y., Jing, X., Liu, S. (2020). Adaptive

Finite-Time Congestion Control for Uncertain

TCP/AQM Network with Unknown Hysteresis.

Complexity, 4138390.

https://doi.org/10.1155/2020/4138390

[3] Xu, Q., Ma, G., Ding, K., Xu, B. (2020). An Adaptive

Active Queue Management Based on Model Predictive

Control. IEEE Access, 8: 174489-174494.

https://doi.org/10.1109/ACCESS.2020.3025377

[4] Floyd, S., Fall, K. (2002). Promoting the use of End-to-

End network troubleshooting in the Internet. IEEE/ACM

Transaction Networking, 4: 458-472.

https://doi.org/10.1109/90.793002

[5] Feng, C.W., Huang, L.F., Xu, C., Chang, Y.C. (2015).

Congestion control scheme performance analysis based

on nonlinear RED. IEEE Systems Journal, 11(4): 2247-

2254. https://doi.org/10.1109/JSYST.2014.2375314

[6] Alkharasani, A.M., Othman, M., Abdullah, A., Lun, K.Y.

(2017). An improved quality-of-service performance

using RED’s active queue management flow control in

classifying networks. IEEE Access, 5: 24467-24478.

https://doi.org/10.1109/ACCESS.2017.2767071

[7] Patel, S., Bhatnagar, S. (2017). Adaptive mean queue

size and its rate of change: queue management with

random dropping. Telecommunication Systems, 65(2):

281-295. https://doi.org/10.1007/S11235-016-0229-4

[8] Patel, S. (2019). A new modified dropping function for

congested AQM networks. Wireless Personal

Communications, 104(1): 37-55.

https://doi.org/10.1007/S11277-018-6007-8

[9] Koo, J., Song, B., Chung, K., Lee, H., Kahng, H. (2001).

MRED: a new approach to random early detection. In

Proceedings 15th International Conference on

Information Networking, pp. 347-352.

https://doi.org/10.1109/ICOIN.2001.905450

[10] Athuraliya, S., Li, V.H., Low, S.H., Yin, Q. (2001). REM:

Active queue management. In Teletraffic Science and

Engineering, 4: 817-828. https://doi.org/10.1016/S1388-

3437(01)80172-4

[11] Kunniyur, S.S., Srikant, R. (2004). An adaptive virtual

queue (AVQ) algorithm for active queue management.

IEEE/ACM Transactions on Networking, 12(2): 286-299.

https://doi.org/10.1109/TNET.2004.826291

643

https://doi.org/10.1080/15326349.2020.1742160
https://doi.org/10.1155/2020/4138390
https://doi.org/10.1016/S1388-3437(01)80172-4
https://doi.org/10.1016/S1388-3437(01)80172-4

[12] Novak, J.H., Kasera, S.K. (2017). Auto-tuning active

queue management. In 2017 9th International

Conference on Communication Systems and Networks

(COMSNETS), pp. 136-143.

https://doi.org/10.1109/COMSNETS.2017.7945369

[13] Bisoy, S.K., Pandey, P.K., Pati, B. (2017). Design of an

active queue management technique based on neural

networks for congestion control. In 2017 IEEE

International Conference on Advanced Networks and

Telecommunications Systems (ANTS), pp. 1-6.

https://doi.org/10.1109/ANTS.2017.8384104

[14] Chrost, L., Chydzinski, A. (2016). On the deterministic

approach to active queue management.

Telecommunication Systems, 63(1): 27-44.

https://doi.org/10.1007/S11235-015-9969-9

[15] Hollot, C.V., Misra, V., Towsley, D., Gong, W. (2002).

Analysis and design of controllers for AQM routers

supporting TCP flows. IEEE Transactions on Automatic

Control, 47(6): 945-959.

https://doi.org/10.1109/TAC.2002.1008360

[16] Sun, J., Ko, K.T., Chen, G., Chan, S., Zukerman, M.

(2003). PD-RED: to improve the performance of RED.

IEEE Communications Letters, 7(8): 406-408.

https://doi.org/10.1109/LCOMM.2003.815653

[17] Wang, P., Zhu, C., Yang, X. (2018). A novel AQM

algorithm based on feedforward model predictive control.

International Journal of Communication Systems, 31(12):

e3711. https://doi.org/10.1002/DAC.3711

[18] Kahe, G., Jahangir, A.H. (2019). A self-tuning controller

for queuing delay regulation in TCP/AQM networks.

Telecommunication Systems, 71(2): 215-229.

https://doi.org/10.1007/S11235-018-0526-1

[19] Bisoy, S.K., Pattnaik, P.K., Pati, B., Panigrahi, C.R.

(2018). Design and analysis of a stable AQM controller

for network congestion control. International Journal of

Communication Networks and Distributed Systems,

20(2): 143-167.

https://doi.org/10.1504/IJCNDS.2018.10010375

[20] Adams, R. (2012). Active queue management: A survey.

IEEE Communications Surveys & Tutorials, 15(3):

1425-1476.

https://doi.org/10.1109/SURV.2012.082212.00018.

[21] Su, Y., Huang, L., Feng, C. (2018). QRED: A Q-

learning-based active queue management scheme.

Journal of Internet Technology, 19(4): 1169-1178.

https://doi.org/10.3966/160792642018081904019

[22] Li, X., Serlin, Z., Yang, G., Belta, C. (2019). A formal

methods approach to interpretable reinforcement

learning for robotic planning. Science Robotics, 4(37).

https://doi.org/10.1126/SCIROBOTICS.AAY6276

[23] Wang, Y., Cao, S., Ren, H., Li, J., Ye, K., Xu, C., Chen,

X. (2020). Towards cost-effective service migration in

mobile edge: A Q-learning approach. Journal of Parallel

and Distributed Computing, 146: 175-188.

https://doi.org/10.1016/J.JPDC.2020.08.008

[24] Li, W., Zhou, F., Chowdhury, K.R., Meleis, W. (2018).

QTCP: Adaptive congestion control with reinforcement

learning. IEEE Transactions on Network Science and

Engineering, 6(3): 445-458.

https://doi.org/10.1109/TNSE.2018.2835758

[25] Patel, S. (2020). Nonlinear performance evaluation

model for throughput of AQM scheme using full factorial

design approach. International Journal of

Communication Systems, 33(8): e4357.

https://doi.org/10.1002/DAC.4357

[26] Kumhar, D., Kewat, A. (2020). QRED: An enhancement

approach for congestion control in network

communications. International Journal of Information

Technology, 1-7. https://doi.org/10.1007/S41870-020-

00538-1

644

