
  

 

  

Modeling the free convection in an open round cavity using a hybrid approach of Jaya optimization 

algorithm and neural network 
 

Ehsan Akbari1*, Ali-Mohammad Karami2, Mehdi Ashjaee3 

 
1 Mechanical Engineering Department, University of Applied Science and Technology, Kermanshah 6714643759, Iran 
2 Mechanical Engineering Department, Razi University, Kermanshah 6714967346, Iran 
3 Mechanical Engineering Faculty, University of Tehran, Tehran 1417614418, Iran 

 

Corresponding Author Email: Ehsan_Akbari42@yahoo.com 

 

https://doi.org/10.18280/ijht.360337 

  

ABSTRACT 

   

Received: 4 November 2017 

Accepted: 28 August 2018 

 The current study highlights the application of a hybrid model in which the Jaya optimization 

is employed to train the artificial neural network (ANN), to model the free convection in an 

open round cavity. As a matter of fact, the present research attempts to demonstrate the 

capability of the aforementioned hybrid network to model the free convection in the cavity 

against the decision parameters. The decision parameters are the Rayleigh number (Ra) and 

ratio of the nonconductor barrier distance from the bottom of the cavity to the cavity diameter 

(H/D). Then, the obtained hybrid model is applied to predict the average Nusselt number in 

the cavity. In the next step, the experimentally obtained data by using a Mach-Zehnder 

interferometer is used to train the hybrid model. The accuracy of the hybrid model is evaluated 

through the calculation of average testing and checking errors. According to the obtained 

results, there is an optimum ratio (H/D), in which the heat transfer is maximum. Also, this 

maximum value increases by increasing the Rayleigh number (Ra). 
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1. INTRODUCTION 

 

The free convection heat transfer from cavities is frequently 

used in wide practical situations because of its easy access, 

cheapness and limited energy resources. Several studies have 

been focused on heat transfer in cavities.  

When the flow that generated by temperature difference is 

sufficiently slow, the boundary layer will not formed in closed 

cavities [1].  

Morrison and Tran [2] experimentally investigated the free 

convective flow structure generated by heat transfer in a 

vertical rectangular cavity. Through the study, significant 

deviations from the two commonly dimensional assumptions 

related to end wall conduction was observed. Flow structures 

taken by laser Doppler anemometry showed that in the case 

where the end walls are carefully kept insulated, horizontal 

velocity component parallel to the heat conducting plates, is 

small as compared with the vertical one.  

Kublbee et al. [3] studied the forced convection in open 

ducts and cavities with different boundary conditions. It was 

found that, at small temperature differences with large 

geometric dimensions of the cavity, laminar flow can be 

observed even at high Rayleigh numbers. Graebel [4] 

investigated the influence of Prandtl number on the free 

convection in a rectangular cavity. In the study, temperature 

and velocity profiles and also the Nusselt number were 

obtained in terms of the length ratio and the Rayleigh and 

Prandtl numbers. One of the studies which have been devoted 

to square cavity in a channel was an investigation which was 

performed by Humphrey and Jacobs [5]. The results revealed 

that significant buoyant forces arise in the cavity where 

Richardson number was about 30, while these were small in 

the channel where Richardson number was about 0.05. The 

free convection in a square cavity at large Rayleigh numbers 

was numerically studied by Hyun and Lee [6]. In the 

investigation, the flow was initiated by instantaneously raising 

and lowering the temperatures on the opposing side walls. It 

was found that, the effect of the thermal boundary conditions 

on the horizontal surfaces appears to have a negligible 

influence on the time histories. Also, for the Prandtl number 

smaller than unity, an oscillatory approach to the steady states 

was detected only when the Rayleigh number was sufficiently 

high to render a strongly type of boundary layer flow. The 

effect of inclination on the free convection from the inside 

surface of elliptic tube was experimentally investigated by 

Elshazly et al. [7]. The results showed that, increasing the axial 

distance from the lower end of the elliptic tube results in 

temperature distributions. Furthermore, an optimum value for 

the local Nusselt number was observed near the upper end of 

the tube. A research on square and circular cavities was carried 

out by Ridouane and Campo [8] In the study, the effect of two 

active curved vertical sides and two inactive curved horizontal 

ones on the free convection performance was numerically 

studied. It was found that, the heat transfer enhancement 

provided by the circular cavity increases for low Rayleigh 

numbers, decreases for moderate Rayleigh numbers and 

practically vanishes for high Rayleigh numbers. Mohammed 

and Salman [9] performed an experimental investigation on 

the combined free and forced convection to attain the 

thermally developing flow in a uniformly heated vertical 

circular cylinder. In the study, an empirical correlation to 

attain the flow has been extracted to evaluate the average 

Nusselt number in terms of the Rayleigh and Reynolds 

numbers. In another study, Khelifi-Touhami et al. [10] studied 

the laminar free convection flow in a cylindrical cavity. The 

results showed that, by increasing the Rayleigh number, the 
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buoyant uprising warm flow adjacent to the vertical wall 

increases. More studies on the free convection in the cavities 

can be found elsewhere [11-15]. 

The main focus of this study is employing the Jaya 

optimization algorithm to train the artificial neural network 

(ANN), and introduce a hybrid network called as the Jaya-

trained ANN. Then, the obtained hybrid system is applied to 

model the free convection heat transfer in an open round cavity. 

In fact, the obtained model is employed to predict the output 

parameter versus input ones including the Rayleigh number 

(Ra) and ratio of the nonconductor barrier distance from the 

bottom of the cavity to the cavity diameter (H/D). After that, 

the obtained hybrid model is applied to predict the average 

Nusselt number in the cavity. In the next step, the 

experimentally obtained data by using a Mach-Zehnder 

interferometer is utilized to train the hybrid model. Eventually, 

a network with the least error is recognized as the best 

predictor model.  

 

.  

 

Figure 1. The schematic representation of the model 

geometry (a) Cylinder with top cavity configuration (b) Test 

section assembly (c) Experimental setup and control 

temperature system 

 

Based on the authors' knowledge, there is not any research 

on the modeling of the free convection in open round cavities, 

using a hybrid model in which, the Jaya algorithm is used to 

train the artificial neural network. This non-contact method 

helps to have simultaneous undisturbed temperature fields 

with high accuracy. It is worth mentioning that, as indicated in 

the results section, for the values of the ratio (H/D) in excess 

of 3, the experimental results are the same, therefore the H/D 

ratio of 3 is considered as infinity (∞). As a matter of fact, the 

' ∞  ' represents the values in excess 3 for the H/D ratio. 

However, for the modeling process, the value of 3 is 

considered for the values in excess of 3 for this ratio. A 

schematic representation of the cavity with details is shown in 

Figure 1. 

 

 

2. THE MODELING APPROACH; PRINCIPLES 

 

In this section, the combination of the Jaya Optimization 

algorithm and artificial neural network (ANN) is considered.  

The Jaya algorithm (JA) is a new powerful population-based 

optimization technique introduced for the first time by Rao 

[16] to generate optimum solutions due to its computational 

capability when applied to the engineering optimization 

problems [17-23]. 

Unlike other population-based heuristic algorithms, the 

Jaya algorithm requires only few control parameters like 

population size (m), which represents the number of candidate 

solutions and the number of generations (Gn), which indicates 

the total iterations and the number of control parameters, 

which is often common among algorithms. The optimization 

process of the method is elicited on the basis of the idea that 

the solution determined for a special problem have to shift 

towards the optimum solution and evade the inferior solution. 

The main Jaya algorithm has only one phase according to the 

above-mentioned concept, making it a simple optimization 

method [24].  

Moreover, unlike other population-based algorithms, the 

controlling of the algorithm parameters is not difficult. Also, 

controlling the parameters in each iteration is often easy and 

does not take much time. These two properties, shows the 

supremacy of the algorithm as compared to other algorithms. 

On the other hand, an artificial neuron network (ANN) [25] is 

regarded as a computational model on the basis of the structure 

and functions of biological neural networks. One of the most 

popular and applied neural network architectures is the feed 

forward multi-layer perceptron (MLP) network, which has 

been used for various engineering applications [26-29]. 

The modeling approach provides a framework to precisely 

describe the behavior of a system(s), including physical and 

nonphysical (informational, such as software) system(s), 

against the parameters affecting the system(s). 

At first, the main problem is training the ANN, via an 

optimization algorithm. Several optimization algorithms for 

the heat transfer processes such as genetic algorithm (GA) [26], 

Heat transfer search (HTS) [27], particle swarm optimization 

(PSO) algorithm [28], the modified teaching-learning-based 

optimization algorithm [29], simulated annealing [30], 

generative design algorithm (GDA) [31], prey-predator 

algorithm [32], Global Best Algorithm [33] etc. 

This process is performed using the Jaya optimization 

algorithm. For the first time in 2016, Trivedi et al. [34] 

employed the Jaya optimization algorithm to train the ANN, 

and introduced a hybrid network. The first important and 

fundamental step in training the ANN is adjusting the 

associated parameters of the ANN including the weights and 

biases.  

In better words, the Jaya algorithm should attain a set of 

values for weights and biases which provides the highest level 

of prediction accuracy. Since the Jaya algorithm accepts the 

parameters in the form of a vector, the associated parameters 

of the ANN are defined for this algorithm as follows: 

 

},...,,,,...,,{},{ 21,2,11,1 jnnWWWWV  ==
→→→

             (1) 

 

where, n stands for the number of the input nodes, 
ijW  is the 

connection weight from the i-th node to the j-th one, and 
j  

represents the bias of the thj −  hidden node. 

After defining the parameters, the objective function needs 

to be defined for the Jaya algorithm. As stated above, the target 

in training an ANN is to attain the highest level of prediction 

accuracy for training, testing and checking data.  

After all, the problem of training the ANN is briefly 

formulated with the parameter for the Jaya algorithm as 

follows: 

errorAverageVFMinimize =
→

)(:                                 (2) 
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The overall process of training the ANN via the Jaya 

algorithm is illustrated in Figure 2. As shown in this figure, the 

Jaya algorithm provides ANN with weights/biases and 

receives average error for all training data. The Jaya algorithm 

changes the weights/biases during an iterative process, to 

minimize the average error of all training data to the lowest 

possible value. 

The conceptual model presented in Figure 3 also shows the 

manner of training the ANN through the Jaya algorithm. 

 

 
 

Figure 2. Simplified outline of the proposed hybrid model 

 

 

3.  EXPERIMENTAL STUDY 

 

3.1 Experimental setup 

 

3.1.1 Interferometer  

The experimental study performed using the Mach–Zehnder 

interferometry (MZI) technique. The Mach–Zehnder 

interferometer constitutes of a light source, a pinhole, a micro 

lens, two doublets, two beam splitters and three mirrors [35]. 

The whole interferometer setup is schematically shown in Fig 

3. Beam splitters of BS1 and BS2, along with plane mirrors of 

M1 and M2 are the main parts of the basic MZI. The laser 

beam expands after passing through spatial filter and doublet1. 

The expanded beam is split into two equal beams by the BS1. 

One beam passes through the test section and the other through 

the undisturbed field. These two beams, again, are recombined 

at BS2. If the four optical plates, M1, M2, BS1, and BS2 are 

parallel, then infinite fringe interferograms are formed. More 

information on the MZI is available elsewhere [35-37]. The 

applied light source was a 10 mW Helium–Neon laser with a 

632.8 nm wavelength. All the interferograms are digitized by 

using a ‘ARTCAM-320P’’  1/2″  CCD 3.2 M pixels 

camera. To take the interferograms, a camera is integrated with 

a PC. Fig 4 represents some of the interferograms which are 

recorded by the CCD camera. 

 

3.1.2 Experiment test section  

In this study a hollow aluminum cylinder with inner 

diameter of 45 mm, thickness of 10 mm and length of 220 mm 

is used. Also cylinder is open on top with a length of 0.8D, as 

it is shown in Figure 1-a. In order to achieve a very fine surface 

smoothness and minimize radiation heat transfer, the cylinder 

surface is polished. 

At the ends of the cylinder, two adiabatic glass windows are 

used to prevent the axial air flow in or out of it. The Surface 

roughness of windows is 0.1 wave length of laser beam to 

prevent distortion in isothermal contour recording process by 

laser beam. Cylinder and windows are positioned in two 

Teflon leg caps with a thermal conductivity 0.05 W/mK [38] 

to minimize the end heat transfer effects. 

A bone fiber with 210 mm in width, 5 mm in thickness and 

500 mm in height is employed to investigate the slot effect on 

heat transfer. Two different types of positioner are used to hold 

and adjust the cylinder and barrier in fixed place. Teflon leg 

caps are placed inside two-dimensional positioner. A one-

dimensional positioner is employed to adjust barrier in 

arbitrary distance from inner cylinder surface. 

 

 
 

Figure 3. The schematic overview of the Mach–Zehnder 

interferometer 

 

In order to achieve a constant temperature at the cylinder 

surface, three thin spiral rods of Ni-Cr with electrical 

resistance of 3Ω is coated around cylinder as a heater. A mica 

paper is used as an electrical insulator between cylinder 

external surface and spiral rods. Heaters are isolated from 

ambient by a thermal insulator layer that restricts the heat 

transfer just to the cylinder. The power input to the heating 

elements is controlled by proportional-temperature-controller. 

These heaters are powered by 25V-4A DC power supply. By 

considering the above conditions, inner surface temperature of 

cylinder is remained uniform.  

Four K-type thermocouples are inserted in the holes which 

are drilled in the cylinder wall. Two thermocouples are located 

in the stagnation line (15mm and 110mm from the cylinder 

base) and two thermocouples are located in a line parallel to 

the stagnation line. The holes had a depth of 9.5 mm. This 

means that the thermocouples had 0.5 mm distance from inner 

surface. The measured temperatures are the inner surface 

temperature because of high thermal conductivity of 

Aluminum. Maximum temperature difference among above 

thermocouples is less than 1ºC. So, constant temperature 

condition for inner surface of cylinder is held. All 

thermocouples are calibrated in an isothermal bath with 

accuracy ±0.1°C. All the temperatures are monitored 

continuously in a personal computer by a selector switch and 

a calibrated four channel data logger, TESTO 177 T4. 

Ambient and reference temperatures are measured by two 

thermocouples. The reference temperature, Tref, is the 

measured temperature of a fringe that is far enough from the 

cylinder surface, and its fringe shift ‘’ is assumed to be zero 

[39]. The pressure and relative humidity of laboratory are 

recorded during all experiments. The maximum uncertainties 

of pressure measurement for present study are ±100 Pa.  

In order to ascertain accuracy of measurements, heater 

voltage and current are recorded in all the experiments. So, 

energy balance calculation is performed by estimating free 

convection heat transfer from the fringe patterns of the Mach-

Zehnder interferometer and measuring electrical power input 

to the heater. In order to adjust the position of the cylinder with 

the laser beam, an appropriate holding mechanism is used, 

which is shown in Figure 1-b. The cylinder is held by two 

holding rods that are connected to the Teflon end caps. The 

rods are connected to a special stand that could be adjusted to 

provide the cylinder vertical and horizontal movement. For 
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accurate cylinder adjustment, a picture is taken and entered 

into an image processing program. This program helped 

authors to know that whether the cylinder is in the right 

position or not. The entire experimental setup is done on an 

anti-vibration table which has an air cushion. Figure 1-c shows 

a schematic overview of the experimental setup and control 

temperature system, in which the control temperature system 

is composed of power supply, power control, temperature 

control, and measuring instruments. 

 

 
 

Figure 4. The interferograms of the cavity for (a) H/D ∞ 

(b) H/D=0.5 (c) H/D=0 

 

3.2 Data reduction procedure 

 

The main focus of the data reduction procedure is to 

determine local and average Nusselt numbers of inner cylinder 

surface at specified Rayleigh numbers. For each Rayleigh 

number, an interferogram is recorded. A MATLAB code is 

developed to calculate the temperature of the interference 

fringes (isotherms) as well as their distances from the cylinder 

surface at 11 circumferential locations (0, 10, 20, 30, 40, 50, 

60, 70, 80, 90, 100 and 110 degrees from stagnation point), Fig 

5. The temperature distribution at each peripheral location in 

the inner surface thermal boundary layer of open cylinder is 

calculated by the method explained in detail by Teoch et al. 

[40]. Data reduction procedure for a sample interferogram is 

presented in Fig 5. A thermocouple is located inside the 

cylinder to measure reference temperature. The thermocouple 

is far enough from the surface in order to be outside the 

velocity and thermal boundary layers, which reduces flow and 

temperature fields’ disturbance. The fringe, which is 

accordance thermocouple position, is considered as reference 

fringe with zero order number.  Then by decreasing the radial 

distance towards the inner surface of the open cylinder, order 

number of the fringes increases and reaches the highest value 

at inner surface. Subsequently, temperature of each fringe is 

calculated based on the following relation [39]: 

 

                                      (3)  

 

where,
 

represents the gas constant,  

shows the ambient pressure, is the 

specific refractivity of air,  is the laser wave length, is the 

cylinder length along the laser beam, stands for the 

reference temperature, and  represents the fringe shift. To 

evaluate temperature gradient at the surface, the variation of 

the fringe shift versus radial distance is measured. Then the 

temperature gradient at the surface is calculated by 

differentiating of Eq. (3) with respect to the radial distance, as 

follows: 

 

                                                                    (4) 

 

is calculated by differentiating Eq. (3) respect to 

as follows: 

 

                                    (5) 

 

Therefore, the local convection heat transfer coefficient at 

each peripheral position is determined as follows: 

 

                                                     (6) 

 

where, hL represents the local heat transfer coefficient and  

stands for the air thermal conductivity at the cylinder surface 

temperature. Therefore, 

 

                                  (7) 

 

where, indicates the local Nusselt number, D is the 

diameter of open cylinder, and represents the air thermal 

conductivity at film temperature, which is defined as follows: 

 

                                                            (8) 

 

Finally, the average Nusselt number of the open cylinder for 

each case,  is calculated as follows:   
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                               (9) 

 

where,  is the periphery angle which is measured from the 

cylinder center. 

 

 

4. UNCERTAINTY ANALYSIS 

 

Experimental uncertainty analysis is a technique that 

analyzes a derived quantity, on the basis of the uncertainties in 

the experimentally measured quantities which are utilized in 

some form of mathematical relationship to calculate the 

derived quantity. In this study, the uncertainty analysis has 

been performed based on the method detailed elsewhere [39-

41]. The standard uncertainties in the fringe shift, gas constant, 

and the laser wave length are overlooked. Other uncertainties 

including the wall temperatures, ambient pressure and ambient 

temperature are calculated from the measuring devices 

precision and also the uncertainty related to the measuring 

devices of the cavity dimensions. The uncertainty of the 

difference in vertical distances of fringes from the surface and 
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also thermal conductivity of air, are another significant 

parameters need to be considered. Whole error sources 

involved in the study are presented in Table 1. Considering the 

above mentioned uncertainties, the uncertainty in the 

measurement of local Nusselt numbers is calculated as 5.6 ± 

2.6%. 

 

 
Figure 5. Data reduction procedure for a sample 

 

Table 1. The error sources involved in the study 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

5. THE MODEL DEVELOPMENT 

 

For determining the average Nusselt numbers of inner 

cylinder surface ( ), as the output parameters, an 

independent model was developed. The input parameters of 

this models was including the Rayleigh number (Ra), ranging 

from 105 to 2×105, and the ratio of the non-conductor barrier 

distance from the bottom of cavity to the cavity diameter 

(H/D), from 0 to 3. Indeed, a two-input/one-output model is 

employed in this investigation. The schematic overview of the 

suggested hybrid model has been presented in Figure 6. 

 

 
 

Figure 6. A simplified outline of the suggested hybrid model 

to predict the average Nusselt number ( ) 

 

In order to develop the proposed model, 33 data are 

employed. The entire data are segregated into three sets: 

training, testing and checking. About 58% of the whole data 

(19 data) were employed for training, 27% for testing (9 data) 

and the left 15% (5 data) were employed as checking data for 

evaluating the performance of proposed hybrid model. The 

training and testing sets were selected randomly.  

The best architecture of the proposed hybrid model for 

predicting the average Nusselt number ( Nu ) is described in 

Table 2. 

 

Table 2. Optimal architecture and characteristic of the 

proposed hybrid model for predicting the average Nusselt 

number ( Nu ) 

 

 
 

 

6. RESULTS AND DISCUSSION 

 

A comparison between the predicted values using the hybrid 

model and experimentally obtained ones for training, testing 

and checking data, is presented in Figure 7. From this figure, 

it is evident that the predicted values using the proposed hybrid 

model are in good agreement with the experimental data with 

least error. 

The prediction performance of the suggested hybrid model 

is evaluated through the sum-squared errors (SSE), the 

coefficient of determination percentage (R2%) mean absolute 

percentage error (MAPE), root-mean square error (RMSE), 

and standard deviation (STD) values, which are calculated as 

follows: 
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Nu

Nu

Error Sources Variables Bias 

Errors 

Units 

Cavity dimensions 

(distance of the 

adiabatic plate from 

the bottom of the 

cylinder, length of the 

cylinder, slot width, 

diameter of the 

cylinder) 

H, l, t, D 0.08  mm 

Fringe distances ∆r 0.02  mm 

Pressure P 100  Pa 

Temperature T 0.1 °C 

Thermal conductivity 

of air 
k 0.0005 

W/ 

m.°K 
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where, N is the number of data and ‘ iExp,Y  ’ and ‘
iPred,Y ’ refer 

to experimentally obtained and predicted values, respectively. 

The error information of the proposed hybrid model, in 

predicting the Nusselt number ( ) is presented in Table 3. 

According to this table, the MAPE% and SSE for predicting 

the Nusselt number (  ) based on the testing data set are 

1.0023% and 0.0327, respectively.  

 

 
 

Figure 7. Comparisons between the experimentally obtained 

and the hybrid model predicted results for the (a) training (b) 

testing and (c) checking data sets  

 

Also, Figure 8 shows the experimental results for the 

variation of local Nusselt number with angular distance from 

the bottom point of cylinder for all three positions of adiabatic 

plate in all Rayleigh numbers. This figure also clearly shows 

the increase of Nusselt number by increasing the Rayleigh 

number. According to this figure, in cases I and II, for all 

Rayleigh number, maximum Nusselt number occurs at bottom 

of cylinder and by going further distance, Nusselt number 

decreases continuously. This is expected because the boundary 

layer grows along this path (by increasing θ). For all cases two 

symmetric vortexes have been created in two side of cavity. In 

the cases I and II, because of the vortex coincidence at the 

bottom of the cavity, no horizontal velocity component exists, 

so stagnation point is held at the lowest point of the cavity. 

Therefore, at this point, the thickness of the boundary layer is 

thin, and the heat transfer rate as well as the local Nusselt 

number are at their maximum values. Hence by increasing θ, 

boundary layer grows and causes to decrease in the heat 

transfer rate. But in the case III, H/D=0, maximum Nusselt 

number doesn’t occur at the bottom of cylinder and by moving 

further distance from adiabatic plate on the surface of the 

cavity, initially the Nusselt number increased and after a finite 

distance it starts to decrease. According to Figure 8, in this 

case, location of maximum Nusselt number is shifted slightly. 

Moreover, Figure 9 shows the variation of average Nusselt 

number (  ) in terms of the H/D ratio for different Rayleigh 

numbers. By comparing the results presented in Figure 9, it 

can be observed that, the presence of the adiabatic plate 

increases the heat transfer rate. By increasing the H/D ratio 

from 0 (case III) to 0.5 (case II), the heat transfer increases 

ranging from 25% to 35%. This manner can be due to the 

reason that, the adiabatic plate creates a velocity boundary 

layer around itself. By approaching the adiabatic plate to the 

bottom of the cavity (case II to case III), the velocity boundary 

layers of the adiabatic plate and surfaces overlap on each other 

and the cavity is separated into two halves. The heat transfer 

rate decreases due to overlapping of the boundary layers. Also,  

the bottom point of the cavity, which has the maximum heat 

transfer rate in cases I and II, is inactivated under the effect of 

adiabatic plate in case III. In earlier case, these effects are more 

visible in comparison to cases I and II. Hence although the 

Nusselt number in case III is greater than that in case I (without 

adiabatic plate), it is less than case II. By decreasing the H/D 

ratio from 3 (case I) to 0.5 (case II), the heat transfer increases 

from 25% to 35%. In this regard, it can be deduced that the 

presence of adiabatic plate causes smaller vortexes. The 

thickness of the velocity boundary layer on the constant 

temperature surface decreases, whereas the velocity values 

inside the boundary layer increase. These effects cause to 

increase the heat transfer rate. 

 

 
 

Figure 8. Experimental local Nusselt number versus 

Rayleigh numbers (a) case I (b) case II (c) case III 
 

Table 3. The accuracy of the proposed hybrid model for 

predicting the average Nusselt number ( Nu ) 

 

 

Nu

Nu

Nu
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Furthermore, it is worth mentioning that, the 

aforementioned hybrid models have been trained and tested 

using different numbers of hidden layers. The results are 

presented in Figure 10. As can be observed from these figures, 

for the training, testing and checking data, using two hidden 

layers, leads to better results in comparison with the one layer. 

But, increasing the number of hidden layers, does not have any 

sensible effect on the results. As can be observed, using two 

hidden layers, leads to 49% decrease in MAPE with respect to 

similar error by using only one hidden layer, for predicting the 

Nusselt number (  ), based on the testing data. The 

specifications of the compared hybrid models in which more 

hidden layers are applied, is presented in tables 4 & 5. As 

another result, it is important to be mentioned that increasing 

the number of hidden layers, decreases the convergence speed. 

In other words, increasing the number of hidden layers 

increases merely the time convergence of the model and 

computational complexity of the process. 

As can be observed, using two hidden layers, leads to 49% 

decrease in MAPE with respect to similar error by using only 

one hidden layer, for predicting the Nusselt number (  ), 

based on the testing data. The specifications of the compared 

hybrid models in which more hidden layers are applied, is 

presented in tables 4 & 5. As another result, it is important to 

be mentioned that increasing the number of hidden layers, 

decreases the convergence speed. In other words, increasing 
the number of hidden layers increases merely the time 

convergence of the model and computational complexity of 

the process. 

 

 
 

Figure 9. The average Nusselt number (  ) versus the H/D 

ratio for different Rayleigh numbers (Ra) 

 

 
 

Figure 10. The MAPE% of the hybrid model against the 

number of hidden layers for predicting the Nusselt number  

Table 4. Optimal architecture and specifications of the first 

compared hybrid model for predicting the average Nusselt 

number ( ) 

 

 
 

Table 5. Optimal architecture and specifications of the 

second compared hybrid model for predicting the average 

Nusselt number ( Nu ) 

 

 
 

 

7.  CONCLUSIONS 

 

In this paper, a hybrid network in which the Jaya 

optimization algorithm is employed to train the artificial 

neural network was introduced to predict the free convection 

in an open round cavity against the inputs parameters. The 

input parameters were the Rayleigh number (Ra) and ratio of 

the nonconductor barrier distance from the bottom of the 

cavity to the cavity diameter (H/D). The main idea of the paper 

was to develop a hybrid approach for modeling the output 

parameter as a function of input ones. As a matter of fact, a 

two-input/one-output network was applied in the investigation. 

The aforementioned network was developed based on the 

experimentally obtained data. It was concluded that, the hybrid 

network can precisely predict the results due to its low error 

rate. Moreover, the results demonstrated that, there is an 

optimum ratio (H/D), in which the heat transfer is maximum. 

Furthermore, it was observed that the best predictor model 

Nu

Nu

Nu

Nu
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which utilizes two hidden layers, gives better results than those 

use more than two hidden layers.  
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NOMENCLATURE 

 

Artificial Neural Network ANN 

Diameter of the cylinders (m) D 

Gravitational acceleration (m/s2)  g 

Heat transfer coefficient (W/m2.°K) h 

Distance of adiabatic plate from the bottom of 

cylinder (m) 

H 

Thermal conductivity of air (W/m.°K) k 

Cylinder length (m)  l 

Mean absolute percentage error, % MAPE 

Specific refractivity of air (m3/kg) Nr 

Nusselt number Nu  

Pressure (Pa) P 

Radius of the cylinders (m) r 

Correlation coefficients R2 

Gas constant (J/Kg.K)  R0  

Rayleigh number based on the cylinder diameter 

(gβ(Tw-T∞)D3/να) 

Ra 

Root-Mean Square Error RMSE 

Standard Deviation STD 

Sum-Squared Errors SSE 

Slot width (m) t 

Temperature (°K) T 

 

Greek symbols 

 

Thermal diffusivity of air (m2/s) α 

Coefficient of volumetric thermal expansion of air 

(1/°K) 

β 

Dynamic viscosity (Pa.s) μ 

Density (kg/m3) ρ 

Fringe shift ε 

Angle from stagnation point (degree) θ 

Laser wave length (m)  λ 

Kinematic viscosity (m2/s) ν 

 

Subscripts  
Refers to ambient condition ∞ 

Refers to film condition f 

Refers to local value of parameter   L 

Refers to reference condition ref 

Refers to the cylinder surface W 
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