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 In this paper, the assumptions implicit in Leveque's approximation are re-examined, and the 
variation of the temperature and the thickness of the boundary layer were illustrated using the 
developed solution. By defining a similarity variable the governing equations are reduced to 
a dimensionless equation with an analytic solution in the entrance region. This report gives 
justification for the similarity variable via scaling analysis, details the process of converting 
to a similarity form, and presents a similarity solution. The analytical solutions are then 
checked against numerical solution programming by FORTRAN code obtained via using 
Runge-Kutta fourth order (RK4) method. Finally, others important thermal results obtained 
from this analysis, such as; approximate Nusselt number in the thermal entrance region was 
discussed in detail. After that, a comparison with previously published results on special case 
of the problem shows excellent agreement. 
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1. INTRODUCTION 
 

The heat transfer process associated with natural 
convection is extensively involved in numerous engineering 
applications due to its diverse applications in geophysics, 
nuclear reactor system, energy efficient buildings, cooling of 
electronics system, solar system etc [1]. A heat exchanger is 
a device used for transferring heat from one fluid to another. 
The fluid may not be allowed to mix by separating them by a 
solid wall or they may be in direct contact. They are operated 
in numerous industries such as power generation, petroleum 
refineries, chemical and processing plants and HVACs [2]. 
The experimental studies carried out by the researchers are 
generally in the field of convective thermal transfers which 
several authors have addressed in their work, heat transfer 
problems in a flow of fully developed laminar fluid through 
circular conduits. An analysis of the heat transfer through a 
fluid flow and over the boundary layer was established by 
Hamad and Ferdows [3]. Several researchers have 
investigated several aspects of the convective flow problems 
under different flow conditions [4]. However, all the studies 
above are limited to the Newtonian case in which the 
classical Navier - Stokes equation is valid [5]. Ambethkar 
and Kumar [6] used the stream function-vorticity formulation 
to solve the governing equations of 2-D unsteady viscous 
incompressible flow along with no-slip and slip wall 
boundary conditions. This problem has a wide range of 
applications in engineering and physical sciences. Some of 
these applications include oil extraction, cooling of electronic 
devices, heat transfer improvement in heat exchanger devices 
and drying technologies. Another study was carried out by 
Wei and Al-Ashhab [7] on boundary layers of a non-
Newtonian fluid subject to new boundary conditions. A study 

was conducted by Trîmbijas et al. [8] to analyze a boundary 
layer in mixed convection while employing a similarity 
technique to which partial differential equations are reduced 
to ordinary differential equations. Ahmed [9] analyzed a 
boundary layer in natural convection in the presence of 
transient wall temperatures using the finite difference method. 
Shen and Lu [10] have modeled the problem of free 
turbulence using the Runge-Kutta method for the prediction 
of the three-dimensional boundary layer. Mahanthesh et al. 
[11] carried out a heat flow analysis on the basis of a 
mathematical model managed by the boundary layer 
hypotheses while using the similarity method to reduce the 
governing equations. Eldesoky et al. [12] studied the 
peristaltic pumping of a compressible fluid in a tube using a 
perturbation analysis. Baehr and Stephan [13] and Stephan 
[14] conducted research on heat transfer in the input region 
with well-specified geometries. Additional work has been 
done by Asako et al. [15]. Shah and London [16], Kakac et al. 
[17], Ebadian and Dong [18], and Kakac and Yener [19] on 
triangular, rectangular and circular geometries. In the 
literature, we can find other thermal problems performed on 
other forms of tube geometries such as; the circular channels, 
the circular and the parallel plate and a rectangular channel. 
Thanks to these geometries, the thermal problems have been 
solved easily using analytical methods, of which whose 
prediction of the thermal transfer of the cylindrical walls was 
approached on several models. Hausen [20] developed a 
model to study the Graetz problem inside a circular tube. 
Churchill and Ozoe [21-22] proposed simple models to 
develop flux in a circular duct. With the fully developed 
asymptote, and for the thermal input region. The Leveque 
solution was combined by Churchill and Ozoe [21-22]. For 
the Graetz problem, and in order to predict the thermal 
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characteristics in an arbitrary form of the tube, models have 
been developed by Yilmaz and Cihan [23-24]. These two 
authors developed models for uniform wall flow conditions 
(H) and a uniform wall temperature (T) in order to predict the 
fully developed number of Nusselt. These models were fitted 
to these models with the Leveque generalized solution so that 
the input offers an approved model along the length of the 
tube. In the entrance area of the circular duct, two distinct 
problems must be considered. One assumes the existence of a 
fully developed hydrodynamic boundary layer while the 
other problem is more popular with developing thermal 
boundary layers. In the case of Graetz's classical problem, the 
velocity distribution is fully developed and the temperature 
of the fluid tends to propagate fairly rapidly inside the tube. 
In the input region, the use of the Levèque approach gives us 
better convergent results in the approximate solution on 
which we can assume that the velocity gradient is quite linear 
and the boundary layer is considered thin. Belhocine and 
Wan Omar [25], Belhocine [26] conducted an analysis to 
predict the distribution of the dimensionless temperature in a 
fully developed laminar flow in a cylindrical pipe. Recently, 
Belhocine and Wan Omar [27] were able to develop the 
analytical solution of the problem of convective heat transfer 
within a pipe whose solution obtained is in the forms of the 
hypergeometric series. Rajput et al. [28] used a similarity 
solution to analyse, steady two-dimensional laminar MHD 
forced convection flow of a nanofluid past a moving surface 
with convective surface boundary condition. 

The main objective of this work is to develop an exact 
solution of the thermal boundary layer at the inlet of a 
circular pipe for a fully developed laminar flow commonly 
called the Levèque approximation. The calculation 
methodology that we have followed is based on the method 
of solution in similarity of the variables in order to predict the 
dimensionless temperature as well as the thickness of the 
thermal boundary layer near the entrance of the flow. Several 
steps have been discussed here on the governing equation of 
the temperature field to reach the solution such that; the non-
dimensionalization and the use similarity variables, the 
transform the PDE to a set of PDE’s. Summarization of the 
boundary conditions and the integration of the equation. We 
then compare the exact approximate solution of the levèque 
problem, with the numerical results using a Runge-Kutta 
fourth order (RK4) algorithm implemented by the 
FORTRAN code. The profiles of the solutions are provided 
from which we infer that the numerical and exact solutions 
agreed very well. Another result that we obtained from this 
study is the number of Nusselt in the thermal entrance region 
to which a parametric study was carried out and discussed 
well for the impact of the scientific contribution. Finally, 
previous results in the literature relating to the values of the 
Nusselt number in the thermal entrance region have been 
used in the present work to validate the accuracy of the 
results of the analytical model. 

  
 

2. THE HEAT DIFFUSION EQUATION GOVERNING  
 

The total thermal energy balance, which is based on the 
use of equations of continuity and momentum, is simplified 
by the expression obtained by Bird, Stewart, and Lightfoot 
[29] is as follows; 
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3. THE GRAETZ-POISEUILLE FLOW PROBLEM 
 

The Graetz problem consists of determining the 
temperature in a steady state of a fluid passing through a 
circular pipe whose flow is laminar fully developed. Thus, it 
is a transfer of heat by convection of a fluid approaching the 
inlet section of a cylindrical tube with a constant temperature 
T0 whose wall is subjected to a constant temperature Tω. The 
geometry of the problem is shown in Fig.1. 
 

 
 

Figure 1. Illustration of Graetz problem 
 

The contour of the velocity of the flow becomes a stable 
contour after a certain distance from the hydrodynamic inlet 
and it remains practically fully parabolic and invariable along 
the circular tube. Our context for solving the thermal problem 
is to find the behavior of the temperature field as it evolves to 
be uniform at the temperature of the downstream wall. The 
distribution of the velocity of the flow is not subordinated by 
the variation of the temperature as long as the nature of the 
fluid is incompressible. 

 
• The fluid flow is completely laminar in steady state 

and fully developed 
• The flow is considered incompressible Newtonian 

whose properties ρ, μ, Cp, k. are constant and do not 
depend on temperature. 

• The temperature does not depend on the angular 
coordinate θ (𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 0), 

• Negligible viscous dissipation 
The expression of the velocity of a fully developed flow is 

given by the following form [27]: 
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where 𝑣𝑣0 is the maximum speed (center of the tube), 𝑢𝑢𝑟𝑟=0, 
and 𝑢𝑢𝜃𝜃=.0. The energy equation is subject to the assumptions 
mentioned above, Eq.(1) can be written as follows [30]: 
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where 𝛼𝛼 = 𝑘𝑘 𝜌𝜌𝐶𝐶𝑝𝑝⁄  is called the thermal diffusivity which has 
dimensions (m2/s), our problem is subjected to the following 
boundary conditions ; at the inlet of the tube T(r, 0) = T0; at 
the wall of the tube T(R, z) = Tωand at the centerline T(0, z)  
is finite or ∂T

∂r
(0, z) = 0 . 

Consider the following dimensionless terms [30]: 
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where the Péclet Number Pe = Rv0

α
 

By substituting the variables T, r, z for their expressions as 
a function of the dimensionless variables θ, Y, Z in the heat 
equations, we obtain the following equations [30]: 
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The influence of the axial diffusion is totally neglected 

when we apply the assumptions of the boundary layer, which 
implies the resolution of the following dimensionless 
equation [30] 
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This equation can be solved by the technique of the 
separations of the variables at which the temperature that we 
seek will be found in terms of hypergeometic series [30] 
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where βn , and Gn(Y), are respectively the eigenvalues and 
the eigenfunctions associated with the Sturm-Liouville 
problems. The coefficients Cn can be obtained by using the 
orthogonality property of the eigenfunctions defined as 
follows [30]: 
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4. THE LÉVÊQUE APPROXIMATION  
 

For all values of the axial position, the orthogonal function 
expansion solution obtained in the resolution of the classical 
Graetz problem is quite convergent, but the convergence is 
very slow as soon as one approaches the input tube. Indeed, 
for very large values of Z, the factor e-λn

2Z  has become 
converged. Lévêque [31] examined the thermal entrance zone 
in a cylindrical pipe while developing an approximate 
solution which is formally advantageous when the orthogonal 
function tends towards convergence too gradually (Fig.2). 
 

 
 

Figure 2. Simplifying representation of the Lévêque 
approximation 

 
According to Lévêque's assumption, we can take the 

thickness of the boundary layer 𝛿𝛿𝑡𝑡⟨⟨𝑅𝑅 , which leads to the 
following simplifications: 

 In the radial conduction term, we can neglect here 
the effects of curvature. Thus, derivative 1

r
∂
∂r
�r ∂T

∂r
� 

is approximated by 1
R
∂
∂r
�R ∂T

∂r
� = ∂2T

∂r2
 

 We are interested in the thermal boundary layer of 
the velocity allocation of which it can be developed 
in a Taylor series from the wall of the pipe 
according to a measured position, if we keep the 
first non-zero term. 

If we set x=R-r, the speed distribution will take the 
following form: 
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 Let us know, the boundary conditions of the flow 
entering the pipe are those that lie outside the 
boundary layer, we will exploit the boundary 

condition 0)( TxT →∞→  instead of that market at 
the center of the tube to arrive at the Graetz solution. 

 
4.1 Governing Lévêque’s equation  
 

Starting from the reduced energy equation whose axial 
conduction has been neglected yet, and considering the said 
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hypotheses, for the temperature field, we obtain the following 
governing equation  
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Using the string rule, in order to convert the second 
derivative of r into that of x, we get 
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4.2 Boundary conditions 
 

The temperature T(x,z),is controlled by boundary 
conditions which are fixed like this. 
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4.3 Non-dimensionalization 
 

Now, we will use dimensionless variables for the 
simplification of the equation. For this, we introduce the 
temperature and the axial coordinate of the following forms 
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The scaled governing equation placed on the wall by 

X=x/R and boundary conditions are given as follows 
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5. ANALYTICAL METHODOLOGY FOR PROBLEM 
SOLVING: TEMPERATURE FIELD AND THERMAL 
BOUNDARY LAYER  
 

At the current problem, we are looking for a similarity 
solution for the temperature field, we assume, θ(X, Z) = F(η), 
where η = X δ(Z)⁄  is the similarity variable and δ(Z)  is an 
ignored variable that provides us with the thickness of the 
thermal boundary layer. Using the chain rule, we will 
perform the following necessary transformations. 
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Using the important results, the previous equation for θ (X, 
Z), has been reduced to the solution of the ordinary 
differential equation for F(η)  
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We put the term in parentheses (δ2 dδ
dz

) a constant is equal 
to 3/2 because it is authentic that the supposition of similarity 
will lose unless this magnitude is indispensable to be 
independent of Z. Finally, we get at the solution of a system 
of equations composed of two unknowns to be found F(η) 
and δ(Z) . 
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Starting from the boundary condition on 𝜃𝜃(𝑋𝑋,𝑍𝑍), we can 
calculate the derivatives the boundary conditions of these 
formulas. We notice that θ(0, Z) = 0 which implies 
𝜃𝜃(∞,𝑍𝑍) = 1  and F(0)=0 which tends to 𝐹𝐹(∞) = 1 . The 
residual clause at the entrance of the tube gives us: 
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By favoring δ(0) = 0, this condition has been dismantled 
in the one obtained recently 𝐹𝐹(∞) = 1, when the variable X 
tends towards the infinite, that is to say X → ∞. By joining 
the two boundary conditions on F(η) and δ(Z), we get to: 
 
F (0) =0, F(∞) = 1 and δ(0) = 0                                     (20) 
 

From the equation, we can write 
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By integrating the two terms of the obtained equation 
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We arrive at the following expression 
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where k and C are constants of the integral 

By analogy, the following is drawn 
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Finally, the solution of the equation will take the following 
expression: 
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The function F(η)   checks the initial condition for η =
0, F(0) = 0, and also considers the boundary condition for 
η → ∞, F(∞) = 1; which implies 
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The scaled boundary layer thickness δ(Z)  is calculated by 
the integration, which gives the following solution 
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Finally, the solution of our differential equation takes the 
following form 
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where Γ(x) is the Gamma function [32], a MATLAB code 
was used to approximate the values of the integral and the 
function F(η) for each abscissa η. 

6. NUMERICAL RESOLUTION OF THE PROBLEM 
USING RK04 METHOD  
 

The original ODE of our problem is defined as follows:  
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With η = 0, F(0) = 0 and dF
dη
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We will use the fourth-order Runge-Kutta method, so we 

have the following system: 
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If we have two ordinary differential equations of the first 

order, we have: 
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By applying the RK04 method on this system, we give: 
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We have adopted the Kutta Runge algorithm for finding 
the solution of our system of equations; 

• The interval for the integration of the equations is 
chosen to perform our calculations: [a, b] if we take 
a = 0, and b = 3 

• The number of iterations N = 30, 
• The size of the iterations will be estimated as 

follows: h = (b-a) /N=3/30=0.1 
The flowchart for the above process is shown in Figure 3. 
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Figure 3. Flowchart of the RK-4 method for resolving the 
second ODE’s systems 

 

 
 

Figure 4. FORTRAN code of Runge Kutta for set of first 
order differential equations 

The main program was drafted by FORTRAN, which will 
solve the problem of Levèque whose procedure initiated to 
solve simultaneously two differential equations of the order 
by the method of Runge Kutta RK04. This program relies on 
a definition of two functions whose subroutine RK04 is 
called at each repetition of the loop that intervenes in the 
calculations. The code edited in the machine that was 
executed is illustrated in detail in Figure 4. 
 
 
7. RESULTANTS AND DISCUSSIONS  
 
7.1 Validation of the numerical results via the analytical 
solution of the problem 
 

The analytical solution that we have developed above is 
compared here with the numerical results derived from the 
FORTRAN V.05 calculation code. The results of the two 
methods are condensed in detail in Table 1. 
 

Table 1. Exact results and the numerical solution 
 

Exact analytical 
solution 

 

Numerical solution via fourth-order 
Runge-Kutta (RK4) method using a 

FORTRAN Code 
η 
 

0 
0,1 
0,2 
0,3 
0,4 
0,5 
0,6 
0,7 
0,8 
0,9 
1 

1,1 
1,2 
1,3 
1,4 
1,5 
1,6 
1,7 
1,8 
1,9 
2 

2,1 
2,2 
2,3 
2,4 
2,5 
2,6 
2,7 
2,8 
2,9 
3 
 

F(η) = θ(X,Z) 
 

0 
0,08927136 
0,17823109 
0,26608715 
0,35156264 
0,43300027 
0,50853023 
0,57631574 
0,63483615 
0,68314582 
0,72105634 
0,74916957 
0,76875346 
0,78149478 
0,78918921 
0,79347888 
0,79567283 
0,79669613 
0,79712921 
0,7972944 
0,79735155 
0,79736852 
0,79737298 
0,79737387 
0,79737387 
0,79737477 
0,79737477 
0,79737477 
0,79737477 
0,79737477 
0,79737477 

 

X   Y estimated Z estimated 
------------------------------------- 
0.0000  0.0000000   0.8929367 
0.1000  0.0892714   0.8920442 
0.2000  0.1782309   0.8858217 
0.3000  0.2660866   0.8691499 
0.4000  0.3515626   0.8375790 
0.5000  0.4329998   0.7880137 
0.6000  0.5085291   0.7194705 
0.7000  0.5763146   0.6336619 
0.8000  0.6348343   0.5351335 
0.9000  0.6831438   0.4307465 
1.0000  0.7210538   0.3284985 
1.1000  0.7491656   0.2359384 
1.2000  0.7687482   0.1586460 
1.3000  0.7814872   0.0992794 
1.4000  0.7891808   0.0574867 
1.5000  0.7934697   0.0306282 
1.6000  0.7956641   0.0149366 
1.7000  0.7966892   0.0066372 
1.8000  0.7971242   0.0026785 
1.9000  0.7972914   0.0009805 
2.0000  0.7973494   0.0003264 
2.1000  0.7973676   0.0000995 
2.2000  0.7973729   0.0000283 
2.3000  0.7973742   0.0000077 
2.4000  0.7973746   0.0000021 
2.5000  0.7973747   0.0000006 
2.6000  0.7973747   0.0000002 
2.7000  0.7973747   0.0000001 
2.8000  0.7973747   0.0000000 
2.9000  0.7973747   0.0000000 
3.0000  0.7973747   0.0000000 
------------------------------------- 

 
 

Fig. 5 shows a comparison between the resolution results 
of the equation predicted by the analytical method and the 
numerical data derived from the FORTRAN code, the two 
sets of results of which are plotted in the same figure. On the 
basis of Fig. 5, it can be seen that the two curves are fairly 
identical, while observing that the dimensionless temperature 
θ gradually and gradually increases to the abscissa Z = 0.7, 
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then loops and arches a little, by varying its path until it 
reaches the position Z = 1.7 where it stabilizes at a constant 
value 0.79 along the tube until the outlet of the fluid stream. 
In the same figure, the derivative function dF

dη
 which is 

physically interpreted as the variation of the thermal transfer 
coefficient (h) indicated in blue color which is a solution of 
our set equations decreases exceptionally as it moves away 
from the inlet region and then reaches the value zero on the 
abscissa Z = 1.6 until the exit of the flow. Fig. 5 shows 
clearly that the results of the analysis solution are very 
excellent convergence with those of the numerical results 
performed by the Visual FORTRAN v5.0 calculation code 
during which the use of the RK04 method obviously gives us 
a severely accurate assessment. 
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Figure 5. Comparison of exact and fourth-order Runge Kutta 
(RK4) numerical solutions 
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Figure 6. Thermal boundary layer thickness distribution by 
analytical method 

 
Fig. 6 shows the variation in the thickness of the thermal 

boundary layer as a function of the longitudinal coordinate 
where the latter increases slowly from the zero position 
towards the direction of flow of the fluid as it penetrates the 
pipe through its center and arrogates its total space. At the 
inlet of the tube and its wall, the shear stress is greater during 
which the thickness of the boundary layer is very short and 
slowly decreases to the fully developed value. In fact, the 
collapse of the pressure is increased in the inlet zone of the 

tube under the effect which may cause the phenomenon of 
friction over the whole of the tube. This elevation can be 
negligible for long and important tubes in short lengths. A 
thin layer can be observed on the wall at which the velocity 
of flow is less than the wall. By going from front to back, the 
thickness of the thermal boundary layer lengthens along the 
channel. 
 
7.2 The heat transfer coefficient  
 

Depending on the axial position, we try to understand the 
heat fluxes of the wall when a fluid flow is involved, we can 
calculate it directly using the following formula: 

 

),()( zR
r
Tkzq

∂
∂

=ω
                                                           (35) 

 
By usual notation, the convective transfer coefficient h (z) 

is known from the following expression 
 

)()()( bTTzhzq −= ωω                                                       (36) 
 
where Tb is the bulk or cup-mixing average temperature.  
The average bulk temperature is mathematically defined as: 
 

∫
∫

= R

R

b
drrrV

drzrTrrV
T

0

0

)(2

),()(2

π

π

                                                (37) 
 
where V(r) = v0(1-r2/R2)  is the velocity field. The 
temperature gradient at the wall is commonly subordinate to 
the heat exchange coefficient; we can estimate it as follows: 
 

)(

),(
)(

bTT

zR
r
Tk

zh
−

∂
∂

=
ω                                                              (38) 

 
The Nusselt number is defined as a dimensionless heat 

exchange coefficient. 
 

)(

),1(
22)(

Z

Z
Y

k
hRZNu

bθ

θ
∂
∂

−==
                                            (39) 

 
where θb is the without dimensional bulk temperature along 
pipe. 

We approximate the mean temperature Tb by the 
temperature of the liquid entering the pipe T0 and this, in the 
region of entry where the boundary layer is thin. 

As a result, and through the thermal input region, the heat 
exchange coefficient (h) is expressed as 
 

)(),( 0TThzR
r
Tkq −=

∂
∂

= ωω
                                           (40) 

 
We know the Nusselt number Nu = 2hR / k, and by 

introducing the dimensionless variables, we obtain the 
following: 
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)0(
)(

2),0(2)(
ηδ

θ
∂
∂

=
∂
∂

=
F

Z
Z

X
ZNu

                                  (41) 
 

By substituting δ(Z) and ∂F
∂η

(0), the final formula of the 
Nusselt number as a function of the variables Pe, Z, and R 
which we evaluated in the input region can be expressed as 
follows: 

 
31

31357.1)( 





≈

z
RPeZNu

                                               (42) 
 
By comparing with the exact solution, we can now 

appreciate that this calculation is a better evaluation in the 
range 
 

502500
Pe

R
zPe

≤





≤

                                                             (43) 
 

Fig. 7 shows the variation obtained in the input region of 
the Nusselt number as a function of the axial distance Z 
obtained in the thermal input region for various radius of the 
pipe. We can observe that the number of Nusselt, Nu (Z), 
rises as a function of the increase of the radius of the tube and 
that this influence is very noticeable enlarged at the entrance. 
When Z is greater than a certain distance, all the bundles of 
curves have become intensified and they stabilize 
horizontally flat, this explains why the fully developed 
boundary layer is reached. Indeed, the boundary layer 
triggers to increase when the fluid enters the tube in the walls 
of the walls having a temperature distinct from that of the 
fluid. The developed thermal condition is achieved after the 
flow passes a certain position. 
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Figure 7. Nusselt number as a function of axial position for 
different tube radius 

 
Fig. 8 shows the Nusselt number as a function of the 

longitudinal coordinates for different values of the Peclet 
number. It is observed that the increase in the number of 
Peclet leads to an increase in the number of Nusselt. As can 
be seen, the Péclet number has a much more pronounced 
effect on the Nusselt values for positions near the tube 
entrance. However the curve exhibits the same overall 
behavior - larger Nu at small Z and more or less constant 

value of large Z. In the tube entry region, where the boundary 
layer has expanded, we can see the reduction of the Nusselt 
number where it stabilizes in the fully developed thermal 
zone to a constant value does not depend on the Reynolds 
number and the heat flux. Hence, the thermal coefficient (h) 
appeared unlimited at the birth of the thermal boundary layer, 
and then gradually decreases to a stable value when the flow 
is fully developed at the origin. The numerical results clearly 
illustrate that the value of the Nusselt number increases and 
then decreases sharply over the entire longitudinal position of 
the tube. 
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Figure 8. Nusselt number as a function of axial position with 
various Peclet numbers  

 
7.3 Comparative results with earlier results 
 

We found deeply in the specialized literature, the work of 
Shah and London [16] where they presented the numerical 
solutions of the well-known Nusselt-Graetz problem of heat 
transfer to an incompressible fluid with constant properties 
flowing through a circular duct having a uniform wall 
temperature and a fully developed laminar velocity profile. 
The asymptotes for the local Nusselt number correlation in 
the thermal entrance region of a circular tube. 
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Figure 9. Validation of the present analytical model against 
the data literature value obtained by Shah and London [16] 
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Fig. 9 plots the present analytical results for Nusselt 
number versus Z at the thermal entrance region of circular 
conduit and comparison to existing literature correlations 
established by Shah and London [16]. These results are 
presented in this figure, where the Nusselt number is plotted 
against the axial coordinate Z. Examination of this one 
reveals the expected trend whereby higher Nusselt numbers 
correspond to very small values of the axial position Z at the 
entrance of the tube. It has been found that for the unblocked 
tube, the local Nusselt number decreases gradually as Z 
increases. From the figure 9, it can be seen that the results 
from both the analytical and the previous work are very 
similar which implies that the present work with the 
analytical method gives us a good correlation with the 
investigations found in the literature. Given the sources of 
variability of the Nusselt number calculated in the input 
thermal region, this result is considered satisfactory. 
 
  
8. CONCLUSION 
 

This paper presented an analytical and numerical solution 
to the Levèque approximation problem in order to predict the 
evolution of the thickness of the boundary layer as well as the 
temperature of the fluid at thermal entrance fully developed 
region through a circular tube with boundary condition at the 
axial coordinate origin. The exact solution methodology was 
based on the similarity variable and the generalized integral 
transform technique while the numerical approach is based 
on the integration technique of two differential equations 
with the Runge Kutta method of order 4 (RK4) programmed 
in Visual FORTRAN v5.0. The solution method was verified 
to lead to converging values which are in accordance with 
physically expected results. After demonstrating the 
convergence of the solution, the Nusselt number distribution 
of different Péclet values was analyzed, and the results are 
also in accordance with expected literature values. As a 
conclusion, we can say that both the simulated and data 
results that were found in the literature on the correlation of 
the Nusselt number are quite in good agreement. As final 
comments one should mention that the same solution 
procedure can be used for any dynamically developed 
velocity profile, as it occurs in many other occasions. Also, 
the methodology can be easily extended to other 
configurations such as another channel geometries, different 
wall heating conditions, and vicious and other flow heating 
effects. 
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NOMENCLATURE 
 
[a,b] Internal of integration of PDE’s 
Cp Heat capacity, Jkg-1K-1 
Cn  
F 

Coefficient of solution defined in Eq.(8) 
Temperature field function which is the 
solution of Eq.(18) 

f(x,y,z) Function defined in two general 1st order 
ODE's 

Gn Eigenfunctions of a proper Sturm-Liouville 
system 

g(x,y,z) 
 

Function defined in two general 1st order 
ODE's 

k 
k0 

 
k1 

 
k2 

 
k3 

 
l0 

 
l1 

 
l2 

 
l3 

 
h 
h 
N  
Nu  
Pe 
qω 
R 
Re 
r,θ,z 
T 
 
Tb 
T0 

 
Tω 

 
t 
x 
X 
Y 
yi,yi+1 
ur,uθ,uz 
V 
υ0 
Z 
z 
zi, zi+1 
 

Thermal conductivity, Wm-1K-1 
Increment based on the slope at the 
beginning of the interval 
Increment based on the slope at the 
midpoint of the interval 
Increment based on the slope at the 
midpoint of the interval 

Increment based on the slope at the end of 
the interval 

Increment based on the slope at the 
beginning of the interval 
Increment based on the slope at the 
midpoint of the interval 
Increment based on the slope at the 
midpoint of the interval 
Increment based on the slope at the end of 

the interval 
Heat transfer coefficient, Wm-2K-1 
Step size 
Number of steps 
Nusselt number 
Peclet number 
Heat flux from fluid wall, Wm-2 
Tube radius, m 
Reynolds number 
Cylindrical coordinates, m 
Temperature of the fluid inside a circular 
tube, K 
Bulk temperature, K 
Temperature of the fluid entering the tube, 
K 
Temperature of the fluid on the wall of the 
tube, K 
Time, s 
Transversal coordinate, m 
Dimensionless radial direction, m 
Dimensionless radial direction, m 
Values of y at xi and xi+1 respectively  
Cartesian velocity components, ms-1 
Fluid longitudinal velocity, ms-1 
Maximum axial velocity of the fluid, ms-1 
Dimensionless axial direction 
Longitudinal coordinate (m) 
Values of z at xi and xi+1 respectively  
 

Greek symbols 
 

 

α Thermal diffusivity, m2s-1 
βn Eigenvalues 
Γ Gamma function 
δ Thickness of the thermal boundary 

layer, m 
θ Dimensionless bulk average temperature 
ρ Density of the fluid, kgm-3 
µ 
η 

Dynamic viscosity of the fluid, kgm-1s-1 
Similarity variable 

Subscripts 
 

RK04 4th order Runge-Kutta method 
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