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 Focusing on the continuous bends in Shapotou section of the Yellow River, this paper probes 

into the water level variation, planar flow field variation, longitudinal flow variation and 

secondary flow in the continuous bends. Specifically, a mathematical model for 3D turbulent 

flow was discretized by the finite-volume method based on unstructured grids, a numerical 

solution equation was set up under the unstructured grids, and the model was solved by the 

SIMPLE algorithm using unstructured non-staggered grids. Then, the calculation area was 

meshed into triangular grids, the grids were densified for the bends, and the vertical direction 

was divided into multiple layers by the equidistant layering method. The simulated results 

agree well with the measured value. The convex bank generally had a lower water level than 

the concave bank. In the first bend, the water level of the concave bank was 0.02m higher than 

that of the convex bank; in the second bend, the water level of the convex bank was 0.04m 

higher than the convex bank. The mainstream flow rate was biased towards the concave bank 

in the continuous bends. With the increase of the central angle in the second bend, the 

mainstream gradually moved to the convex bank and reached the bank at the tip of the bend. 

Besides, the surface-bottom vortex on the convex bank became increasingly obvious and 

intense, the short transition area between the two bends was significantly affected by the high 

flow rate area of the first bend, and scouring occurred near the convex bank at the inlet and the 

convex bank at the outlet. These results prove that the proposed model can accurately simulate 

the 3D bend water flow of natural rivers with complex boundaries; apart from planar spiral 

flow, the proposed model could simulate the sectional distribution of mainstream flow rate. 
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1. INTRODUCTION 

 

The law of 3D bend flow has been widely used in various 

water conservancy projects, namely, river management, port 

construction, water diversion and sand control and 

improvement of river navigation [1]. In natural continuous 

bends, the features of water flow, a focus in river dynamics 

research, may affect the lateral sediment transport. Therefore, 

it is very meaningful to identify the exact structure and 

simulate the accurate features of bend flow in rivers [2]. 

Currently, 2D and 3D mathematical models of water flow have 

been extensively applied in fluid computation, because the 

actual water flows carry lots of 3D features. For instance, 

Nakamum [3] established a 3D water-sand two-phase flow 

model to calculate bed surface sediment movement. Pinto [4] 

used the unstructured grid to create a 3D sediment model 

under the action of water flow, aiming to disclose the change 

of non-viscous sediment bed surface. Li Chunguang [5] 

explores the water flow and sediment transport in 

Shuidonggou Reservoir using 3D water-sediment model. In 

general, the effect of numerical simulation mainly depends on 

the specific calculation method. Among the various 

calculation methods, the finite volume method is a popular 

tool for studies on fluid flow and heat transfer, thanks to such 

advantages of ensuring the local mass conservation of 

materials, taking up a small storage space, being stable and 

easy to be extended to 3D situations, and adaptive to complex 

solution areas. Considering the complex boundaries and 

irregular solution area of natural rivers, it is difficult to mesh 

the area into traditional structured grids. As a result, it is 

imperative to develop numerical solution methods based on 

unstructured grids that can adapt to complex areas. Below are 

some of the latest development of these methods. Wang Jinhua 

[6] relied on 3D unstructured grids to numerically simulate 

wave-current coupling. Bai Wei [7] calculated the 

compressive flow field with the SIMPLE algorithm, which is 

based on unstructured non-staggered grids. Inspired by the 

eigen-type high-resolution numerical algorithm, Lai Xijun et 

al. [8] put forward a new 3D unstructured grid hydrodynamic 

model, and applied the model for numerical simulation of the 

internal circulation of a closed pool. By classical examples, 

Lei Guodong et al. [9] verified that the unstructured-grid high-

precision finite-volume method can achieve a high resolution 

of WENO limiter. Yue Zhiyuan et al. [10] established an 

unsteady 2D flow model of unstructured grids, and 

successfully simulated the flow motion on complex terrain by 

the model. Huang Mutao et al. [11] employed non-structural 

grids to examine the 3D flow field of Donghu Lake in Wuhan, 

China. With a disordered structure, the unstructured grids are 

highly flexible in that it is easy to control the size, shape and 

position of the grids. Hence, these grids are adaptive to the 

meshing of complex areas. Besides, the nodes can be removed 

or added at ease when these grids are applied to simulate 

dynamic boundaries [12-13]. 

In summary, the traditional discretization formats of the 

convection term cannot strike a balance between numerical 
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accuracy and computing efficiency, when unstructured-grid 

finite-volume method is applied to solve the 3D water flow 

problem. To overcome the comploutlety of staggered grids, 

this paper attempts to use the finite-element method with 

unstructured non-staggered grids, which is based on the 

SIMPLE algorithm, to solve the flow field control equation. 

 

 

2. MATHEMATICAL MODEL AND NUMERICAL 

CALCULATION METHOD 
 

2.1 Mathematical model 

 

In the Cartesian coordinate system, the k-ε turbulent flow 

mathematical model for 3D unsteady flow can be expressed as: 
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where ϕ is a generic variable; t is time; u, v and w are the time-

averaged Reynolds flow rates in the x, y and z directions, 

respectively; Γϕ is the diffusion coefficient; Sϕ is the source 

term; v is the viscosity coefficient of water flow; vt is the eddy 

viscosity coefficient; ρ is the water density; p is the time-

averaged dynamic water pressure; g is the gravity acceleration; 

k is the turbulent kinetic energy; σk is 1.0; Gk is the generated 

item of turbulent kinetic energy; ε is the dissipation rate of 

turbulent kinetic energy; σε is 1.2; 𝐶1 = max⁡{0.43, �̅�/(5 +

�̅�)} with �̅� = 𝑆𝑘/𝜀; C2 is a coefficient with the value of 1.9 

[14-15]; S is the average strain rate. The average strain rate can 

be obtained as 𝑆 = √2𝑆𝑖𝑗𝑆𝑖𝑗 , where 𝑆𝑖𝑗 =
1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) 

(i=1,2,3; j=1,2,3,). Note that u1, u2 and u3 respectively 

represent u, v and w; x1, x2 and x3 respectively represent x, y 

and z. Table 1 shows the physical quantities represented by the 

variables, the diffusion coefficient Γϕ and source term Sϕ in 

equation (1). 

 

Table 1. Physical quantities represented by the variables, the diffusion coefficient Γϕ and source term Sϕ in equation (1). 

 

control equation ϕ Γϕ Sϕ 

Continuity equation 1 0 0 

x momentum equation u v+vt −
1

𝜌

𝜕𝑝

𝜕𝑥
 

y momentum equation v v+vt −
1

𝜌

𝜕𝑝

𝜕𝑦
 

z momentum equation w v+vt −
1

𝜌

𝜕𝑝

𝜕𝑧
− 𝑔 

k equation k 𝑣 +
𝑣𝑡
𝜎𝑘

 Gk-ε 

ε equation ε 𝑣 +
𝑣𝑡
𝜎𝑠

 𝐶1𝑆𝜀 − 𝐶2
𝜀2

𝑘 + √𝑣𝜀
 

 

2.2 Control equation discretization  

 

Following the discretization equation (1) of the finite-

volume method based on unstructured grids, the control body 

in the 3D calculation area is a triangular prism and the 

variables to be obtained are stored at the centre of the control 

body. As shown in Figure 1, P is the centre of the control body, 

E is the centre of the adjacent control body, e is the intersection 

of the control body centreline PE and the control body 

interface; 𝑛1𝑗 = [∆𝑦, ∆𝑥]  is the normal component of the 

control body interface, which points to the same direction as 

line PE if the triangular grids are orthogonal; n2j is the normal 

component of the control body centreline. 

 

 
 

Figure 1. Sketch Map of the control body 

 

As mentioned before, the variables to be obtained are stored 

at the centre of the control body. Let ΔH be the grid thickness 

along the z direction. Through the integral operation of the 

control equation along the control body, we have: 
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where nx and ny are respectively the components of n1j in the x 

and y directions. It is assumed that, on the control body 

interface e, the integral variables ϕ, u, v and w are constants 

equal to the value at the integration points. 

Replacing the differential quotient of the instantaneous term 

with the difference quotient of the time-varying term, we have: 
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where ACV is the area of the control body; ΔH is the thickness 

of the control body; Δt is the time step. 

Using the upwind scheme for the discretization of the 

convection term, we have: 
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where NED is the number of sides of the control body; ∑ 𝐹𝑒𝑗
𝑁𝐸𝐷
𝑗=1  

is the residual mass flow rate of the inlet and outlet units; 

Fej=(uΔy-vΔx)ejΔH is the mass flow rate on the control body 

interface. If Fej=(uΔy-vΔx)ejΔH is greater than zero, the mass 

flows into the control body; if Fej=(uΔy-vΔx)ejΔH is smaller 

than zero, the mass flows out of the control body. 

 

( ) ( )max ,0 max ,0ej ej P ej EE F F = − −
                          (5) 

 

( ) ( )max ,0 max ,0b b B b PE F F = − −
, b b CVF w A=

    (6) 

 

( ) ( )max ,0 max ,0t t P t TE F F = − −
, t t CVF w A=

        (7) 

 

There are two components of the diffusion term, namely, 

the orthogonal diffusion term along the normal of line PE (𝐷𝑗
𝑛) 

and the cross-diffusion term vertical to line PE (𝐷𝑗
𝑐 ). The 

former can be discretized using second-order precision central 

difference scheme, while the latter can be determined by the 

method mentioned in Reference [16]. The discrete form of the 

diffusion term can be expressed as: 

 

( ) 2 1

1 1

1 1 2

1 1,2 2

( ) ( ) ( )

ED

yx

j j

N
C Cj j j jE P

ej
j j j j

T P P B
CV

nn
d

x x y y z zn n

d n n n
H

ld d n

A
H H

  



 

  

  

   



=

      
 +  +   

       

 − −
 =  − 
 
 

− − 
+  − 

  




       (8) 

 

where dj is the vector PE; Γϕ is the diffusion coefficient; n2j is 

the normal of the vector; ϕC1 and ϕC2 are the variable values at 

nodes 1 and 2, respectively; l1,2 is the length of boundary 12. 

Since the Delaunay triangle is close to an equilateral triangle, 

the angle between PE and n1j is generally small, indicating that 

the cross-diffusion term 𝐷𝑗
𝑐  is generally smaller than the 

orthogonal diffusion term 𝐷𝑗
𝑛. As a result, the cross-diffusion 

term 𝐷𝑗
𝑐  was taken as the source term in the calculation 

process. 

The source term Sϕ is a function of time and physical 

quantity ϕ. Using the local linearization method, we have the 

following equation on the control body: 
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where Sϕc is the constant part; SϕP is the variation of Sϕ at point 

P along with ϕ. 

Substituting equations (3), (4), (8) and (9) into equation (2), 

we have the full-implicit solution equation: 
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where ΔH is the thickness of the control body; ACV is the area 

of the control body; NED is the number of sides of the control 

body; dj is the vector PE; n1j follows the direction of control 

body centreline PE; n2j is the normal of vector PE; l1,2 is the 

length of boundary 12; Fej, Fb and Ft are the mass flows on the 

interfaces, respectively; ϕC1 and ϕC2 are the variable values at 

nodes 1 and 2, respectively. 

 

2.3 Model solving 

 

For triangular unstructured grids, the computing process 

may be complicated if the coupling relationship between flow 

rate and pressure is processed by staggered grids, owing to the 

special grid shapes and complex grid numbers. Therefore, the 

SIMPLE algorithm based on unstructured non-staggered grids 

is generally used to treat the coupling relationship between 

flow rate and pressure. Here, the solution process uses the 

momentum difference proposed by Hsu [17] and Rhie [18]. 

 

2.4 Initial and boundary conditions 

 

The initial conditions were determined according to the 

coordinates of the measured section of the river banks, while 

the smooth boundaries obtained by cubic spline interpolation 

were taken as the initial boundaries of the river. Through the 

interpolation of the riverbed elevation, the elevation of each 

node on the riverbed was obtained and treated as the initial 

riverbed elevation. Then, the initial water level of the entire 

river section was computed in turn according to the hydraulic 

gradient of the measured section. In light of the measured flow 

rate at the inlet section, it is assumed that the flow rate 

distribution of the initial flow field is exactly the same as that 

at the inlet, and the calculated flow rate of the previous period 

was used as the initial flow rate of the next period. In this way, 

it takes much less time to stabilize the flow rate. Moreover, 

initial turbulent kinetic energy k and its initial dissipation rate 

ε were not set to zero. Otherwise, the program could not start 

the calculation. The values of these two parameters were 

empirically determined as 0.01 and 0.001, respectively. 
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The flow rate at the inlet was determined through 

measurement. The turbulent energy and its dissipation rate 

were derived from 𝑘 = 0.00375𝑢𝑖𝑛
2 , ε = 0.09𝑘3 2⁄  [19-20], 

with uin being the average flow rate at the inlet. 

The water level at the outlet boundary was also determined 

by measurement. The flow rate u, turbulent kinetic energy k 

and its dissipation rate ε were treated according to fully 

developed conditions: 

 

0
u v w k

n n n n n

    
= = = = =

                                                (11) 

 

For free water surface, the water level distribution of the 

whole field was determined based on the measured water level 

of each section and the rigid cover assumption, namely: 

 

0, 0w
z


= =

                                                                      (12) 

 

where ϕ=u,v,p,k,ε. 

 

 

3. MODEL VERIFICATION 

 

3.1 Overview of the calculation area 

 

 
 

Figure 2. River regime and section distribution 

 

 
 

Figure 3. Initial terrain 

 

The Shapotou section of the Yellow River is a typical 

continuous bending section of natural river. This section 

exhibits as a continuous curve of two bends with no obvious 

straight transition in between. The length and average width of 

the section were 6km and 230.65m, respectively. A total of 12 

calculation sections were designed for the simulation area, i.e. 

SH1~SH12 from the inlet to the outlet. The river regime and 

section distribution are presented in Figure 2. The initial 

terrain was determined according to the measurement in 

December 2008 (Figure 3). The model was verified by the data 

measured in July 2009. According to the measurement, the 

upstream water level was 1,240.86m, the downstream water 

level was 1,240.35m, the average water depth was 4.32m, the 

average flow rate was 0.57 m/s, and the average water surface 

slope was 0.17%. 

 

3.2 Grid meshing 

 

The study area was meshed into unstructured triangular 

grids. The grids in the bends were densified. After the 

densification, the size of triangular grids fell between 300m2 

and 50m2. Fifteen layers of grids were arranged in the vertical 

direction (Figure 4). 

 

 
(a) Grid layout of SH6~SH10 

 
(b) Grid layout of SH2~SH5 

 

Figure 4. Grid layout of the calculation area 

 

3.3 Analysis of calculation results 

 

3.3.1 analysis of water level calculation results 

 

Table 2. Calculated and measured water levels (unit: m) 

 
section Calculated water levels Measured water levels error 

SH1 1240.88 1240.86 0.02 

SH2 1240.86 1240.85 0.01 
SH3 1240.81 1240.84 -0.03 

SH4 1240.64 1240.68 -0.04 

SH5 1240.64 1240.68 -0.04 
SH6 1240.65 1240.69 -0.04 

SH7 1240.60 1240.65 -0.05 

SH8 1240.52 1240.57 -0.05 
SH9 1240.48 1240.51 -0.03 

SH10 1240.44 1240.43 0.01 

SH11 1240.38 1240.35 0.03 
SH12 1240.33 1240.35 -0.02 

 

Before simulation, the inlet flow rate was set to 

833.73m3/s,thee inlet water level to 1240.85m and the outlet 

water level to 1,240.35m. Table 2 compares the calculated 

water level and the measured water level. It is clear that the 

two values agree well with each other. Figure 5 provides the 

trend of water level change in the study area. As shown in the 

figure, the water level gradually decreased along the flowing 

direction; the water in the bends were subjected to the 

centrifugal force, leading to a lateral slope: the water level 
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close to the concave bank was higher than that close to the 

convex bank. In the first bend SH2~SH5, the water level near 

the convex bank was 1,240.62m, 0.02m lower than that near 

the concave bank (1,240.64m). In the second bend SH7~SH9, 

the water level near the convex bank was 1,240.48m, 0.04m 

lower than that near the concave bank (1,240.52m). 

 

 
 

Figure 5. Trend of water level change 

 

3.3.2 Analysis of calculation results on plane flow field 

Under the influence of the transition section, the 

mainstream of the bend flow was not consistent with the 

centreline of the bends. Figures 6 and 7 respectively shows the 

distribution of calculated and measured flow rates. Figure 8 

compares the calculated flow rate with measured flow rate in 

typical sections SH3 and SH7. 

 

 
 

Figure 6. Distribution of calculated flow field 

 

 
 

Figure 7. Distribution of measured flow field 

 
(a) SH3 

 
(b) SH7 

 

Figure 8. Comparison between calculated and measured flow 

rates 

 

According to the calculated and measured results, the 

mainstream was biased towards the concave tank in the first 

bend and started to move back towards the centreline in the 

transition section. The residual circumfluence from the first 

bend at the inlet of the second bend pushed the fast-moving 

surface water towards the convex bank. With the increase of 

the central angle of the second bend, the influence of the 

reverse circumfluence gradually decreased. Thus, the 

mainstream gradually shifted towards the concave bank, and 

was completely biased towards the concave bank when it 

reached the tip of the bend. These phenomena reveal that the 

weakening of the circumfluence depends on the length of the 

transition section, and that the scouring mainly occurs near the 

convex bank of the inlet and the concave bank of the outlet. 

 

 
(a) Surface flow rate distribution 

 
(b) Bottom flow rate distribution 

 

Figure 9. Surface and bottom flow rate distributions in the 

first bend 
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Figure 9 shows the flow rate distribution on the surface and 

bottom of the first bend. It can be seen that the surface flow 

was biased to the concave bank while the bottom flow was 

biased to the convex bank, and that the surface-bottom vortex 

on the convex bank became increasingly obvious and intense. 

Figure 10 shows the flow rate distribution on the surface and 

bottom of the first bend. It can be seen that the flow rate 

distribution carried the features of the curved water flow: the 

surface flow was biased to the concave bank while the bottom 

flow was biased to the convex bank, forming an obvious 

backflow on the convex bank. 

 

 
(a) Surface flow rate distribution 

 
(b) Bottom flow rate distribution 

 

Figure 10. Surface and bottom flow rate distributions in the 

second bend 

 

3.3.3 Vertical distribution of longitudinal flow rate 

Figure 11 is the contour map of the measured and calculated 

flow rates at 10 typical sections (SH2~SH11) of the 

continuous bends of Shapotou river section (unit: m/s). 

 

 
(a1) Calculated flow rate of section SH2 

 
(a2) Measure flow rate of section SH2 

 
(b1) Calculated flow rate of section SH3 

 
 

(b2) Measure flow rate of section SH3 

 
(c1) Calculated flow rate of section SH4 

 
(c2) Measure flow rate of section SH4 

 
(d1) Calculated flow rate of section SH5 
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(d2) Measure flow rate of section SH5  

 
(e1) Calculated flow rate of section SH6 

 
(e2) Measure flow rate of section SH6 

 
(f1) Calculated flow rate of section SH7 

 
(f2) Measure flow rate of section SH7 

 
(g1) Calculated flow rate of section SH8 

 
(g2) Measure flow rate of section SH8 

 
(h1) Calculated flow rate of section SH9 

 
(h2) Measure flow rate of section SH9 

 
(i1) Calculated flow rate of section SH10 
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(i2) Measure flow rate of section SH10 

 
(j1) Calculated flow rate of section SH11 

 
(j2) Measure flow rate of section SH11 

 

Figure 11. Contour map of the measured and calculated flow 

rates at 10 typical sections 

 

The contour map reveals that, despite many similarities, the 

calculated distribution of surface and bottom flow rates were 

quite different from those measured on site. The difference is 

mainly attributable to two factors: First, the measurement 

devices were partially affected by the complex field 

environment and the rapid and turbulent flows of the Yellow 

River; Second, the section data extracted from the simulation 

can approximate but not coincide with the measured data. In 

section SH2, which lies at the inlet of the first bend, the flow 

rate was basically uniformly distributed and the high rate area 

appeared at the centre of the river. These features are resulted 

from the impacts of the shape of upstream channel. In section 

SH3, which lies at the tip of the bend, the high flow rate area 

shifted towards to concave bank (right bank). The shift was 

completed in section SH5. The transition section SH6 was so 

short that the high flow rate area of the first bend still had a 

great influence. Although the high flow rate area was on the 

concave bank (right bank), the area started to move towards 

the convex bank in SH6. In section SH7, which lies at the inlet 

of the second bend, the high flow rate area appeared on the 

concave bank (right bank), and then gradually moved towards 

the convex bank (left bank). The movement was completed in 

SH8 and SH8. After leaving the bends, the high flow rate area 

began to return to the middle in SH10 and SH11. 

Figure 12 compares the calculated and measured flow rates 

on 5 vertical lines of 8 typical sections of the continuous bends, 

where y is the distance to the left bank, the abscissa u  is the 

mainstream flow rate, the ordinate is the water level, the solid 

line is the calculated value and * is the measured value. 

 

 
(a) SH2 

 
(b) SH3  

 
(c) SH4 

 
(d) SH5 

 
(e) SH6 

 
(f) SH7  

 
(g) SH8 
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(h) SH9 

 

Figure 12. Calculated and measured flow rates on 5 vertical 

lines of 8 typical sections 

 

It can be seen from the figure that the calculation results 

were close to the measured results, both of which demonstrate 

the distribution law of water flow in continuous bends. Along 

the vertical direction, the mainstream flow rate basically 

followed the logarithmic law. The flow rate gradient was large 

near the riverbed and changed little far from the riverbed. 

 

 

4. CONCLUSIONS  

 

This paper establishes a numerical model for 3D turbulent 

flow based on unstructured grid, discretizes the control 

equations through unstructured-grid finite-volume method, 

and solve the model using the SIMPLE algorithm of the 

unstructured non-staggered grids. The proposed model was 

applied to numerically simulate the continuous bends in 

Shapotou section of the Yellow River. Through the simulation, 

the author obtained the results on the distribution of the planar 

flow field, the vertical distribution of the longitudinal flow rate, 

and the lateral flow rate (secondary flow). The simulated 

results agree well with the measured data, revealing that the 

model can accurately simulate the bend water flow of natural 

rivers with complex boundaries and the water flow patterns in 

all directions. Apart from planar spiral flow, the proposed 

model could simulate the sectional distribution of mainstream 

flow rate. Thus, our 3D turbulent flow is a desirable simulation 

tool for the motion law of water in natural rivers. The research 

findings lay a solid basis for the research into the riverbed 

variation and water quality in the study area. 
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