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 Sorting is an essential operation which is widely used and is fundamental to some very basic 

day to day utilities like searches, databases, social networks and much more. Optimizing 

this basic operation in terms of complexity as well as efficiency is cardinal. Optimization is 

achieved with respect to space and time complexities of the algorithm. In this paper, a novel 

left-field N-dimensional cartesian spaced sorting method is proposed by combining the best 

characteristics of bucket sort, counting sort and radix sort, in addition to employing hashing 

and dynamic programming for making the method more efficient. Comparison between the 

proposed sorting method and various existing sorting methods like bubble sort, insertion 

sort, selection sort, merge sort, heap sort, counting sort, bucket sort, etc., has also been 

performed. The time complexity of the proposed model is estimated to be linear i.e. 𝑂(𝑛) 

for the best, average and worst cases, which is better than every sorting algorithm introduced 

till date. 
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1. INTRODUCTION 

 

Sorting is a process of arranging the given data into an 

ascending or a declining fashion on the basis of a linear 

relationship among the data elements [1]. Sorting may be 

performed on numbers, strings or records containing both 

numbers and strings like names, IDs, departments, etc., in 

alphabetical order, or in increasing or decreasing manner [2]. 

The exponential rise in the quantity of data available for use 

and being used, calls for more efficient and less time 

consuming sorting methods. Sorting algorithms are of two 

major types, namely, comparison and non-comparison sorting. 

Comparison sort involves sorting the data elements by doing 

repetitive comparisons and deciding which data element 

should come before or after which data element in the sorted 

array [3]. Comparison sort based sorting methods are bubble 

sort, insertion sort, quick sort, merge sort, shell sort, etc. Non-

comparison sort does not compare the data elements for 

sorting them into an order. The non-comparison based sorting 

methods involve counting sort, bucket sort, radix sort, etc. 

Sorting algorithms can also be stable and unstable, in-place 

and out of place. In-place sorting algorithms are those which 

sort the given data without employing an additional data 

structure [4]. Out-of-place sorting algorithms require an 

additional or auxiliary data structure for sorting the given data 

elements [5]. Stable sort refers to the sorting technique in 

which two elements having equal values appear in the same 

order in the sorted array as they were, before the sorting was 

applied [6]. In the case of unstable sort, this order is not 

necessarily retained. Bubble sort, merge sort, counting sort and 

insertion sort are examples of stable sorting algorithms. While, 

quick sort, heap sort and selection sort are based on unstable 

sorting technique. 

Each of these sorting algorithms have unique properties that 

add value to the specific function they are used to perform. 

Sorting algorithms are majorly distinguished on the basis of 

four properties, which are adaptability, stability, in-place/ not 

in-place, and online/ not-online, in addition to their basic 

methodology. An algorithm is adaptable in nature if its time 

complexity becomes almost O(n) if the array is nearly sorted. 

An algorithm is said to display online property if it can process 

the input element by element, and doesn’t require the whole 

array as input at the beginning. Bubble sort works by 

exchanging method and is an in-place, stable sorting algorithm, 

which makes O(n2) comparisons and swaps. It is not online 

and is adaptive in nature. Insertion sort works by insertion 

method and is also a stable, in-place sorting algorithm, which 

requires O(n2) comparisons and swaps. It is adaptive and 

online, in addition to having little over-head. Heap sort works 

by selection methodology and makes use of heap data structure. 

Both heap sort and quick sort are unstable in nature, and takes 

O(n logn) for comparisons and swaps. Heap sort is not-online, 

not-adaptive and is an in-place sorting algorithm, while quick 

sort is not-online, adaptive and an in-place sorting algorithm. 

Quick sort also has less over-head and works by partitioning. 

Bucket sort is a type of non-comparison distribution sort, 

which is not-online, out-of-place, non-adaptive and stable in 

nature. It has overheads of the buckets. Radix sort is a non-

comparison integer sort, which is stable, not-online, adaptive 

and in-place in nature. In this paper, a novel sorting method is 

proposed by combining all the best characteristics of a few 

existing sorting algorithms. This novel method, called 

Recombinant Sort, combines the counting sort, bucket sort and 

radix sort, along with hashing and dynamic programming to 

elevate efficiency. This selective combination precedes the 

sum of the qualities of its parent algorithms, which brings out 

the essence of the idea behind this synergy. The proposed 

method has many unique and striking properties. It can work 

on numbers as well as strings, and can sort numbers containing 

decimals as well as non-decimal numbers together or apart. 
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Due to the application of hashing and dynamic programming, 

the traversal for fetching values is decreased tremendously and 

thus, the time complexity is also reduced. Comparison of 

various existing sorting algorithms is also conducted, on the 

basis of best, average and worst cases of time complexity, the 

ability to process decimals and strings, stability and on in-

place or out-of-place technique. 

This paper is divided into seven sections. Section 2 

elaborates all the concepts used as pre-requisites for the 

proposed method. Section 3 delineates the concept, algorithm 

and the working of the proposed methodology of the 

recombinant sort. Proper description of algorithms, along with 

labelled diagrams are used to enhance the readers’ 

understanding, and highlight the proposed novel approach in a 

lucid manner. Section 4 provides the proof of correctness of 

the proposed algorithm using loop invariant method. Section 

5 contains the complexity analysis of the proposed algorithm 

and section 6 discusses the results obtained in a graphical and 

neatly tabulated manner. Section 7 discusses the conclusions 

and the future prospects of this algorithm and the domain. 

 

 

2. CONCEPTS USED 

 

2.1 Hashing 

 

Hashing is a faster and more efficient method of insertion 

and retrieval of data. It works by employing a function called 

the hash function, which is used for generating new indices for 

the data elements. The hash function applies a uniform 

mathematical operation to all the data elements to allot them a 

place in the hash table. A hash table is a data structure that 

stores the values mapped by the hash function [7]. With 

hashing, the speed of retrieval or insertion can’t be known but 

space-time trade off comes to picture. The speed can be 

checked by using a known amount of space for hashing, or the 

space used can be checked using a known speed for the process. 

Though usually, the speed of searching, insertion and deletion 

in hash tables is fast if collision of data does not occur, but it 

still heavily depends on the selection of the hash function. As 

hashing works by inducing randomness in the hash table and 

not order, it can’t be considered to perform an admirable job 

for sorting the data alone. Hashing becomes extremely 

inefficient as the number of collisions increases, which causes 

the number of tuples in a bucket to increase, and ultimately 

leads the time complexity to become more linear O(n). 

Hashing is used for a variety of applications, like, password 

verification, Rabin-Karp algorithm, compiler applications, 

message digest and in linking file name to path. 
 

2.2 Bucket sort 

 

Bucket sort works by distributing the data elements to be 

sorted in different buckets, which are then individually sorted 

using any other sorting technique or by recursive application 

of the bucket sort technique itself. The complexity of bucket 

sort depends on the number of buckets used, algorithm used 

for sorting each bucket and the uniformity in distribution of 

the data elements [8]. Once the elements are sorted into 

different buckets, the sorting of elements of the bucket 

becomes an independent task, and thus can also be carried out 

in parallel with other buckets to enhance performance. It can’t 

be applied for string data type and requires a high degree of 

parallelism for achieving good performance [9]. Also, a bad 

distribution of elements in the buckets may very easily lead to 

extra work and degraded performance. Time complexity of 

bucket sort is O(n+k) for best and average cases and O(n2) for 

the worst case. Bucket sort works best when the input data is 

of floating point type and is distributed uniformly over a range.  

 

2.3 Counting sort 

 

Counting sort is a small integer sorting technique, which 

works by counting data elements with distinct key values. 

Arithmetic is applied on these counts to determine the 

positions of the elements in the output. It is only suitable for 

data items in which the variation in the values of the elements 

do not precede the total number of elements to be sorted, as it 

has linear running time in total number of elements and 

difference between the maximum key and the minimum key 

values [10]. It is a stable sort and does not work by doing 

comparisons, thus is a non-comparison sort. Counting sort’s 

time complexity is O(n+k), where n is the size of the sorted 

array and k is the size of the helper array, which is needed 

when sorting non-primitive elements. Counting sort uses the 

values of the keys as indices, thus is only suitable for sorting 

small integers and can’t be used to sort large datasets. As it 

only works for discrete values, it can’t be used to sort strings 

and decimal values as array frequencies cannot be constructed. 

Counting sort has linear time complexity of O(n+k) for the 

elements within the range of 1 to k, but turns to O(n2) for 

elements within the range of 1 to n2 [11]. Counting sort is used 

when linear time complexity is needed and there are multiple 

entries of smaller magnitude integers. 

 

2.4 Radix sort 

 

Radix sort is a non-comparison sorting algorithm that works 

by considering the radix of the elements for distributing them 

into different buckets. The process of bucketing is repeated for 

each digit, with the previous ordering being preserved, again 

if the elements contain more than one significant digit [12]. 

Therefore, it is fast when the keys are small and the range of 

the array is less. Radix sort is known to be a close cousin of 

the counting sort. Though radix sort can work for integers, 

words, or any other dataset which can be lexicographically 

sorted, its flexibility is curbed as it depends on digits or letters 

to perform sorting. Separate codes need to be written for 

integers, floating type values and for strings. It is slower in 

comparison to merge sort and quicksort when the operations 

like insertion and deletion are not efficient enough and also 

has high space complexity [13]. The radix sort’s constant k in 

O(kn) is greater in comparison to any other sorting algorithm, 

and radix sort also consumes much greater space than quick 

sort, which is an in-place sorting algorithm. Radix sort is 

mostly used for sorting strings like stably sorting fixed-length 

words over fixed alphabets. 

 

 

3. PROPOSED RECOMBINANT SORT ALGORITHM 
 

The Recombination Sort is formulated from recombination 

of cardinal concepts of various sorting algorithms. The 

capability of radix sort to deal with each digit of the number 

separately, the concept of counting the number of occurrences 

of the elements in counting sort, the concept of bucketting 

from bucket sort and the concept of hashing a number to a 

multidimensional space are combined together to form a single 

656



 

sorting algorithm which outperforms its parent algorithms. As 

Radix sort is one of the parent algorithms, the recombinant sort 

needs to be rewritten for every different type of data. The 

Recombinant Sort consists of two parts, namely, the Hashing 

cycle and the Extraction cycle. For the purpose of simplicity, 

an array consisting of numbers between the of range 1 to 10, 

consisting of only one digit after decimal, is considered. 

 

3.1 Hashing cycle 

 

3.1.1 Mathematical rendition of hashing used in hashing cycle  

For an n-digit decimal number 𝛩 =

𝑛1𝑛2𝑛3 … . 𝑛𝜆−1𝑛𝜆 . 𝑛𝜆+1𝑛𝜆+2𝑛𝜆+3. . . 𝑛𝑛−1𝑛𝑛 , ∀ 𝜆 ∈ 𝑍 , the 

hash function 𝐻(𝛬𝛩), where 𝛬𝛩= set containing all digits of 

decimal number 𝛩  in a systematic order from left to 

right : (𝑛1, 𝑛2, 𝑛3, … . , 𝑛𝜆−1, 𝑛𝜆, 𝑛𝜆+1, 𝑛𝜆+2, 𝑛𝜆+3, . . . , 𝑛𝑛−1, 𝑛𝑛) , 

can be defined as:  

 
𝐻(𝛬𝛩)  =

{𝑆[𝑛1][𝑛2][𝑛3]. . . [𝑛𝜆−1][𝑛𝜆][𝑛𝜆+1][𝑛𝜆+2][𝑛𝜆+3]. . . [𝑛𝑛−1][𝑛𝑛] +
+}  

(1) 

 

where, S is an n-dimensional cartesian space initialized by the 

hash function in the form of a hypercube to map an n digit 

number 𝛩 . The ‘++’ sign donates an increment by 1. This 

increment by 1 is used in the hash function to tackle the 

problem of collision in hashing, thus the need for chaining list 

data structure is eliminated. Each axis of each dimension of S 

lies from [0, 9] and for an n-digit number 𝛩, the shape of the 

space S initialized in the computer’s memory is in the form of 

a hypercube (n-dimensional array) with each axis consisting 

of only 10 memory blocks, and can be expressed as:          

 
𝑠ℎ𝑎𝑝𝑒(𝑆) ≡ 𝑆[10][10][10]. . . [10][10][10]. . . [10][10] (2) 

 

The hash function defined in Eq. (1) maps a number 𝛩to an 

n-dimensional array S, defined in Eq. (2). The main goal in 

hashing is to minimize the time complexity [14] of the whole 

hashing operation. From Eq. 1, it can be stated that the hash 

function updates/increment (or maps the number 𝛩  at) the 

index 𝛬𝛩 of hypercube/array S. As the updation or deletion or 

fetching in an array has the time complexity of O(1) for each 

element [14], therefore the time complexity of hash function 

𝐻(𝛬𝛩) for each element is also O(1). Thus, the hash function 

maintains the minimum time complexity that can be 

maintained by a hash function and along with it, due the use 

of a hypercube/array data structure as hash table, the traversing 

through the table is also fast as well as continuous, and unlike 

counting sort, the large numbers can be sorted using space S. 

 

3.1.2 Assumed pre-conditions  

Only a single main precondition is required to instantiate the 

hashing cycle for the entire data consisting of N elements, 

which is, that each element should have the same number of 

digits, i.e, if elements does not have same number of digits 

then additional zeros are added to make up for the few digits 

in a way that it doesn't effect or change the quantity of the 

number. For example, if we have three numbers: [1.01, 2.1, 1], 

so in order to make these numbers have an equal number of 

digits, we add zeroes: [1.01, 2.10, 1.00]. This step is extremely 

easy and does not affect the efficiency of the algorithm in any 

magnitude. This step is also cardinal to keep track of the 

decimal's position. After this step, the unsorted array are given 

in Figure 1, defined as: 

arr = [ 4.5, 0.3, 2.3, 8.8, 7, 9.2, 4.5, 4.3, 8, 3.2] can be 

written (after doing the preprocessing) as: 

arr = [ 4.5, 0.3, 2.3, 8.8, 7.0, 9.2, 4.5, 4.3, 8.0, 3.2] 
 

3.1.3 Dynamic programming used in 𝐻(𝛬𝛩)  

As for an n digit decimal number, an initialized n-

dimensional cartesian space will have a lot of unused space 

left after all the numbers have been mapped. But to increase 

the efficiency of the algorithm in order to retrieve the filled 

spaces (as in computer, in order to travel to or find the filled 

memory spaces in an array, one has to travel in a systematic 

pattern), a trick by maintaining two separate maps has been 

also performed. A more understood definition of two such 

maps has been given in the Hashing Cycle section. 

 

 
 

Figure 1. Hashing cycle 
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The steps of the hashing cycle are lucidly depicted in Figure 

1 (the hashing function 𝐻(𝛬𝛩) defined above is used for each 

element of the unsorted array arr). For sorting the type of data 

considered in the example, a 2D array of dimension 10x10 

called the Count array, where the values will be mapped is 

considered, a traverse map H_Max of dimension 10x1 and a 

traverse map H_Min of dimension 10x2 are also taken. The 

two traverse maps are used to avoid unnecessary steps during 

the extraction period. The algorithm for hashing cycle 

designed for the example considered is as follows: 

_________________________________________________ 

HASHING CYCLE ALGORITHM: The algorithm 

presented below uses two function: First, the numeric to string 

converter function, defined as: 𝐹𝑠𝑡𝑟𝑖𝑛𝑔()and second, the string 

to numeric converter, defined as: 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(). 

_________________________________________________ 

 

Recombinant-hashing(arr, size):     //the unsorted array arr  

      S[10][10];                             

      H_Max[10];                      

      H_Min[10][2];                           

      set digit_count_after_decimal ← 1 

      for i = 0 to size do 

            𝑡 = 𝐹𝑠𝑡𝑟𝑖𝑛𝑔(𝑎𝑟𝑟[𝑖] × (10𝑑𝑖𝑔𝑖𝑡_𝑐𝑜𝑢𝑛𝑡_𝑎𝑓𝑡𝑒𝑟_𝑑𝑒𝑐𝑖𝑚𝑎𝑙 ))                       

            𝑆[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[1])]  ←
 𝒊𝒏𝒄𝒓𝒆𝒎𝒆𝒏𝒕 𝑏𝑦 1  

             if( 𝐻_𝑀𝑎𝑥[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])] < 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[1])) then   

                set 𝐻_𝑀𝑎𝑥[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])] ← 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[1])     

             if (𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][0]  ==  0) then            

                     set 𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][1]  ←
𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[1])  

                     set 𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][0]  ←  1     

             else if (𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][0]  ≠  0 and 

 𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][1] >  𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[1])) then     

                     set 𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][1] ←
 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[1])  

      end for( i ) 

end func 

_________________________________________________ 

 

As depicted in Figure 1, the array arr (defined above) is fed 

to the hashing cycle for sorting and the space S of 10x10 is 

initialized along with a vector H_Max of shape 10 and a space 

H_Min of shape 10x2. The further steps are as follows: 

1. The first element of the array is ‘4.5’, so: 

a. First, it will be multiplied by 101 (as count after 

decimal is 1): 4.5×10 = 45 

b. Second, the number 45 will be converted to string 

using 𝐹𝑆𝑡𝑟𝑖𝑛𝑔(45) = t = ‘45’. 

c. Third, we will increment the value in the memory 

block at row t[0] = 4 and column t[1] = 5 (at array 

index (4, 5)). 

d. Fourth, in the traverse map H_Max, as H_Max 

[t[0]] < t[1], then H_Max[t[0]] will be set as t[1]. 

e. Fifth, in traverse map H_Min, as H_Min [t[0]][0] 

= = 0, then H_Min[t[0]][1] will be set as t[1] and 

H_Min[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[0])][0] will be set to 1. 

f. Lastly, the complete process will continue for each 

array element till we reach the end of the unsorted 

array and the rest of the complete steps are given in 

the example 1 in the supplementary section. 

 

 

3.2 Extraction cycle 

 

The end result of the hashing cycle is depicted in Figure 2. 

For the extraction of sorted arrays from the count array, the 

exaction cycle moves row by row, like done in raster scanning, 

for example, the cycle will visit all indices of row 0 and then 

all indices of row 1 and so on.  

 

 
Figure 2. Extraction cycle 

 

It is clear from Figure 2 that most of the memory spaces in 

the count array are not filled and thus, traversing these unused 

spaces will increase the time complexity of the algorithm. So, 

in order to minimize the time complexity and prevent wasteful 

traversal of these unused spaces, the traverse maps H_Min and 

H_Max are used. In the Traverse map H_Min, each row stores 

the lowest numeric value attained by the columns for that 

particular row in the count array and in the Traverse map 

H_Max, each row stores the highest numeric value attained by 

the columns for that particular row in the count array, for 

example, for row 4 in the count array the minimum column 

reached is 3 and the maximum column reached is 5, so the 

traverse map H_Min will store the value 3 and of H_Max will 

store the value 5, for row 4 of the count array. The column 0 

of the traverse map H_Min will store whether the map for that 

particular row had been updated before or not. The algorithm 

for extraction cycle is as follows: 

_________________________________________________ 

EXTRACTION CYCLE ALGORITHM: The algorithm 

presented below uses a function defined as: 

Overwrite_arr(element, position, arr). This function 

overwrites the element ‘element’ at position ‘position’ of array 

‘arr’. The importance of pre-conditions, defined above, can be 

seen in line 7. The 𝐹𝐹𝑙𝑜𝑎𝑡() function used below converts 

strings to float numbers and numeric to string converter 

function is also used and is defined as: 𝐹𝑠𝑡𝑟𝑖𝑛𝑔(). In line 7, the 

‘+’ sign is used to represent string concatenation.  

_________________________________________________ 

 

Recombinant-extraction(S, H_Min, H_Max,arr, size): 

     set overwrite_pos_at ← 0 

     for i = 0 to 9 do 

             for j = H_Min[i][1] to H_Max[i]+1 do  

                     if(S[i][j]!=Empty) then 

                           for z = 0 to S[i][j] do        

                               Overwrite_arr(𝐹𝐹𝑙𝑜𝑎𝑡(𝐹𝑠𝑡𝑟𝑖𝑛𝑔(i)+'.'+ 

                          𝐹𝑠𝑡𝑟𝑖𝑛𝑔(j)), overwrite_pos_at, arr) 

                               overwrite_pos_at ← increment by 1 

                               if(overwrite_pos_at == size) then  

                                           return arr 

                                           end func 
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                           end for( z ) 

             end for( j ) 

     end for( i ) 

end func 
_________________________________________________ 

 

At the end of the extraction cycle, the parts of the count 

array traversed are shown in Figure 2 and the sorted array 

obtained is shown below. The time complexity of the example 

taken in the prior section is found to be O(n+17). Sorted array 

arr returned as:  

 

[0.3, 2.3, 3.2, 4.3, 4.5, 4.5, 7.0, 8.0, 8.8, 9.2] 

 

Why Does Extraction Cycle Work? 

As it is known that in a computer’s memory, in order to 

travel through an n-dimensional space one has to travel in a 

systematic pattern, performed using for loops. This systematic 

pattern traversal has a unique ability, whose advantage has 

been taken during the extraction cycle. A similar pattern can 

be observed when traversing a Binary Search Tree in an 

inorder traversal fashion. By traversing inorderly, a sorted 

form of the unsorted data used to build the binary search tree 

can be obtained. Due to the unique hash function 𝐻(𝛬𝛩)used 

to map an n-digit number 𝛩  to an n-dimensional cartesian 

space, a unique sorted outcome observed when performing 

inorder traversal in a binary search can also be observed when 

using Extraction Cycle (proposed above) to traverse through 

an n-dimensional cartesian space. 

 

 

4. PROOF OF CORRECTNESS 

 

Loop Invariant Induction [14] method has been used to 

prove the correctness of the proposed algorithm. It has been 

used to prove the correctness of both the Hashing Cycle and 

the Extraction Cycle. The correctness is for the recombinant 

sorting algorithm for n digit decimal numbers (the pseudo code 

for which is given in Supplementary Section).  

Notations: The unsorted array is denoted by arr[] and S is 

used to denote the initialized n-dimensional space. The two 

arrays used to lower the extraction cost of the algorithm are 

denoted by H_Min and H_Max. It is assumed that arr[] 

contains N elements and the precondition stated above has 

been satisfied, and therefore, each element of arr[] has n digits. 

It is also assumed that the decimal point is placed after 

𝜆𝑡ℎ,∀ 𝜆 ∈ 𝑍, digit for each element and thus, λ digits lie before 

the decimal and (n-λ) digits lie after decimal for each element. 

 

4.1 Hashing cycle 

 

The predominant objective of this function is to use 𝐻(𝛬𝛩) 

so as to map all n elements of arr[] to an n-dimensional 

cartesian space, which is in the form of an array in the 

computer’s memory. So, for every element in arr[], there 

exists a place in the n-dimensional space. Therefore, the loop 

invariant 𝐼𝐻𝑎𝑠ℎ for iteration 𝑖𝑡ℎcan be defined as, 

 

𝐼𝐻𝑎𝑠ℎ ≡ At iteration i, the initialized n-dimensional empty 

cartesian space S should have ≤ 𝑖 points mapped in it by using 

𝐻(𝛬𝛩). Also, the arrays H_Min and H_Max should have ≤ 2𝑖 
and ≤ 𝑖 spaces mapped in it respectively. 

Or 

𝐼𝐻𝑎𝑠ℎ ≡ At iteration i, the cycle should successfully map all 

elements in arr[0: i] using𝐻(𝛬𝛩), to an n-dimensional space 

S, initialized prior to the starting of loop.  

 

The three steps for Loop invariant proof are as follows: 

(1) Initialization: Before the first iteration of the loop or 

at i=0 in the cycle, the invariant 𝐼𝐻𝑎𝑠ℎ states that the initialized 

n-dimensional empty cartesian space should have ≤ 0 points 

mapped in it by using 𝐻(𝛬𝛩). Also, the arrays H_Min and 

H_Max should have ≤ 2 ∗ 0  and ≤ 0  spaces mapped in it, 

respectively. As 0 points have been mapped in space S at i=0, 

therefore the space remains vacant. Also, 0 spaces in arrays 

H_Min and H_Max have been mapped, therefore they also 

remain unoccupied. As the space S and arrays H_Min and 

H_Max were already set to be vacant, the invariant condition 

stands corrected.  

(2) Maintenance: Assume that the loop invariant stands 

corrected at the start of iteration i=j in the cycle. Then it must 

be that the initialized n-dimensional empty cartesian space S 

should have ≤ 𝑗points mapped in it by using 𝐻(𝛬𝛩). Also, the 

arrays H_Min and H_Max should have≤ 2 ∗ 𝑗 and ≤ 𝑗 spaces 

mapped in it respectively. In the body of the loop at iteration j, 

arr[j] is mapped to cartesian space S, and if the defined 

condition holds True, then the required values are mapped in 

arrays H_Min and H_Max. Thus, at the start of the iteration i 

= j+1, the initialized n-dimensional empty cartesian space S 

will have ≤ 𝑗 + 1points mapped in it by using 𝐻(𝛬𝛩). Also, 

the arrays H_Min and H_Max will have ≤ 2 ∗ (𝑗 + 1) and ≤
𝑗 + 1spaces mapped in it respectively, which needed to be 

proved.  

(3) Termination: When the for-loop terminates at i = N, 

the initialized n-dimensional empty cartesian space S has ≤
𝑁points mapped in it by using 𝐻(𝛬𝛩). Also, the arrays H_Min 

and H_Max has ≤ 2 ∗ 𝑁  and ≤ 𝑁  spaces mapped in it 

respectively. As arr[] has N elements, therefore all elements 

have been mapped to space S, which is also the desired output.  

As all three steps of the loop invariant hold true, therefore 

the algorithm for the hash cycle is correct. 

  

4.2 Extraction cycle 

 

It is a known fact that a human can traverse an n-

dimensional space in either a linear or a nonlinear fashion, but 

computers can only traverse such spaces in a linear fashion. 

This linear traversal, as also mentioned before, yields an 

advantage. For instance, in order to traverse through a 2-

dimensional space of size 10×10, a for or while-loop is needed, 

and upon discerning those loops closely, one would notice that 

they are intrinsically counting from 0 to 100 (and undeniably 

counting is sorted). Thus, the extraction cycle traverses the n-

dimensional space in a fashion that it encounters the mapped 

elements in a sorted manner, due to the intrinsic nature of loop 

traversal. n+1 number of for-loops are required for traversing 

an n-dimensional array, as well as for extracting the numbers 

mapped. In order to define n+1 for-loops, n+1 number of 

iterators will be needed, and can be defined as: 

(𝑖1, 𝑖2, 𝑖3, . . . , 𝑖𝑛−1, 𝑖𝑛 , 𝑖𝑛+1). Another variable overwrite_at_pos 

is defined to keep track of how many occupied spaces in S have 

been detected and tells where to overwrite the original 

unsorted array. The loop invariant IExtract for every ith iteration 

can be defined as, 

 

𝑰𝑬𝒙𝒕𝒓𝒂𝒄𝒕 ≡ At iteration overwrite_at_pos = j and iterators 

𝑖1, 𝑖2, 𝑖3, . . . , 𝑖𝑛−1, 𝑖𝑛 𝑎𝑛𝑑 𝑖𝑛+1  having any value such that the 

mentioned if-condition is satisfied, the element 𝐸𝑗+1 detected 
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at 𝑆[𝑖1][𝑖2][𝑖3]. . . [𝑖𝑛−1][𝑖𝑛+1] can be represented as: 

 

𝐸1, 𝐸2, 𝐸3, . . . , 𝐸𝑗 ≤ 𝐸𝑗+1 ≤ 𝐸𝑗+2, 𝐸𝑗+3, 𝐸𝑗+4, . . . , 𝐸𝑁 (3) 

 

And the overwritten sub-array arr[0:j] should be sorted or 

the sub-array arr[j:N] should be unsorted or unchanged. 

 

The three steps for Loop invariant proof are as follows: 

(1) Initialization: Before the first iteration of the loop or 

at overwrite_at_pos=j=0 and iterators 

𝑖1, 𝑖2, 𝑖3, . . . , 𝑖𝑛−1, 𝑖𝑛 , 𝑖𝑛+1 having any value such that the 

mentioned if-condition is satisfied, the element 𝐸1 detected at 

𝑆[𝑖1][𝑖2][𝑖3]. . . [𝑖𝑛−1][𝑖𝑛+1] can be represented as: 

 

𝐸1 ≤ 𝐸2, 𝐸3, 𝐸4, . . . , 𝐸𝑁   (4) 

 

And the overwritten sub-array arr[0:0] should be sorted or 

the sub-array arr[0:N] should be unsorted or unchanged. As 

the size of the overwritten sub-array arr[0:0] is zero, or the 

overwritten sub-array arr[0:0] is completely empty, therefore, 

it is sorted. Also, as the sub-array arr[0:N] was already 

unsorted or unchanged, the invariant condition stands 

corrected.  

(2) Maintenance: Assume that the loop invariant stands 

corrected at the start of iteration overwrite_at_pos=j=z and 

and iterators 𝑖1, 𝑖2, 𝑖3, . . . , 𝑖𝑛−1, 𝑖𝑛 , 𝑖𝑛+1 having any value such 

that the mentioned if-condition is satisfied in the cycle. Then 

it must be that the element 𝐸𝑧+1 detected at 

𝑆[𝑖1][𝑖2][𝑖3]. . . [𝑖𝑛−1][𝑖𝑛+1]can be represented as: 

 

𝐸1, 𝐸2, 𝐸3, . . . , 𝐸𝑧−1 ≤ 𝐸𝑧+1 ≤ 𝐸𝑧+2, 𝐸𝑧+3, 𝐸𝑧+4, . . . , 𝐸𝑁 (5) 

 

And the overwritten sub-array arr[0:z] should be sorted or 

the sub-array arr[z:N] should be unsorted or unchanged. In the 

body of the loop at iteration overwrite_at_pos=j=z, the 

extracted element is overwritten at index z of unsorted array 

arr[], leaving sub-array arr[0:z] sorted or sub-array arr[z:N] 

unsorted or unchanged. Thus, at the start of iteration 

overwrite_at_pos=j=z+1 and iterators 

𝑖1, 𝑖2, 𝑖3, . . . , 𝑖𝑛−1, 𝑖𝑛 , 𝑖𝑛+1 having any value such that the 

mentioned if-condition is satisfied in the cycle, the element 

𝐸𝑧+2 detected at 𝑆[𝑖1][𝑖2][𝑖3]. . . [𝑖𝑛−1][𝑖𝑛+1]will be represented 

as:  

 

𝐸1, 𝐸2, 𝐸3, . . . , 𝐸𝑧+1 ≤ 𝐸𝑧+2 ≤ 𝐸𝑧+3, 𝐸𝑧+4, 𝐸𝑧+5, . . . , 𝐸𝑁 (6) 

 

And the overwritten sub-array arr[0:z+1] will be sorted or 

the sub-array arr[z+1:N] will be unsorted or unchanged, 

which needed to be proved. 

(3) Termination: When the for-loop terminates at 

overwrite_at_pos=j=N and iterators 

𝑖1, 𝑖2, 𝑖3, . . . , 𝑖𝑛−1, 𝑖𝑛 , 𝑖𝑛+1 having any value such that the 

mentioned if-condition is satisfied in the cycle, then the 

element 𝐸𝑁+1 detected at 𝑆[𝑖1][𝑖2][𝑖3]. . . [𝑖𝑛−1][𝑖𝑛+1] is 

represented as: 

 

𝐸1, 𝐸2, 𝐸3, 𝐸4, . . . , 𝐸𝑁 ≤ 𝐸𝑁+1 (7) 

 

As EN+1 does not exist, therefore, all N elements have been 

detected and overwritten. Also, the overwritten sub-array 

arr[0:N] will be sorted or the sub-array arr[N:N] will have 

size zero or contain zero elements, which is also the desired 

output. 

As all three steps of the loop invariant hold true, therefore 

the algorithm for the extraction cycle is correct. Also, as both 

the hashing cycle and extraction cycle are correct, it renders 

the proposed Recombinant Sort algorithm correct. The 

correctness of the algorithm can also be verified from the 

example 1 described in the supplementary section.  

 

 

5. COMPLEXITY ANALYSIS 

 

Best case: The best case takes place when the extraction 

cost k (= total number of memory block traversed in hypercube 

S during the whole extraction cycle process) will be of the 

form, k<<<n and thus, the time complexity O(n+k) will be 

O(n). The possible scenarios of best cases (where cost k is 

minimum) are as follows:  

i. If all elements of the unsorted array lie on the same 

horizontal axis (after mapping) of the hypercube 

space S.  

ii. If all elements of the unsorted array lie on the same 

vertical axis (after mapping) of the hypercube space 

S.  

iii. If all elements of the unsorted array lie inside the 

same memory block (after mapping) of the hypercube 

space S.  

 

Average case: The Average case takes place when the 

extraction cost 𝑘 will be of the form, k< =n. The possible cases 

for the average time complexity will be as follows:  

  

i. If k<n, then the time complexity O(n+k) will be ≡
𝑂(𝑛)after taking the upper bound n. 

ii. If k = n, then the time complexity O(n+k) will be 

𝑂(2𝑛)  ≡ 𝑂(𝑛). 

Thus the average time complexity in both possible cases is 

O(n). 

Worst case: The Worst case takes place when one of the 

two possible cases defined below happens:  

i. First: When during the extraction cycle, the whole 

count array needs to be traversed. Thus, making the 

extraction cost k=10b, where b = the maximum 

number of digits an element has in our dataset. But 

for reaching worst case the count array has to be filled 

completely, thus, at least 10b(n=10b) elements have to 

be there in the dataset. Therefore, the time 

complexity O(n+k) will be: 

 

O(n+10b) (8) 

 

But n=10b, so 

 

O(n+n)=O(2n)=O(n) (9) 

 

ii. Second: When the start and end memory block of 

each axis of hypercube space S is occupied and the 

rest of the memory block in between them are empty. 

Thus, in this case the whole space S needs to be 

traversed, which makes the extraction cost k=10d, 

where d = dimensions of hypercube space S or the 

maximum number of digits an element has in our 

dataset. And the time complexity will be: 

 

O(n+10d) (10) 
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But for this case to be valid, the total number of elements to 

be sorted should be =10d. Thus, it can be stated that n=10d and 

the Eq. (10) can be written as:  

 

𝑂(10𝑑 +10𝑑)    (11) 

 

𝑂 (10𝑑 (1 +  
10(𝑑−1)

𝑑
))     (12) 

 

As n =10d, 

 

𝑂 (𝑛 (1 +  
10(𝑑−1)

𝑑
))    (13) 

 

Which can be further simplified as, 

 

𝑂(𝑛𝐶) (14) 

 

where, C =(1 +
10(𝑑−1)

𝑑
). 

 

 
 

Figure 3. Relationship between constant C, n, 𝑛2 and d 

 

On the basis of experiment, whose results are shown in 

Figure 3, (by putting different values of d) it was observed that: 

 

𝐶 < 𝑛2    (15) 

 

Thus, from Eq. (15) we can state that C is a constant that 

will never make the time complexity nonlinear and the 

complexity given in Eq. (14) can be written as O(n). 

Thus, the time complexity will always be linear.  

 

 

6. RESULTS AND DISCUSSIONS 

 

Table 1 shows the time taken by the system to execute 

recombinant sort using Python on Mac OS. The sorting 

method is executed in Python, C++ and Java language on Mac 

OS, Windows OS and Linux OS. The system had 3.1 GHz 

Intel Core i5 processor and 8 GB 2133 MHz LPDDR3 RAM. 

The testing data is generated from a random generator function 

available in python’s numpy library. The number of elements 

taken for the execution of recombinant sort ranges from 10 to 

10000, increasing in powers of 10. Time is calculated for five 

major cases, namely, for data between the range of 1 to 10 

having no digits after the decimal, having a single digit after 

the decimal and having two digits after the decimal, and for 

data between the range of 1 to 100 having no digits after the 

decimal and having a single digit after the decimal. The time 

taken for a specific number of elements for all the cases are of 

comparable order, as can be seen from Table 1. The results 

obtained by running the algorithm in different languages on 

different operating systems platforms are shown in tabular 

format (Tables 4-11), along with their graphical representation 

(Figure 5), are given in the supplementary section. These 

languages (Python, C++ and Java) and operating systems 

(Window, Mac and Linux) have been chosen specifically as 

they are very widely used. 

Figure 4 depicts the results obtained in Table 1 in a 

graphical manner. The graph shows the time taken to execute 

recombinant sort (in milliseconds) for all the five enlisted 

cases. The graph depicts linear characteristics of the proposed 

sorting algorithm and it can also be concluded from the graph 

that the count_after_decimal variable hardly affects the time 

complexity. These same observations can also be made while 

observing the graphs (for Python, C++ and Java languages and 

Mac OS, Windows OS and Linux OS) given in the 

supplementary section. 

Table 2 gives a complete comparison between various 

existing and known sorting algorithms and the proposed 

Recombinant sort technique on the basis of various cardinal 

factors like best case time complexity, average case time 

complexity, worst case time complexity, stability, in-place or 

out-of-place sorting and the ability to process strings and 

floating point numbers.  

 

 
 

Figure 4. Relationship between the number of elements and 

the time taken by Recombinant Sort to sort elements using 

Python on Mac OS 

 

Table 1. The time taken (in sec) by the system to execute recombinant sort using python on Mac OS 

 
No. of elements TFD (1,10) & cd=0 TFD (1,10) & cd=1 TFD (1,10) & cd=2 TFD (1,100) & cd=0 TFD (1,100) & cd=1) 

10 0.00066 0.00078 0.00091 0.00079 0.00091 

100 0.00581 0.00649 0.00792 0.00641 0.007.91 

1000 0.5790 0.06124 0.06889 0.06112 0.06821 

10000 0.57410 0.60279 0.61084 0.59412 0.61038 
Note: The expression TFD(a,b) & cd = c stands for: Time For sorting Data ranging between a to b, and count after decimal = c respectively. 
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Table 2. Comparison with other sorting algorithms 

 
Sorting algorithm Best TC Average TC Worst TC stable sort PD PS IP 

Bubble sort [15] 
O(n) 

(waas) 
O(n2) O(n2) Yes Yes No Yes 

Selection Sort [16] O(n2) O(n2) O(n2) No Yes No Yes 

Insertion Sort [17] O(n2) (waas) O(n2) O(n2) Yes Yes No Yes 

Merge Sort [18] O(nlogn) O(nlogn) O(nlogn) Yes Yes No No 

Quick Sort [19] O(nlogn) O(nlogn) O(n2) No Yes No Yes 

Bucket Sort [9] O(n+c) O(n+c) O(n2) Yes Yes No No 

Radix Sort [12] 
O(kn) 

(k∈Z) 
O(kn) (k∈Z) O(kn) (k∈Z) Yes No Yes No 

Heap Sort [20] O(nlogn) O(nlogn) O(nlogn) No Yes No Yes 

Tim Sort [21] 
O(n) 

(waas) 
O(nlogn) O(nlogn) Yes Yes No No 

Shell Sort [22] 
O(n) 

(waas) 
O(n2) O(n2) No Yes No Yes 

Counting Sort [11] O(n) O(n+c) O(n2) Yes No No No 

Recombinant Sort O(n) O(n) O(n) No Yes Yes No 
Note: waas stands for: When array is already sorted; TC stands for Time Complexity; PD: Can Sort or Process Decimals; PS: Can Sort or Process Strings; IP: 

Inplace Sort; Z: integer. 
 

Table 3. Dimensions of elements required for sorting different types of data 
 

S. 

No. 

Type of  

Data 

Dimensions of 

Count Array 

Dimensions of 

Traverse Map H_Min 

Dimensions of 

Traverse Map H_Max 

1. D(1,10) & cd = 0 10 2 1 

2. D(1,10) & cd = 1 10x10 10x2 10x1 

3. D(1,10) & cd = 2 10x10x10 10x22 10x11 

4. D(1,100) & cd = 0 10x10 10x2 10x1 

5. D(1,100) & cd = 1 10x10x10 10x22 10x11 
Note: The expression D(a,b) & cd = c stands for: Data ranging between a to b, and count after decimal = c respectively. 

 

From Table 2, it is observed that merge sort and heap sort 

have the consistent time complexity of O(nlogn) for the best, 

average and worst case scenarios, but none of these sorting 

methods can be used to sort elements of string data type. 

Quicksort also has O(nlogn) time complexity for the best and 

average cases, but resorts to being O(n2) for the worst case, i.e. 

when the array is already sorted in any order or when the array 

contains all identical elements. Tim sort has the time 

complexity O(nlogn) for the worst and average cases and O(n) 

for the best case (given that the array is already sorted). Unlike 

the sorting algorithms listed above, the proposed recombinant 

sort has consistent performance of O(n) for the best case, 

average case and worst case scenarios. In addition to this, 

recombinant sort can also be used to sort elements of string 

data type and floating type. Therefore, it can be observed that 

the proposed recombinant sort performs best among all the 

listed sorting algorithms. 

Table 3 specifies the dimensions of the elements 

constituting the recombinant sort, that is, the count array, and 

the H_Min and H_Max traverse maps, for sorting data 

elements that belong to the data specified in the five cases 

enlisted previously.  

This table depicts a pattern that can be followed to deal with 

different types of data (not mentioned in the table) using 

Recombinant Sort. 

 

 

7. CONCLUSION AND FUTURE WORK 

 

The proposed Recombinant Sort is a dynamic sorting 

technique which can be modified as per the needs of the user 

and is designed to achieve utmost efficiency for sorting data 

of varied types and ranges. The time complexity of the 

proposed Recombinant Sort is estimated to be O(n+k) for best, 

average and worst cases. The k in O(n+k) will become n in the 

worse case scenario, but in no circumstance will n’s order 

approaches two, i.e, k will never approach n2, thus, the 

complexity will never be O(n2). The extraction cost 𝑘, will 

always be very less than or equal to 𝑛, thus, the final time 

complexity will always be O(n). Also, the extraction cost 𝑘 of 

the proposed Recombinant Sort came out to be much smaller 

than the extraction cost of any other linear sorting algorithms. 

The graph plotted between the number of elements and the 

time taken by recombinant sort to sort those elements depicts 

a linear characteristic.  

All major highlighted demerits of the parent algorithms of 

the Recombinant Sort, i.e., counting sort, radix sort and bucket 

sort, are surmounted by Recombinant Sort. Recombinant Sort 

can process strings as well as numbers, and can also process 

both floating point and integer type numbers together. Though, 

with the increase in the number of digits in elements to be 

sorted, the dimensions of the count array will increase, and the 

complexity of the working of the algorithm will also increase. 

But an important thing to note here is that, in the physical 

world, we don’t usually deal with numbers containing more 

than 10 digits, be it, marks obtained or the net salaries. By 

testing the algorithm on all possible types of data, it has been 

empirically proved that the proposed algorithm is correct, 

complete and terminates at the end. Thus, Recombinant Sort is 

a viable option from the user’s perspective. In order to accredit 

fair competition, an open source library named Recombinant 

Sort has been released on github. 

In the future, the proposed Recombinant Sort can be 

enhanced by sorting integer, string and floating type elements 

without rewriting the entire program for these specific needs. 

Another noteworthy addition to the current proposed 

algorithm can be made post-availability of advanced literature 

on N-dimensional space or hypercubes. 
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SUPPLEMENTARY SECTION 

________________________________________________________________________________________________________

HASHING CYCLE ALGORITHM FOR n DIGIT NUMBER: The algorithm presented below uses two function: First, the 

numeric to string converter function, defined as: 𝐹𝑠𝑡𝑟𝑖𝑛𝑔()and second, the string to numeric converter, defined as: 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐().  

NOTE: In day to day life we usually deal with 4-5 digit numbers. 

________________________________________________________________________________________________________ 

Recombinant-hashing(arr , size,𝜆)                            // the unsorted array arr  

1.          S[10][10][10]..[10][10];                      // n dimensional count array S is initialized  

2.          H_Max[10][10][10]..[10][10];          // (n-1) dimensional traverse map H_Max is 

initialized  

3.          H_Min[10][222...222];                     // traverse map H_Min is initialized. (n-1) 2’s are 

there   

4.          set digit_count_after_decimal← 𝜆 

5.          for i = 0 to size do 

6.                            𝑡 = 𝐹𝑠𝑡𝑟𝑖𝑛𝑔(𝑎𝑟𝑟[𝑖] × (10𝑐𝑜𝑢𝑛𝑡_𝑎𝑓𝑡𝑒𝑟_𝑑𝑒𝑐𝑖𝑚𝑎𝑙 ))                                //converts number 

to string 

7.                           𝑆[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[1])]. . . [𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[𝑛 − 1])] ←  𝒊𝒏𝒄𝒓𝒆𝒎𝒆𝒏𝒕 𝑏𝑦 1 

8.                            if( 𝐻_𝑀𝑎𝑥[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][0] < 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[1])) then              // checking H_Max 

9.                                    set 𝐻_𝑀𝑎𝑥[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][0] ← 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[1])  

10.                            if (𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][0]  ==  0) then       // if H_Min traverse map had been updated before 

11.                                   set 𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][1]  ← 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[1])  

12.                                   set 𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][0]  ←  1         // marking that the H_Min is updated 

13.                            else if (𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][0]  ≠  0 and  

     𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][1] >  𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[1])) then     

14.                                   set 𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][1] ←  𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[1]) 

15.                            .  
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16.                            . 

17.                            . 

18.                           if( 𝐻_𝑀𝑎𝑥[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][222. .221] < 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[𝑛 − 1])) then      // checking H_Max 

19.                                    set 𝐻_𝑀𝑎𝑥[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[0])][10][10]. . . [10][10] ← 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[𝑛 − 1])  

20.                           if (𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[𝑛 − 1])][222. .220]  ==  0) then // if H_Min traverse map had been updated before 

21.                                  set 𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[𝑛 − 1])][222. .221]  ← 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[𝑛 − 1])  

22.                                  set 𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[𝑛 − 1])][222. .220]  ←  1           // marking that the H_Mi is updated 

23.                           else if (𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[𝑛 − 1])][222. .221]  ≠  0 and 

     𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[𝑛 − 2])][222. . .221] >  𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[𝑛 − 1])) then     

24.                                  set 𝐻_𝑀𝑖𝑛[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[𝑛 − 2])][222. .221] ←  𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(𝑡[𝑛 − 1]) 

25.           end for( j ) 

26.   end func 

________________________________________________________________________________________________________ 

EXTRACTION CYCLE ALGORITHM FOR n DIGIT NUMBER: The algorithm presented below uses a function defined as: 

Overwrite_arr(element, position, arr). This function overwrites the element ‘element’ at position ‘position’ of array ‘arr’. The 

𝐹𝐹𝑙𝑜𝑎𝑡()function used below converts strings to float numbers and numeric to string converter function is also used and is defined 

as: 𝐹𝑠𝑡𝑟𝑖𝑛𝑔().  

________________________________________________________________________________________________________  

Recombinant-extraction(S, H_Min, H_Max,arr, size) 

1. set overwrite_pos_at ← 0 

2. for 𝑖1 = 0 to 9 do 

3.                   for 𝑖2 = H_Min[𝑖1][1] to H_Max[𝑖1][0]..[0]+1 do                                  // maps H_Min and H_Max are tallied 

4.                      for 𝑖3 = H_Min[i][2] to H_Max[𝑖1][0]..[1]+1 do                      // maps H_Min and H_Max are tallied  

5.                           . 

6.                           . 

7.                           . 

8.                                  for 𝑖𝑛 = H_Min[𝑖1][22..21] to H_Max[𝑖1][10]..[10]+1 do       // maps H_Min and H_Max are tallied        

9.                              if(S[i][j]!=Empty) then 

10.                                       for z = 0 to S[i][j] do // generates the hashed data 

11.                                                Overwrite_arr(extracted_element, overwrite_pos_at, arr) 

12.                                                 overwrite_pos_at ← increment by 1  

13.                                             if(overwrite_pos_at == size) then  

14.                                                      return arr 

15.                                                      end func 

16.                               end for( 𝑖1𝑛 ) 

17.                   end for( 𝑖𝑛−1 ) 

18.                    . 

19.                    . 

20.                    . 

21.           end for( 𝑖1 ) 

22. end func 

Note: The ‘extracted_element’ defined above in line 11 can be represented as: 
 

𝒆𝒙𝒕𝒓𝒂𝒄𝒕𝒆𝒅_𝒆𝒍𝒆𝒎𝒆𝒏𝒕 = 𝑖1𝑖2𝑖3 … . 𝑖𝜆−1𝑖𝜆 . 𝑖𝜆+1𝑖𝜆+2𝑖𝜆+3. . . 𝑖𝑛−1𝑖𝑛  (16) 
 

 

RESULTS OF EXECUTION OF RECOMBINANT SORT USING DIFFERENT LANGUAGES ON DIFFERENT 

OPERATING SYSTEMS SHOWN USING TABULAR AS WELL AS GRAPHICAL METHOD 
 

Table 4. The time taken (in sec) by the system to execute recombinant sort written in Python on Windows OS 

 
No. of elements TFD(1,10) & cd=0 TFD(1,10) & cd=1 TFD(1,10) & cd=2 TFD(1,100) & cd=0 TFD(1,100) & cd=1) 

10 0.00062 0.00071 0.00091 0.00085 0.0009 

100 0.0049 0.00641 0.00797 0.00644 0.00783 

1000 0.0572 0.06119 0.06882 0.06123 0.07001 

10000 0.5738 0.60282 0.61071 0.59415 0.61042 
Note: The expression TFD(a,b) & cd = c stands for: Time For sorting Data ranging between a to b, and count after decimal = c. 

 

Table 5. The time taken (in sec) by the system to execute recombinant sort written in Python on Linux OS 
 

No. of elements TFD(1,10) & cd=0 TFD(1,10) & cd=1 TFD(1,10) & cd=2 TFD(1,100) & cd=0 TFD(1,100) & cd=1) 

10 0.00052 0.00063 0.00089 0.00083 0.00094 

100 0.0041 0.00641 0.00791 0.0065 0.00777 

1000 0.0569 0.06123 0.06872 0.0612 0.0702 

10000 0.5681 0.60281 0.60039 0.5835 0.61061 
Note: The expression TFD(a,b) & cd = c stands for: Time For sorting Data ranging between a to b, and count after decimal = c. 
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Table 6. The time taken (in sec) by the system to execute recombinant sort written in Java on Windows OS 

 

No. of elements TFD (1,10) & cd=0 TFD (1,10) & cd=1 TFD (1,10) & cd=2 TFD (1,100) & cd=0 TFD (1,100) & cd=1) 

10 0.00059 0.00069 0.00089 0.00085 0.00092 

100 0.0044 0.00641 0.00791 0.00644 0.00782 

1000 0.0572 0.06127 0.06822 0.06123 0.0701 

10000 0.5682 0.60281 0.61066 0.57354 0.61039 
Note: The expression TFD(a,b) & cd = c stands for: Time For sorting Data ranging between a to b, and count after decimal = c. 

 

Table 7. The time taken (in sec) by the system to execute recombinant sort written in Java on Mac OS 

 
No. of elements TFD (1,10) & cd=0 TFD (1,10) & cd=1 TFD (1,10) & cd=2 TFD (1,100) & cd=0 TFD (1,100) & cd=1) 

10 0.00059 0.00071 0.00091 0.00085 0.00091 

100 0.0046 0.00644 0.00792 0.00644 0.00785 

1000 0.0574 0.06122 0.06885 0.06123 0.07011 

10000 0.5732 0.60285 0.61069 0.59415 0.61039 
Note: The expression TFD(a,b) & cd = c stands for: Time For sorting Data ranging between a to b, and count after decimal = c. 
 

Table 8. The time taken (in sec) by the system to execute recombinant sort written in Java on Linux OS 

 
No. of elements TFD (1,10) & cd=0 TFD (1,10) & cd=1 TFD (1,10) & cd=2 TFD (1,100) & cd=0 TFD (1,100) & cd=1) 

10 0.00055 0.0007 0.00089 0.00081 0.00093 

100 0.0047 0.00642 0.00791 0.00642 0.00783 

1000 0.0569 0.06122 0.06123 0.06885 0.07013 

10000 0.573 0.61068 0.60285 0.59339 0.6104 
Note: The expression TFD(a,b) & cd = c stands for: Time For sorting Data ranging between a to b, and count after decimal = c. 

 

Table 9. The time taken (in sec) by the system to execute recombinant sort written in C++ on Windows OS 

 
No. of elements TFD (1,10) & cd=0 TFD (1,10) & cd=1 TFD (1,10) & cd=2 TFD (1,100) & cd=0 TFD (1,100) & cd=1) 

10 0.00058 0.00071 0.00091 0.00083 0.00091 

100 0.0045 0.00644 0.00792 0.00641 0.00782 

1000 0.0575 0.06122 0.06885 0.06125 0.07021 

10000 0.5731 0.59415 0.61069 0.60115 0.6104 
Note: The expression TFD(a,b) & cd = c stands for: Time For sorting Data ranging between a to b, and count after decimal = c. 

 

Table 10. The time taken (in sec) by the system to execute recombinant sort written in C++ on Mac OS 

 

No. of elements TFD (1,10) & cd=0 TFD (1,10) & cd=1 TFD (1,10) & cd=2 TFD (1,100) & cd=0 TFD (1,100) & cd=1) 

10 0.0005 0.00065 0.0009 0.00085 0.00094 

100 0.0044 0.00641 0.00791 0.00644 0.00782 

1000 0.0572 0.06127 0.06882 0.06123 0.0701 

10000 0.5682 0.5682 0.61039 0.5835 0.61066 
Note: The expression TFD(a,b) & cd = c stands for: Time For sorting Data ranging between a to b, and count after decimal = c. 
 

Table 11. The time taken (in sec) by the system to execute recombinant sort written in C++ on Linux OS 

 
No. of elements TFD (1,10) & cd=0 TFD (1,10) & cd=1 TFD (1,10) & cd=2 TFD (1,100) & cd=0 TFD (1,100) & cd=1) 

10 0.00049 0.00061 0.00084 0.0008 0.00091 

100 0.0036 0.0064 0.0079 0.0065 0.0077 

1000 0.057 0.0612 0.0687 0.0612 0.0702 

10000 0.5679 0.6028 0.6003 0.5835 0.6106 
Note: The expression TFD(a,b) & cd = c stands for: Time For sorting Data ranging between a to b, and count after decimal = c. 
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Figure 5. Graphs A-H represent the linear characteristics depicted by tables 4-11 respectively 

 

 

EXAMPLE 1 

 

As depicted in Figure 1, the array arr (defined above) is fed 

to the hashing cycle for sorting and the space S of 10x10 is 

initialized along with a vector H_Max of shape 10 and a space 

H_Min of shape 10x2. The further steps are as follows: 

 

1. The first element of the array is ‘4.5’, so: 

a. First, it will be multiplied by 101 (as count after 

decimal is 1): 4.5×10 = 45 

b. Second, the number 45 will be converted to string 

using 𝐹𝑆𝑡𝑟𝑖𝑛𝑔(45) = t = ‘45’. 

c. Third, we will increment the value in the memory 

block at row t[0] = 4 and column t[1] = 5 (at array 

index ( 4 , 5 ) ). 

d. Fourth, in the traverse map H_Max, as H_Max 

[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])] < 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[1]), then 

H_Max[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])] will be set as 

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]). 

e. Fifth, in traverse map H_Min, as H_Min 

[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][0] = = 0, then 

H_Min[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][1] will be set as 

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]) and H_Min[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐( t[0] )][0] will 

be set to 1. 

 

2. The first element of the array is ‘0.3’, so: 

a. First, it will be multiplied by 101 (as count after 

decimal is 1): 0.3×10 = 03 

b. Second, the number 03 will be converted to string 

using 𝐹𝑆𝑡𝑟𝑖𝑛𝑔(03) = t = ‘03’. 
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c. Third, we will increment the value in the memory 

block at row t[0] = 0 and column t[1] = 3 (at array 

index ( 0 , 3 ) ). 

d. Fourth, in the traverse map H_Max, as H_Max 

[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])] < 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[1]), then 

H_Max[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])] will be set as 

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]). 

e. Fifth, in traverse map H_Min, as H_Min 

[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][0] = = 0, then 

H_Min[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][1] will be set as 

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]) and H_Min[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐( t[0] )][0] will 

be set to 1. 

 

3. The first element of the array is ‘2.3’, so: 

a. First, it will be multiplied by 101 (as count after 

decimal is 1): 2.3×10 = 23 

b. Second, the number 23 will be converted to string 

using 𝐹𝑆𝑡𝑟𝑖𝑛𝑔(23) = t = ‘23’. 

c. Third, we will increment the value in the memory 

block at row t[0] = 2 and column t[1] = 3 (at array 

index ( 2, 3 ) ). 

d. Fourth, in the traverse map H_Max, as H_Max 

[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])] < 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[1]), then 

H_Max[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])] will be set as 

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]). 

e. Fifth, in traverse map H_Min, as H_Min 

[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][0] = = 0, then 

H_Min[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][1] will be set as 

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]) and H_Min[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐( t[0] )][0] will 

be set to 1. 

 

4. The first element of the array is ‘8.8’, so: 

a. First, it will be multiplied by 101 (as count after 

decimal is 1): 8.8×10 = 88 

b. Second, the number 88 will be converted to string 

using 𝐹𝑆𝑡𝑟𝑖𝑛𝑔(88) = t = ‘88’. 

c. Third, we will increment the value in the memory 

block at row t[0] = 8 and column t[1] = 8 (at array 

index ( 8, 8 ) ). 

d. Fourth, in the traverse map H_Max, as H_Max 

[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])] < 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[1]), then 

H_Max[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])] will be set as 

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]). 

e. Fifth, in traverse map H_Min, as H_Min 

[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][0] = = 0, then 

H_Min[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][1] will be set as 

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]) and H_Min[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐( t[0] )][0] will 

be set to 1. 

 

5. The first element of the array is ‘7.0’, so: 

a. First, it will be multiplied by 101 (as count after 

decimal is 1): 7.0×10 = 70 

b. Second, the number 70 will be converted to string 

using 𝐹𝑆𝑡𝑟𝑖𝑛𝑔(70) = t = ‘70’. 

c. Third, we will increment the value in the memory 

block at row t[0] = 7 and column t[1] = 0 (at array 

index ( 7 , 0 ) ). 

d. Fourth, in the traverse map H_Max, as H_Max 

[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])] <= 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[1]), then 

H_Max[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])] will be set as 

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]). 

e. Fifth, in traverse map H_Min, as H_Min 

[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][0] = = 0, then 

H_Min[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][1] will be set as 

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]) and H_Min[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐( t[0] )][0] will 

be set to 1. 

 

6. The first element of the array is ‘9.2’, so: 

a. First, it will be multiplied by 101 (as count after 

decimal is 1): 9.2×10 = 92 

b. Second, the number 92 will be converted to string 

using 𝐹𝑆𝑡𝑟𝑖𝑛𝑔(92) = t = ‘92’. 

c. Third, we will increment the value in the memory 

block at row t[0] = 9 and column t[1] = 2 (at array 

index ( 9, 2 ) ). 

d. Fourth, in the traverse map H_Max, as H_Max 

[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])] < 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[1]), then 

H_Max[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])] will be set as 

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]). 

e. Fifth, in traverse map H_Min, as H_Min 

[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][0] = = 0, then 

H_Min[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][1] will be set as 

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]) and H_Min[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐( t[0] )][0] will 

be set to 1. 

 

7. The first element of the array is ‘4.5’, so: 

a. First, it will be multiplied by 101 (as count after 

decimal is 1): 4.5×10 = 45 

b. Second, the number 45 will be converted to string 

using 𝐹𝑆𝑡𝑟𝑖𝑛𝑔(45) = t = ‘45’. 

c. Third, we will increment the value in the memory 

block at row t[0] = 4 and column t[1] = 5 (at array 

index ( 4 , 5 ) ). 

d. This step will be skipped. 

e. This step will be skipped. 

 

8. The first element of the array is ‘4.3’, so: 

a. First, it will be multiplied by 101 (as count after 

decimal is 1): 4.3×10 = 43 

b. Second, the number 43 will be converted to string 

using 𝐹𝑆𝑡𝑟𝑖𝑛𝑔(43) = t = ‘43’. 

c. Third, we will increment the value in the memory 

block at row t[0] = 4 and column t[1] = 3 (at array 

index ( 4 , 3 ) ). 

d. This step will be skipped. 

e. Fifth, in the traverse map H_Min, as H_Min 

[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][0] != 0 and H_Min 

[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][1] > 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[1]) then 

H_Min[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][1] will be set as 

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]).  

 

9. The first element of the array is ‘8.0’, so: 

a. First, it will be multiplied by 101 (as count after 

decimal is 1): 8.0×10 = 80 

b. Second, the number 80 will be converted to string 

using 𝐹𝑆𝑡𝑟𝑖𝑛𝑔(80) = t = ‘80’. 

c. Third, we will increment the value in the memory 

block at row t[0] = 8 and column t[1] = 0 (at array 

index (8, 0) ). 

d. This step will be skipped. 

e. Fifth, in the traverse map H_Min, as H_Min 

[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][0] != 0 and H_Min 

[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][1] > 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[1]) then 

H_Min[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][1] will be set as 

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]). 
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10. The first element of the array is ‘3.2’, so:

a. First, it will be multiplied by 101 (as count after

decimal is 1): 3.2×10 = 32

b. Second, the number 32 will be converted to string

using 𝐹𝑆𝑡𝑟𝑖𝑛𝑔(32) = t = ‘32’.

c. Third, we will increment the value in the memory

block at row t[0] = 3 and column t[1] = 2 (at array

index ( 3, 2 ) ).

d. Fourth, in the traverse map H_Max, as H_Max

[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])] < 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[1]), then

H_Max[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])] will be set as

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]).

e. Fifth, in traverse map H_Min, as H_Min

[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][0] = = 0, then

H_Min[ 𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐 (t[0])][1] will be set as

𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐(t[1]) and H_Min[𝐹𝑁𝑢𝑚𝑒𝑟𝑖𝑐( t[0] )][0] will

be set to 1.

The final result of this algorithm (Hashing Cycle) is given 

in Figure 2. 
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