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Cloud computing for web application is ubiquitous in the global market and represents a 

generic pattern because rapid elasticity and infrastructure scaling naturally lends itself to 

the needs of a virtual data center. Server requirement analysis depending on the workload 

play a very important role in web app development and it leads to availability of service to 

customer at any cost and cost analysis to the application provider. To achieve proper 

infrastructure scaling the minimal number of servers are have to satisfy and determine SLO. 

Thus this paper evaluates an analytical model to formulate prediction or estimation of 

required servers has to satisfy the QoS performance metrics such as throughput, utilization 

of cloud datacenter, request loss and required number of servers. The experimental model 

is used to validate correctness of the analytical model that was hosted on AWS cloud 

platform. Finally results have presented and conclusions are drawn. 
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1. INTRODUCTION

Cloud computing is the emerging technology for offering 

infrastructure and applications as SaaS on on-demand and also 

it is base technology of different fields like artificial 

intelligence, IoT, Machine Learning etc. [1]. Rapid elasticity 

is one of the important characteristics of CC, it provides right 

amount of computing resources among pool of resources 

according to web application needs. It provision and de-

provision the resources depends on the incoming traffic 

without human intervention. The real time cloud providers like 

Amazon, Google and IBM are also offering this elasticity 

service using different names like auto scaling, scalability etc... 

This property is attracting global market for web customers to 

move their services into clouds [2]. In terms of cloud 

computing services the elasticity facing two challenges over-

provisioning and under-provisioning, then the over-

provisioning leads to excess computing cost for infrastructure 

wastage, while under-provisioning leads unavailability of 

resources.  

Herbst et al. [3] and Aljahdali et al. [4] have suggested 

scalability, elasticity, and efficiency are used to calculate 

performance of web based applications. In this situation 

dynamic scaling shows solution of elastic cloud computing. It 

has ability to scale up and scale down the resources when the 

sudden workload at runtime. Most of the cloud providers are 

offering SaaS applications due to the e-commerce of global 

market and the use of multi-tenancy. As per the publications 

scalability are utility perspective [5-7]. There is necessity to 

understand the effected system components to understand the 

scalability nature of the data center. Lorido-Botran et al. [8] 

have conducted survey on scalability of infrastructure and 

resource estimation challenges. Estimating computing 

infrastructure and implementing an efficient auto-scaler for 

web services are challenging tasks due to various factors. 

These factors are dynamic workload, infrastructure 

requirement, and cost estimation.  

This will be beneficial for the organization, those who are 

client of cloud applications. CSP is expected to have advanced 

scalar measures. However, putting scalar measures onto its 

edge, which is, its customers' networks will estimate the cost 

of the web application. Threshold is one of the ideas to 

measure customer usage on cloud and it ensures that customer 

bill. These services can be considering cloud computing 

characteristics. There is a necessity to research to fulfill these 

gaps. 

The objective of this paper is two-fold, one is evaluated the 

analytical model to predict or estimate the required number of 

servers for web application depending on the workload, at the 

same time second one is to validate this analytical model with 

experimental model. The specific objective is to analyze the 

challenges in the implementation of an auto-scaler in clouds.  

The rest of this paper is structured as following; literature of 

various works related to this paper have discussed in Section 

2. Section 3 depicts analytical evaluation process of cloud

datacenter architecture. The validated experimental modeled

is presented in Section 4. Section 5 discussed about results of

analytical and experimental model and finally section 6 drawn

about the conclusions.

2. LITERATURE SURVEY

Several authors contributed their works on CC architecture 

models as well as resource prediction on web services. The 

literature mainly focused analytical evaluation work on CC 

using queuing models and experimental and simulation studies 

using various cloud providers and tools. This section discussed 

these two sections briefly. 

Scalability is an attractive factor in the cloud. It is 
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represented by the ability to boost or reduce the required 

resources according to the real needs of the organization. It is 

achieved by relying on characteristic of server virtualization 

and it pays attention to one of the most important advantages 

of adopting the cloud which is flexibility. In this regard, users 

can add access points according to their needs. Furthermore, 

enterprise's employees can move freely from the main location 

of the company. They can work from their homes, or even 

from another city or country, if they have machines connected 

to the Internet through a web browser. They can easily access 

the cloud and use its services wherever and whenever they 

want to do so. Therefore, they can process their data regardless 

of their geographical position. This advantage will serve the 

employee as well as the organization [8-10]. The numerous 

benefits of the elasticity in the cloud cost efficiency, 

continuous availability of the service, recovery, scalability. 

In the cloud computing technology, resources and services 

can be provided instantaneously as soon as the user requests 

them, and these services can be released directly when no 

longer needed. Moreover, the user will pay only for the used 

services and resources. The authors define the elasticity as "the 

degree to which a system is able to adapt to workload changes 

by provisioning and de-provisioning resources in an 

autonomic manner, such that at each point in time the available 

resources match the current demand as closely as possible". 

However, there are some factors that play an important role in 

achieving the highest grade of elasticity, such as the workload 

from the customer's requests, response time of the cloud 

servers, the resources capability of scaling up or down, and the 

type of cloud platform. The cloud is not completely elastic, but 

it is the best technology in this regard compared with any 

traditional computing system. Moreover, developers are 

working to improve this feature to further enhance cloud [3, 

11, 12]. 

The most important benefit for enterprises, especially small 

and mid-sized scale enterprises, which adopt the cloud is the 

observable decrease in the infrastructure and operational costs 

related to IT hardware and software. These costs include 

buying servers and other hardware pieces, the annual payment 

for buying and updating software licenses, paying salaries to a 

large number of employees in the IT department who are 

required to manage the processes, and the large amount of 

money which should be spent for regular maintenance 

purposes. In this technology, customers will obtain their IT 

needs from the provider with cost-effective solutions as they 

will pay less for purchasing hardware equipment and software 

applications and licenses, compared with the amount that they 

would pay if they did not adopt the cloud. Most of the 

literatures focused on predict the scalability of cloud services 

from an experimental point of view [13-20]. We note that 

many comparative studies [21, 22] are conducted a 

comparative study to analyze the performance of scalable 

cloud with two applications, three public clouds and three 

private clouds that have been built using the three mainstream 

hypervisors. Gao et al. and Vasar et al. [10, 15, 23] have 

conducted experiments different clouds using different 

frameworks. 

 

 

3. ANALYTICAL EVALUATION 

 

This paper adopted real time cloud provider architecture 

like Amazon Web application hosting architecture to analyze 

the elasticity of the web application resource consumption and 

presented in Figure 1. This architecture contains DNS 

Resolution, Content Delivery Network, Resources and Static 

Content, Web Servers, Application Servers, Database Servers. 

The web application receives load from DNS resolution 

through load balancer. It distributes incoming load to a midst 

of resources. The application servers are configured with 

scaling to which user’s associate triggers. These triggers will 

give notification to load balancer to scale application server 

based on server threshold value by a monitoring system. The 

LB ensures an even distribution of the incoming load among 

all running VM instances in a group [23, 24]. 

 

 
 

Figure 1. Web application hosting architecture of Amazon Web Services 
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The web server’s runs simultaneously depending on the 

incoming traffic, each server have a buffer to execute 

workload. The scale up and scale down can be varying 

automatically based on the QoS parameters such as utilization 

of computing infrastructure among all running instances [25]. 

When the average utilization of all running instances exceeds 

an upper threshold, then a trigger will fire to launch a new 

server that will be added to the pool of resources and 

configured at the load balancer. Similarly scale down also. The 

workload can be distributed midst of available application 

servers. Like most above architecture, a datacenter has a 

database server to be used for storing configuration 

information and incoming workload.  

Figure 2 depicts queuing model of Figure 1 web application 

architecture. In this queuing model arrivals are aggregated 

before entering the datacenter. The architecture can be divided 

into 3 parts load balancer, computing tire, storage tire. This 

paper mainly focuses on computing tire. So, the elastic 

computing tire modeled as parallel queuing models each 

server follows as M/M/1. In practical scenario each server has 

a buffer queue that was indicated as M/M/1/k but this paper 

assumed it as M/M/1 model for our convenience. This 

approximation is highly reliable to the real-time environment 

with large finite buffers, such as datacenter, where the buffer 

loss probability is negligible [26, 27]. The cloud architecture 

follows each system as open queue M/M/1 model. 

 

 
Figure 2. Queuing model of web application hosting 

architecture 

 

It considers that the request arrival rate and service rate 

follow a Poisson distribution with where λ arrival rate and µ 

service time. Where S is represents as total number of running 

servers and we assumed the queuing-based loss probability is 

zero. The effective arrival rate ƛ is equals the arrival rate λ/S. 

The computing tire presented in Figure 2. The load balancer 

distributes the arrivals midst of available servers. The 

transition probability will be equal to 1/S for each server. If 

where All servers have the same computing capacity, μi=μ, and 

the arrival rate of each instance is λi = λ/S,  

Then the mean utilization of resource U is calculated as 

follows in Eq. (1): 

 

U =  
λ

Sμ
 (1) 

 

where,  

U is the utilization,  

λ arrival rate, 

S total number of servers, 

μ service rate. 

The utilization of the resources depends on the arrival rate 

and services rate followed by number of servers. 

The little’s formula is used to calculate throughput of 

datacenter. Based on the Figure 3 when the arrival rate λ will 

be distributed among S instances, then each server throughput 

is λ/S. The total number of required servers can be calculated 

by using utilization, when upper threshold utilization is 100% 

then the formula is:  

 

S =  
λ

μ
+ 1  (2) 

 

In Eq. (2) the required number of servers is impacted based 

on arrival rate and server power capacity. The scalability 

allows servers to be scale up or down based on the QoS metrics. 

Here the threshold value plays important role to generate 

trigger when utilization of the datacenter exceeds or decreased. 

When the server threshold exceeds pre-defined value for 

example 80% then it generates trigger to scale up resource 

similarly the server threshold below pre-defined value for 

example 30% then it generates trigger to scale down resources. 

Finally, the total required number of servers calculated using 

this procedure depending on the workload. 

 

Figure 3. Elastic computing of application servers 

 

The scalability depending on the CPU utilization, it can 

measure using upper and lower threshold, the upper threshold 

exceeds servers should be scale up depending on network in. 

Similarly, when it is in lower threshold, the instances should 

be decreased. The threshold value is depending on the time of 

request throughput. For example, when we consider adding or 

removing instances by 10% of the running instances at the 

time of the threshold triggering, the provisioning can be 

expressed as follows: 

When  

 

U > U_T, Sreq = [S +| 0.1 × S|] 

U < L_T, Sreq = [S − | 0.1 × S |] 

 

The required number of servers calculates process 

depending on the λ and utilization of the datacenter. These are 

the rules to scale and descale virtual servers. 

 
λ

Sμ
 ≤ U_T (3) 

 

Thus, 
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S = U_T −1 × λ/μ + 1 (4) 

 

where, U_T indicates upper threshold, if we assume 80%, then 

the required servers calculated as follows: 

 

S = 1.25 × λ/μ + 1 (5) 

 

Similarly, lower threshold also calculated as follows above 

procedure. Thus, number of servers required to be added to 

depending on the workload of λ is:  

 

S_res = 1.25 × λ/μ + 1 − Srun_res (6) 

 

where, 1.25 indicates the 80% threshold value followed by 

total datacenter utilization and Srun_res is running instances, 

these are committed with load balancer. 

 

 

4. EXPERIMENTAL EVALUATION 

 

We have conducted an experiment to analyze the required 

number of servers for web application depending on the time 

and workload. The performance metrics are throughput and 

utilization and number of running servers. This experiment 

validates our analytical model. Figure 4 illustrates design 

process of the experimental setup in AWS. This paper was 

adopted Amazon AWS to conduct experiment on US West 

Origin region. Different services are used to establish data 

center on VPC and host web application, those are VPC, EC2 

Instances, Elastic Container Service, Elastic Beanstalk, Elastic 

Load Balancer, RDS server, Route53 and CloudWatch. We 

used another two EC2 instances to generate the incoming load 

to web application.  

The experiment used different sizes of instances that are 

optimized for our processing and network connectivity needs. 

The elastic beanstalk is used to host web application on 

scalable instances. The AWS allows us to configure scale up 

and scale down threshold value. In this experiment we were 

configured scale up resources when the resource utilization 

exceeds 80% and scale down when the resource utilization 

below 30%. These instances are scaled up when the utilization 

of the computing resources exceeds more the 80% and 

similarly it scales down the resources when the utilization 

below 30%. Many authors have conducted experiments using 

these configuration values [28-31]. Web server ran Ubuntu 

Linux as the underlying operating system for all our instances. 

The load balanced attached with elastic beanstalk to distribute 

incoming traffic among available servers and it takes 

responsibility to scale up and scale down resources based on 

the trigger. Finally cloud datacenter adopts DNS from Route53, 

thus it provides availability of the web application to the 

customers. 

The main goal of this experiment is to estimate number of 

computing resources required for time based on the incoming 

traffic. for that we used popular Apache JMeter to generate 

synthetic HTTP traffic which was first directed to a load 

balancer that was readily available at the AWS. This load 

balancer distributed load available among available pool of 

resources evenly in a round robin fashion. All the experiment 

resources were hosted within the same AWS VPC (Virtual 

Private Cloud). The virtual machines on the VPC are logically 

isolated. Siege was configured for windows system and JMeter 

was configured for Linux System to generate workload 

simultaneously. The metrics were taken every 15 minutes. In 

this experiment we considered throughput, network in, 

network out, CPU utilization, request loss and total number of 

running instances. The CPU utilization measures were taken 

in the continuous stable time from 5 to 10 minutes. 

 
Figure 4. Experimental test bed for web service hosting 
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5. RESULTS AND DISCURSIONS 

 

This paper considers analytical model and experimental 

model to estimate the computing resources on web application 

datacenter. Based on the present cloud environment, the 

analytical model assumed no loss probability of the traffic due 

to the elasticity property, thus it can handle enough resources 

when the high traffic occurs. Finally results of the 

experimental model have been validated to the analytical 

model. The experimental test bed was hosted on Amazon 

AWS and it was same structure of the analytical queuing 

model presented in Figure 1. The network in and out has been 

taken from two different sources. The input http traffic flow 

has been following the Poisson distribution. The incoming 

traffic or arrival rate fixed 400 requests per second and varied 

up to 20000 requests per second. 

The experiment initially started with 5 running instances. 

Each instance was configured as a web server, and hosted the 

web application on it, web page size was adjusted to achieve 

100% CPU utilization where the 100 requests per second for 

each instance, which is the target capacity of instance. Initially 

the experiment will handle 500 requests per second, and it will 

close to 100% average CPU utilization of auto scaling group. 

Based on average resource CPU utilization add more instances 

when high load spike occurs. This experiment used 80% 

average CPU utilization to add instances and the scaling size 

to be 2 instances in the default period of auto scaling in 

Amazon. The incoming traffic varied from 400 to 20000 

requests per second.  

Figure 5 depicts throughput of cloud datacenter. X-axis 

indicates different traffic rates. There is significant difference 

between analytical and experimental model. In the analytical 

evaluation assumes there is no loss probability of the incoming 

traffic but in the real time scenario based on the bandwidth or 

network there may be loss probability occur. For example, 

from Table 1 when 16500 packets entered in the network 

based on the bandwidth this experiment allows 15205 requests 

only. 

 

 
 

Figure 5. In relation between incoming traffic and 

throughput 

 

Figure 6 shows that required number of instances allocated 

during the experimental testbed run and analytical model. 

When load of 4000 Req/sec entered in the data center, results 

show that 51 instances is the minimum number of instances 

required to ensure that the average utilization is below 80%. 

According to the number of required instances can be 

calculated analytically as: S = 1.25 × 4000/100 + 1 = 51, which 

comes in line with the experimental results. In the 

experimental results there is no significant difference due to 

the elasticity and throughput of the datacenter. When the 

incoming traffic increases required servers also increased. 

From the Figure 7 results the CPU utilization significantly 

impacted when the high load spike occurs, such that the 

workload increases the corresponding utilization also 

increases. As per our assumptions the results show that the 

average utilization does not exceed the upper threshold in both 

analytical and experimental models. In the experimental 

model throughput significantly varies when compare to the 

analytical, but utilization do not have significant difference.  

 

 
 

Figure 6. In relation between incoming traffic and number of 

required servers 

 

 
 

Figure 7. In relation between incoming traffic and CPU 

utilization 
 

Table 1 shows that comparison between analytical and 

experimental results performance metrics. These are 

throughput, required number of servers and utilization of the 

computing resources. When the incoming traffic increases 

required number of servers also increases. Based on this sever 

optimization the cloud customer will gain knowledge on 

required number of the servers to maintain datacenter.  
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Table 1. Comparison of analytical results and experimental results 

 
Comparison of experimental results to analysis 

Incoming Traffic 
Servers CPU Utilization AVG Throughput 

Analytical Experimental Analytical Experimental Analytical Experimental 

500 7.25 7 68.96551724 70 500 467 

1000 13.5 12 74.07407407 72 1000 840 

1500 19.75 20 75.94936709 78 1500 1424 

2000 26 24 76.92307692 73 2000 1810 

2500 32.25 30.5 77.51937984 78 2500 2289 

3000 38.5 36.4 77.92207792 73 3000 2750 

3500 44.75 42.3 78.2122905 77 3500 3211 

4000 51 48.2 78.43137255 79 4000 3672 

4500 57.25 54.1 78.60262009 79 4500 4134 

5000 63.5 60 78.74015748 80 5000 4595 

5500 69.75 65.9 78.85304659 80 5500 5056 

6000 76 71.8 78.94736842 80 6000 5518 

6500 82.25 77.7 79.02735562 79 6500 5979 

7000 88.5 83.6 79.0960452 81 7000 6440 

7500 94.75 89.5 79.15567282 80 7500 6902 

8000 101 95.4 79.20792079 80 8000 7363 

8500 107.25 101.3 79.25407925 80 8500 7824 

9000 113.5 107.2 79.29515419 80 9000 8285 

9500 119.75 113.1 79.33194154 81 9500 8747 

10000 126 119 79.36507937 79 10000 9208 

10500 132.25 124.9 79.39508507 81 10500 9669 

11000 138.5 130.8 79.42238267 78 11000 10131 

11500 144.75 136.7 79.44732297 82 11500 10592 

12000 151 142.6 79.47019868 78 12000 11053 

12500 157.25 148.5 79.49125596 81 12500 11515 

13000 163.5 154.4 79.51070336 79 13000 11976 

13500 169.75 160.3 79.5287187 79 13500 12437 

14000 176 166.2 79.54545455 80 14000 12898 

14500 182.25 172.1 79.56104252 81 14500 13360 

15000 188.5 178 79.57559682 81 15000 13821 

15500 194.75 183.9 79.58921694 79 15500 14282 

16000 201 189.8 79.60199005 80 16000 14744 

16500 207.25 195.7 79.61399276 80 16500 15205 

17000 213.5 201.6 79.62529274 80 17000 15666 

17500 219.75 207.5 79.63594994 81 17500 16128 

18000 226 213.4 79.6460177 80 18000 16589 

18500 232.25 219.3 79.6555436 79 18500 17050 

19000 238.5 225.2 79.66457023 80 19000 17511 

19500 244.75 231.1 79.67313585 79 19500 17973 

20000 251 237 79.6812749 80 20000 18434 

 

 

6. CONCLUSIONS 

 

This paper evaluates an analytical model to estimate the 

required number of servers to achieve proper elasticity for web 

applications. This estimation is depending on the incoming 

workload in particular time and service rate of server. This 

prediction analysis must satisfy the QoS metrics such as 

throughput, computing resources utilization and required 

number of servers.  

The proposed analytical model validated with experimental 

model that was hosted. Noticeable fluctuation and variability 

were identified in the real time measurements, but the overall 

mean performance metrics are agreed with analytical results. 

When the throughput increases the corresponding utilization 

increases; thus, it leads to consumption of more resources.  

Moreover, we plan to propose different types of novel 

methods to estimate the number of servers and cost estimations 

for web applications as feature research directions. 

 

 

 

REFERENCES 

 

[1] Qu, C.H., Calheiros, R.N., Buyya, R. (2018). Auto-

scaling web applications in clouds: A taxonomy and 

survey. ACM Computing Surveys, 51(4): 73. 

https://doi.org/10.1145/3148149 

[2] Becker, M., Lehrig, S., Becker, S. (2015). Systematically 

deriving quality metrics for cloud computing systems. In: 

Proceedings of the 6th ACM/SPEC International 

Conference on Performance Engineering - ICPE 15. 

ACM, New York, pp. 169-174. 

https://doi.org/10.1145/2668930.2688043 

[3] Herbst, N.R., Kounev, S., Reussner, R. (2013). Elasticity 

in cloud computing: what it is, and what it is not. In: 

Presented as Part of the 10th International Conference on 

Autonomic Computing, USENIX, San Jose, pp. 23-27. 

[4] Aljahdali, H., Albatli, A., Garraghan, P., Townend, P., 

Lau, L., Xu, J. (2014). Multi-tenancy in cloud computing. 

2014 IEEE 8th International Symposium on Service 

Oriented System Engineering, Oxford, UK, pp. 344-351. 

https://doi.org/10.1109/SOSE.2014.50 

688



 

[5] Lehrig, S., Eikerling, H., Becker, S. (2015). Scalability, 

elasticity, and efficiency in cloud computing: A 

systematic literature review of definitions and metrics. In: 

Proceedings of the 11th International ACM SIGSOFT 

Conference on Quality of Software Architectures - QoSA 

15, pp. 83-92. https://doi.org/10.1145/2737182.2737185 

[6] Hwang, K., Bai, X., Shi, Y., Li, M.Y., Chen, W.G., Wu, 

Y.W. (2016). Cloud performance modeling with 

benchmark evaluation of elastic scaling strategies. IEEE 

Transactions on Parallel Distributed Systems, 27(1): 

130-143. https://doi.org/10.1109/TPDS.2015.2398438 

[7] Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A. 

(2014). A review of auto-scaling techniques for elastic 

applications in cloud environments. Journal of Grid 

Computing, 12: 559-592. 

https://doi.org/10.1007/s10723-014-9314-7 

[8] Jennings, B, Stadler, R. (2015). Resource management in 

Clouds: Survey and research challenges. Journal of 

Network and Systems Management, 23: 567-619. 

https://doi.org/10.1007/s10922-014-9307-7 

[9] Gao, J., Bai, X., Tsai, W.T., Uehara, T. (2013). SaaS 

testing on clouds - issues, challenges, and needs. In: 

Proceedings - 2013 IEEE 7th International Symposium 

on Service-Oriented System Engineering, Redwood City, 

USA, pp. 409-415. 

https://doi.org/10.1109/SOSE.2013.98 

[10] Al-Said Ahmad, A., Brereton, P., Andras, P. (2017). A 

systematic mapping study of empirical studies on 

software cloud testing methods. In: Proceedings 2017 

IEEE International Conference on Software Quality, 

Reliability and Security Companion, Prague, Czech 

Republic, pp. 555-562. https://doi.org/10.1109/QRS-

C.2017.94 

[11] Geetha, N., Anbarasi, M.S. (2015). Ontology in cloud 

computing: A survey. International Journal of Applied 

Engineering Research, 10(23): 43373-43377.  

[12] Hu, Y., Deng, B., Peng, F.Y., Hong, B., Zhang, Y.C., 

Wang, D.X. (2016). A survey on evaluating elasticity of 

cloud computing platform. In: World Automation 

Congress Proceedings, pp. 1-4. 

https://doi.org/10.1109/WAC.2016.7583052 

[13] Islam, S., Lee, K., Fekete, A., Liu, A. (2012). How a 

consumer can measure elasticity for cloud platforms. In: 

Proceedings of the Third Joint WOSP/SIPEW 

International Conference on Performance Engineering - 

ICPE 12. ACM, New York, pp. 85-96. 

https://doi.org/10.1145/2188286.2188301 

[14] Gao, J., Pattabhiraman, P., Bai, X., Tsai, W.T. (2011). 

SaaS performance and scalability evaluation in clouds. In: 

Proceedings - 6th IEEE International Symposium on 

Service-Oriented System Engineering, SOSE 2011. 

IEEE, Irvine, pp. 61-71. 

https://doi.org/10.1109/CloudCom.2012.6427555 

[15] Herbst, N.R., Kounev, S., Weber, A., Groenda, H. (2015). 

BUNGEE: An elasticity benchmark for self-adaptive 

IaaS cloud environments. In: Proceedings - 10th 

International Symposium on Software Engineering for 

Adaptive and Self-Managing Systems, SEAMS 2015, pp. 

46-56. https://doi.org/10.1109/SEAMS.2015.23 

[16] Bauer, A., Herbst, N., Kounev, S. (2017). Design and 

evaluation of a proactive, application-aware auto-scaler. 

In: Proceedings of the 8th ACM/SPEC on International 

Conference on Performance Engineering - ICPE 17. 

ACM, New York, pp. 425-428. 

https://doi.org/10.1145/3030207.3053678 

[17] Beltran, M. (2016). Defining an elasticity metric for 

cloud computing environments. In: Proceedings of the 

9th EAI International Conference on Performance 

Evaluation Methodologies and Tools. ICST (Institute for 

Computer Sciences, Social-Informatics and 

Telecommunications Engineering), ICST, Brussels, pp. 

172-179. https://doi.org/10.4108/eai.14-12-

2015.2262685 

[18] Kuhlenkamp, J., Klems, M., Röss, O. (2014). 

Benchmarking scalability and elasticity of distributed 

database systems. Proc VLDB Endow, 7(12): 1219-1230. 

https://doi.org/10.14778/2732977.2732995 

[19] Ilyushkin, A., Ali-Eldin, A., Herbst, N., Papadopoulos, 

A.V., Ghit, B., Epema, D., Iosup, A. (2017). An 

experimental performance evaluation of autoscaling 

policies for complex workflows. In: Proceedings of the 

8th ACM/SPEC on International Conference on 

Performance Engineering - ICPE 17. ACM, New York, 

pp. 75-86. https://doi.org/10.1145/3030207.3030214 

[20] Jayasinghe, D., Malkowski, S., Wang, Q.Y., Li, J., Xiong, 

P.C., Pu, C. (2011). Variations in performance and 

scalability when migrating n-tier applications to different 

clouds. In: Proceedings - 2011 IEEE 4th International 

Conference on CLOUD Computing, CLOUD 2011, pp. 

73-80. https://doi.org/10.1109/CLOUD.2011.43 

[21] Jayasinghe, D., Malkowski, S., Li, J., Wang, Q.Y., Wang, 

Z.K., Pu, C. (2014). Variations in performance and 

scalability: an experimental study in IaaS clouds using 

multi-tier workloads. IEEE Transactions on Services 

Computing, 7(2): 293-306. 

https://doi.org/10.1109/TSC.2013.46 

[22] Vasar, M., Srirama, S.N., Dumas, M. (2012). Framework 

for monitoring and testing web application scalability on 

the cloud. In: Proceedings of the WICSA/ECSA 2012 

Companion Volume on - WICSA/ECSA ‘12, pp. 53-60. 

https://doi.org/10.1145/2361999.2362008 

[23] Bellenger, D., Bertram, J., Budina, A., Koschel, A., 

Pfänder, B., Serowy, C., Astrova, I., Grivas, S.G., Schaaf, 

M. (2011). Scaling in cloud environments. In: 

Proceedings of the 15th WSEAS International 

Conference on Computers, Wisconsin, pp. 145-150. 

[24] Idziorek, J. (2010). Discrete event simulation model for 

analysis of horizontal scaling in the cloud computing 

model. In: Proceedings of the 2010 Winter Simulation 

Conference, Baltimore, MD, USA. 

https://doi.org/10.1109/WSC.2010.5678994 

[25] Scheinhardt, W. (1998). Markov-modulated and 

feedback fluid queues. Ph.D. Thesis, University of 

Twente, the Netherlands.  

[26] Shen, X., Chen, H., Dai, J., Dai, W. (2002). The finite 

element method for computing the stationary distribution 

of an SRBM in a hypercube with applications to finite 

buffer queueing networks. Queueing Systems, 42(1): 33-

62. https://doi.org/10.1023/A:1019942711261 

[27] Thuraisingham, B. (2020). Cyber security and artificial 

intelligence for cloud-based internet of transportation 

systems. 2020 7th IEEE International Conference on 

Cyber Security and Cloud Computing (CSCloud)/2020 

6th IEEE International Conference on Edge Computing 

and Scalable Cloud (EdgeCom), New York, NY, USA. 

https://doi.org/10.1109/CSCloud-

EdgeCom49738.2020.00011 

[28] Al-Haidari, F., Sqalli, M., Salah, K. (2015). Evaluation 

689



 

of the impact of EDoS attacks against cloud computing 

services. Arabian Journal for Science and Engineering, 

40: 773-785. https://doi.org/10.1007/s13369-014-1548-y 

[29] Dei Rossi, G.L., Iacono, M., Marin, A. (2015). 

Evaluating the impact of eDoS attacks to cloud facilities. 

VALUETOOLS 2015, Berlin, Germany, pp. 188-195. 

https://doi.org/10.4108/eai.14-12-2015.2262650 

[30] Salah, K., Elbadawi, K., Boutaba, R. (2015). An 

analytical model for estimating cloud resources of elastic 

services. Journal of Network and Systems Management, 

24: 285-308. https://doi.org/10.1007/s10922-015-9352-x 

[31] Amazon Web Services, Auto Scaling. 

http://aws.amazon.com/autoscaling/. 

 

690

http://aws.amazon.com/autoscaling/



