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After years of development, online teaching platforms (OLPs) have accumulated a huge 

amount of data on student scores. To effectively mine out the useful knowledge and 

information behind the massive data, this paper puts forward a course score analysis model 

for OLP learners based on data mining. Firstly, the score features of OLP learners were 

classified, and the calculation method of computational features was presented. Then, the 

score features were clustered through expectation maximization (EM) clustering, which has 

the advantage of unsupervised learning. Moreover, the salient features were obtained 

through principal component analysis (PCA). Finally, the support vector machine (SVM) 

prediction algorithm, a supervised learning method, was constructed, and merged with the 

clustering algorithm to realize accurate classification of the course scores of OLP learners. 

The effectiveness of the proposed method was proved through experiments. Based on the 

correlation between learner scores and courses, this research enables teachers to improve 

current teaching models and methods. 
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1. INTRODUCTION

The rapid development of information technology (IT) and 

the Internet has greatly promoted the reform and innovation of 

traditional teaching models, resulting in better teaching effect 

[1-4]. More and more schools and teachers have turned to 

online teaching platforms (OLPs) that integrate online and 

offline teaching based on Internet Plus. After years of 

development, OLPs have accumulated a huge amount of data 

on student scores. To optimize the teaching strategies, contents, 

and plans, it is not enough to conduct simple statistical analysis 

and summary of these data [5-9]. Instead, the massive data on 

student scores need to be analyzed by big data technology, 

aiming to cluster the students and extract group features. This 

will enable the teachers to propose pertinent teaching 

strategies, and design effective teaching contents and plans, 

thereby improving the learning methods and scores of students. 

Data mining is widely used in such fields as finance, science 

and technology, and agriculture. It is also increasingly applied 

in education and teaching [10-14]. The existing studies on data 

mining of education data mainly focus on the prediction of 

student scores, and the correlation between course scores [15-

18]. 

On the prediction of student scores, Dahri et al. [19] 

constructed a total score prediction model based on long short-

term memory (LSTM) network, and compared it with 

Bayesian algorithm and decision tree (DT) to verify its 

accuracy in predicting the scores of graduate and 

undergraduate students. Using effectively collected 

enrollment data, Syahidi and Asyikin [20] contrasted the 

effects of DT, logistic regression, and backpropagation neural 

network (BPNN) in freshman scores, and discovered that the 

BPNN achieved the highest prediction accuracy. Hamdi and 

Kartowagiran [21] preprocessed enrollment data (e.g. 

enrollment rate) through linear regression, and combined DT 

with naive Bayes to predict undergraduate scores on the Weka 

machine learning workbench. 

On the correlation between course scores, Arami and 

Wiyarsi [22] identified the key factors affecting the student 

scores of universities for nationalities by k-means clustering 

(KMC), and obtained the highly correlated course scores. With 

the aid of association rules, Wibawa [23] analyzed the 

correlations between the factors affecting the total score of 

students, mined out the useful rules, and optimized the current 

allocation of teaching resources. Gkontzis et al. [24] applied 

the improved association rule Apriori algorithm to evaluate the 

correlations between course scores of computer application 

majors, and quantified the degrees of correlation between the 

scores of professional courses. Northey et al. [25] relied on the 

Iterative Dichotomiser 3 (ID3), a DT algorithm, to examine 

the factors affecting student scores, and optimized the design 

of student score mining system, using improved association 

rule mining and clustering algorithms. 

Based on data mining, this paper puts forward a course score 

analysis model for OLP learners. The purpose is to effectively 

mine out the useful knowledge and information behind the 

massive data on OLP learner scores, and to accurately evaluate 

the rationality of teaching plans, the distribution of course 

scores, and the importance of each course. 

The remainder of this paper is organized as follows: Section 

2 classifies the score features of OLP learners, and details the 

calculation method of the computational features; Section 3 

analyzes the learner scores through expectation maximization 

(EM) clustering, which has the advantage of unsupervised 

learning, and obtains the salient features by principal 

component analysis (PCA); Section 4 combines the clustering 

algorithm with the support vector machine (SVM), a 

supervised learning method, to accurately categorize the 

features of OLP learner scores; Section 5 verifies the 

effectiveness of our method through experiment; Section 6 
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puts forward the conclusions. 

2. FEATURE DEFINITION AND EXTRACTION

According to the data fusion theory on the big data of 

education and teaching, the multi-source data of OLP learners 

were divided into five categories: trajectories, social behaviors, 

resource learning, evaluation & reflection, and basic 

information. The features of these types of data were defined, 

extracted, and fused (Figure 1).  

Figure 1. The feature definition, extraction, and fusion of multi-source OLP data 

Table 1. The features extracted from OLP learner scores 

Computational features Statistical features 

Stay time in school hours Number of views of learning resources for major courses 

Stay time on holidays Number of views of learning resources for other resources 

Number of resource learnings on holidays Number of assignments 

Number of learnings at night Test score 

Attendance rate of compulsory courses Number of discussions 
Note: School hours, a.k.a. regular study hours, refer to 7:30-17:30 on every workday. 

The trajectories, the most basic and common data in the 

OLP, refer to the various operations by learners in the OLP, 

including login, logout, jump between webpages, and closing 

webpages. 

In terms of social behaviors, every learner can communicate 

with teachers and other learners in classroom learning on the 

OLP. The main social behaviors are discussions like real-time 

posting, questioning, replying, and commenting. 

Resource learning dominates the behaviors of OLP learners. 

The OLP mainly provides two kinds of learning resources: text 

resources (e.g. PDF and Word), and multimedia resources (e.g. 

videos, and micro lectures. The learning of text resources 

involves operations like start, exit, and stay. The learning of 

multimedia resources involves operations like start, pause, fast 

forward, loop playback, and stop.  

Evaluation & reflection stands for the phased testing of the 

learning effect on quizzes, assignments, and evaluations. The 

learning situation of a learner can be reflected 

comprehensively, if the his/her answering process is preserved 

on the OLP.  

The basic information covers the following personal 

information of learners: major, student identity (ID), and 

timetable. Table 1 lists the features extracted from OLP learner 

scores. 

To extract the computational features from the above data, 

sets A and B were defined as the set of learning resources 

provided by the OLP, and the set of learning resources for the 

major, respectively: 

1 2 1{ , ,..., , ,..., }i i NA a a a a a+= (1) 

1 2 1{ , ,..., , ,..., }j j MB b b b b b+= (2) 

where, ai and bi are the i-th learning resource provided by the 

OLP and the learning resources for the major of the j-th learner, 

respectively. In a D-day-long q-th period, the trajectories of 

the j-th learner can be described by a two-tuple (Pqj, tqj), where 

Pqj is the stop position of the learning trajectories after the 

fusion of multi-source learner data, and t is the time that the 

learner appears in that position. Then, the stop positions of all 

the trajectories of the j-th learner in the q-th period can be 

expressed as a set P: 

1 2 1{ , ,..., , ,..., }i i KP p p p p p+= (3) 

where, pi is the i-th stop position with a stay time longer than 

10min in the trajectories. Next, the OLP learner score features 

were defined: 

(1) Stay time in school hours T1q

In the q-th period of school hours, the positions of learner

trajectories that stop at the learning resources of his/her major 

can be expressed as the following set: 
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1 {          

[7 :30,17 :30]}

qj qj

maj i iP p for each p P B and t=  



  (4) 

 

The stay time at each stop position can be expressed as: 

 

1 1 2 1{ , ,..., , ,..., }qj

maj i i LT t t t t t+=   (5) 

 

where, t'
i is the stay time at the i-th stop position. 

The capacity of Pqj
maj1 can be described as: 

 

1 1

qj

majC P=   (6) 

 

Thus, T1q can be defined as: 

 

1

1

L

q i

i

T t
=

=   (7) 

 

(2) Stay time on holidays T2q 

Similar to T1q, in the q-th period of holidays, the positions 

of learner trajectories that stop at the learning resources of 

his/her major can be expressed as the following set: 

 

2 {  

}

qj qj

maj i iP p for each p P A and t

holiday

=  



  (8) 

 

The stay time at each stop position can be expressed as: 

 

2 1 2 1{ , ,..., , ,..., }qj

maj i i LT t t t t t+
    =   (9) 

 

where, t'
i is the stay time at the i-th stop position. 

The capacity of Pqj
maj2 can be described as: 

 

2 2

qj

majC P=   (10) 

 

Thus, T2q can be defined as: 

 

'

2 1

1

l

r

i

T t
=

=   (11) 

 

(3) Number of resource learnings on holidays N1q 

The number of resource learnings on holidays is the 

capacity of Pqj
maj2:  

 

1 2qN C=   (12) 

 

(4) Number of learnings at night N2q 

Based on the definition of school hours, the period of night 

learning was limited to 19:30-22:30 at night. The state of night 

learning NSi was defined as follows: If a learner stops at the 

learning resources of his/her major in the q-th period and the 

specified period, then he/she learns at night (NSi=1); otherwise, 

he/she does not learn at night (NSi=0): 

 

1,  [19 :30,22 :30]  

0                                       otherwise

qj qj

i

if t and P A
NS

  
= 


  (13) 

 

The number N2q of learnings at night in a semester can be 

calculated by:  

2

1

D

r i

i

N NS
=

=   (14) 

 

(5) Attendance rate of compulsory courses ATTL 

The attendance in public compulsory courses can basically 

reflect the overall attendance in all courses. Therefore, the 

attendance rates of OLP learners in compulsory courses were 

calculated for different periods in one semester. For the j-th 

learner, the start and end times of compulsory courses in the 

q-th period can be calculated by: 

 

1 1 2 2 1 1{( , ), ( , ),..., ( , ), ( , )

,..., ( , )}

qj b e b e b e b e

cou i i i i

b e

H H

T t t t t t t t t

t t

+ +=
  (15) 

 

3

qj

couC t=   (16) 

 

where, tb
i and te

i are the start and end times of the i-th course, 

respectively. Then, the positions of online courses at each time 

point in set Tqj
cou can be described by the following set: 

 

1 2 1{ , ,..., , ,..., }i i HW w w w w w+=   (17) 

 

For the accuracy of attendance rate, the course duration was 

expanded 8min before and after the start and end times, 

creating the range of online time for learners. Then, the 

attendance rate ATTl of the l-th compulsory course can be 

defined as: 

 

11,  [ 8, 8]  

0,                                     otherwise

qj b e qj

i i

l

if t t t and P w  
ATT

  − + =
= 


  (18) 

 

3

1

/
H

L l

l

ATT ATT C
=

 
=  
 
   (19) 

 

After the computing and extracting the computational and 

statistical features, the score features of OLP learners can be 

modelled as Figure 2. 

 

 

3. FEATURE CLUSTERING AND PCA  

 

The scores on OLPs are private data of the learners. The 

acquisition of these data brings certain risks and difficulties. 

Considering the universality of relevant analysis methods and 

the predefined features of OLP learner scores, this paper 

decides to analyze learner scores through EM clustering, 

which has the advantages of unsupervised learning. The 

workflow of EM clustering is explained in Figure 3. 

The EM clustering is an iterative algorithm based on 

maximum posterior probability and maximum likelihood 

estimation. Suppose dataset Z=(X, Y) encompasses observed 

data X and unobserved data Y, and JPD(X,Y|Ψ) be the joint 

probability density of these data. Then, finding the maximum 

of the likelihood function LF (X; Ψ) of X is to make the 

maximum likelihood estimation of Ψ: 

 

( ; ) log ( ) log ( , )LF X JPD X JPD X Y dY =  =    (20) 
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Figure 2. The model of score features for OLP learners 

 

 
 

Figure 3. The workflow of EM clustering 
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In EM clustering, the EM of LF*(X; Ψ) is iteratively 

calculated to maximize the log likelihood function of X: 

 

( ; ) log ( , )LF X JPD X Y  =    (21) 

 

After t iterations, the likelihood estimate of Ψ can be 

expressed by Ψ(t). During the t+1-th iteration, the likelihood 

function expectation of Z during the calculation of the 

posterior probability of each sample belonging to each class 

can be described as: 

 

( ( )) { ( ; ) ( )}LFE t PPC LF Z X t  =     (22) 

 

where, PPC {} is the posterior probability calculation function. 

During the updating of the probability distribution function of 

each class through maximum likelihood estimation, LFE 

(Ψ|Ψ|(t)) is maximized, and Ψ is updated. 

The above steps are repeated iteratively to optimize and 

update model parameters. In this way, the likelihood 

probability of the training samples and model parameters 

continues to increase until reaching the extreme point. 

After clustering, it is necessary to select suitable features of 

OLP learner scores. Otherwise, there will be no basis for 

subsequent data mining. Inspired by the idea of dimensionality 

reduction, this paper transforms multiple features of OLP 

learner scores into a few representative features through PCA. 

Let Z=(z1,z2,…,zg)T be a g-dimensional random vector 

obtained by standardizing the original observed data. Then, a 

matrix of U samples zi=(zi1,zi2,…,zig)T was constructed, and the 

matrix elements were standardized by: 

 

2

1

( )

1

ij j

ij
U

ij j

j

z z
S

z z

U

=

−
=

−

−



  

 

(23) 

1

U

ij

i

j

z

z
U

==


  
(24) 

 

The correlation coefficient matrix can be established as:  

 

[ ]
1 1

T
kj jk

ij g

g

s sS S
R r

U U

 
= = =  

− −  


  (25) 

 

Solving the characteristic equation |R-λIg| of formula (25), a 

total of g characteristic roots can be obtained. The PCA needs 

to satisfy the following inequality: 

 

1 1

0.8
gd

j j

j j

 
= =

    (26) 

 

Then, the d value of principal components with a utilization 

rate greater than 0.8 was calculated. Solving the equation set 

Rb=λjb, the unit eigenvector σ0
j was obtained. Next, the 

standardized data features were converted into principal 

components: 

 
0T

ij i jPC S =   (27) 

Taking the variance contribution rate as the weight, the d 

principal component features were weighted and summed to 

derive the comprehensive evaluation of OLP learner scores. 

 

 

4. SVM-BASED CLASSIFICATION MODEL 

 

During the analysis and differentiation of OLP learner 

scores, unsupervised learning can avoid the disclosure of 

private information like score ranking. However, unsupervised 

learning cannot accurately distinguish between learners in 

different score intervals, making the classified management of 

learners less scientific and effective. Therefore, this paper 

combines unsupervised EM clustering with supervised SVM 

(Figure 4) to re-analyze and predict the OLP learner scores. 

 

 
 

Figure 4. The principle of the SVM algorithm 

 

Let f(a)=φTa＋c be the discriminant function of the SVM, 

f(a)=0 be a two-dimensional (2D) hyperplane that divides all 

feature samples into two classes, and (a1, b1), (a2, b2), …(aV, 

bV) be the V feature samples (bi=+1 or -1). Then, the 

classification formula can be defined as:  

 

0, 1

0, 1

T

i

T

i

a c b

a c b





 +  = +


+  = −

  (28) 

 

Changing the modulus of the weight vector, the 

classification rules can be updated as:  

 

0 1, 1

0 1, 1

T T

i

T T

i

a c a c b

a c a c b

  

  

 +   → +  = +


+  −  → +  − = −

  (29) 

 

Merging the above formulas: 

 

( ) 1T

ib a c +    (30) 

 

The distance from a to the hyperplane F must be greater than 

1:  

 

( ) 1ig a    (31) 

 

The geometric interval from a sample point to the 

hyperplane F can be described as: 

 

( )T

ib a c



+
  (32) 
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where, the numerator bi(φTa＋c)is the interval from the sample 

point to the hyperplane function. Let γ be the vector 

perpendicular to the hyperplane F, and υ be the vertical 

distance between a and F. Following the principle of vector 

addition, vector a can be rewritten as: 

 

pa
a





+
=   (33) 

 

( ) ( )T

pf a a c w


  


= + + =   (34) 

 

To maximize the interval between the two classes, ||φ|| 

should be minimized, that is, ||φ||2 should be minimized. 

However, there exists a constraint |f(a)≥1|, indicating that the 

sample point closest to the hyperplane represented by the 

support vector needs to satisfy |f(a)=1|. 

According to the concept of data interval, the distance 

between two sample classes can be defined as 2/||φ||. To 

minimize ||φ||/2, i.e. maximize the inter-class distance, it is 

necessary to configure the optimal hyperplane constraint, that 

is, the optimization function of SVM: 

 

2

1
min   . .  ( ) 1T

is t b a c





+    (35) 

 

After finding the support vector and maximizing the interval, 

φ and c can be determined. Then, the optimization function is 

equivalent to: 

 

1
arg max min( ))T

i
c

a c





  
+ 

  
，

  (36) 

 

Since linear classification cannot differentiate all actual 

samples, the few misclassified samples were separated with a 

slack variable: 

 

2

1

1
min   . .  ( ) 1 , 0

2

n
T

i i i i

i

s t b a c     
=

+ +  −    (37) 

 

where, μi is the slack variable; η is a constant, representing the 

penalty function. If misclassified, sample a can be discarded if 

the η value is sufficiently small. The smaller the η value, the 

wider the hyperplane, and the more the misclassified sample 

points. This problem can be solved by introducing the 

Lagrangian factor to hyperplane optimization. The Lagrangian 

optimization function can be constructed as: 

 

1

1
max ( , , ) ( ) ( ) 1

2

. .   0

V
T T

i i i

i

i

L c b a c

s t

     

 

=

 = − + − 

 


  (38) 

 

Finding the partial derivatives:  

 

1

1

( , , )
0   0

( , , )
0    0

V

i i i

i

V

i i

i

L c
b a

L c
b

c

 
 



 


=

=


=  − = 


 =  =

 





  (39) 

Combining formulas (38) and (39): 

 

1 1 1

1
( , , )

2

V V V
T

i i j i j i j

i i j

L c b b a a    
= = =

= −    (40) 

 

The optimal solution αi
* can be obtained by taking the 

maximum of the above formula. The optimal constraint can be 

described as: 

 

 
SV

i i i

i

b a  =   (41) 

 

where, VS is the number of support vectors. The optimal bias 

can be obtained by:  

 
T

i ic b a = −   (42) 

 

Solving the Lagrangian factor αi, the optimal hyperplane 

can be easily obtained.  

 

 

5. EXPERIMENTS AND RESULT ANALYSIS 

 

The massive data on OLP learner behaviors were collected 

and processed through the flow in Figure 5, and the 

preprocessed features were stored in a non-relational database. 

The learner behavior data involve attributes like StudentID, 

SessionID, Verb, Object, and Context, which help to judge 

whether a learner enters a session or exit the system. 

 

 
 

Figure 5. The collection and preprocessing of learner 

behavior data 

 

The originally extracted data contain lots of redundant 

information. The high-quality features need to be selected 

from the original data, such that the model will not face 

problems induced by the curse of dimensionality: poor 

generalization, high complexity, and long training. Here, the 

correlation coefficients of score features in each category are 

calculated by the correlation coefficient method. The 

calculated results are recorded in Table 2.  

If the Pearson correlation coefficient falls in 0.5-1.0, the 

features are strongly correlated; if the coefficient falls in 0.3-

0.5, the features are moderately correlated; if the coefficient 

falls in 0.1-0.3, the features are slightly correlated; if the 

coefficient falls in 0-0.1, the features are basically 

uncorrelated. This paper chooses the features with Pearson 

correlation coefficient greater than 0.3 for clustering analysis. 
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Table 2. The salient features of OLP learner scores and their Pearson correlation coefficients 

 
Computational features Correlation 

coefficient 

Statistical features Correlation 

coefficient 

Stay time in school hours 0.431 Total number of visits to multimedia resources 0.321 

Stay time on holidays 0.411 Total number of visits to text resources 0.311 

Number of resource learnings on holidays 0.382 Score of unit quiz 0.316 

Number of learnings at night 0.341 Number and quality of assignments 0.357 

Attendance rate of compulsory courses 0.391 Forum activity 0.382 

  Number of interactions with teachers 0.326 

  Number of notes and feedbacks 0.346 

  Self-evaluation 0.391 

  Student-student mutual evaluation 0.325 

 

  
(a) Two classes (b) Three classes 

 

Figure 6. The visualized results of EM clustering of selected features 

 

From the multi-source data of OLP learners throughout the 

20-week semester, the features closely correlated with learner 

scores were extracted, and grouped by EM clustering into two 

classes (I and II) or three classes (I, II, and III). To give a visual 

display of the clustering results, the features to be clustered 

were subject to PCA and dimensionality reduction. The 

visualized results of EM clustering are displayed in Figure 6. 

Following the idea of equal division, the results of three-

class EM clustering before and after feature selection were 

divided into three levels, namely, 1-200, 200-400, and 400-

600, and the clustering accuracy in each level was calculated 

in turn. Table 3 compares the accuracies of EM clustering 

before and after feature selection. 

From Figure 6 and Table 3, the EM clustering achieved a 

good effect on the OLP learner scores. The accuracy before 

feature selection was higher than that after feature selection. 

The three-class clustering was more accurate than two-class 

clustering, with accuracy falling between 82.76% and 86.74%. 

Therefore, our clustering analysis method excels in 

distinguishing fine-grained features of learner scores. 

Next, three SVM classifiers were designed by integrating 

multiple binary classifiers through one-against-one. Their 

performance was cross validated, and evaluated. Then, the 

SVM classifiers were adopted to predict the multiple classes 

of learner scores, based on the feature subset of the multi-

source data on OLP learner scores and the features closely 

correlated with learner scores. Table 4 compares the 

classification results of the three SVM classifiers. 

It can be seen that the three-class SVM classifier achieved 

an accuracy of 82-91%, slightly higher than that of two-class 

SVM classifier. This classifier effectively distinguished 

between the scores of learners in different levels, suggesting 

that it is suitable for analyzing and managing OLP learner 

scores. 

Furthermore, the scores of electrical automation majors on 

13 professional courses were clustered by the proposed SVM 

classifier and the rule-based classifier. As shown in Figure 7, 

the proposed SVM classifier outshined the rule-based 

classifier in accuracy and recall, despite a slight lag in 

efficiency. The results demonstrate the accuracy and 

effectiveness of our method in the classification of OLP 

learners and their score features. 

 

Table 3. The EM clustering accuracies before and after feature selection 

 

Levels 

I Ⅱ Ⅲ 

Before feature 

selection 

After feature 

selection 

Before feature 

selection 

After feature 

selection 

Before feature 

selection 

After feature 

selection 

1-200 59 61 20 21 
74 (positive 

samples) 

76 (positive 

samples) 

200-400 
84 (positive 

samples) 

96 (positive 

samples) 
62 59 52 58 

400-600 41 39 
80 (positive 

samples) 

92 (positive 

samples) 
24 26 

Accuracy 82.76% 82.91% 84.82% 86.74% 82.74% 85.74% 
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Table 4. The classification results of the 3 SVM classifiers before and after feature extraction 

 

Type 

Accuracy Recall F1-score Support 

Before feature selection 

After 

feature 

selection 

Before 

feature 

selection 

After 

feature 

selection 

Before 

feature 

selection 

After 

feature 

selection 

Before 

feature 

selection 

After 

feature 

selection 

I 0.87 0.89 0.19 0.21 0.24 0.29 16 21 

Ⅱ 0.82 0.85 0.92 0.94 0.78 0.82 58 59 

Ⅲ 0.87 0.91 0.16 0.22 0.34 0.46 22 22 

 

 
 

Figure 7. The classification results on professional course scores of rule-based classifier and SVM classifier 
Note: ECT is Electrical Control Technology, EET is Electrical and Electronic Technology, PC is Programmable Controller, SDT is Sensing and Detection 

Technology, ACNCMT is Application of Computer Numerically Controlled (CNC) Machine Tools, PAC is Principle of Automatic Control, PAPLC is Principle 

and Application of Programmable Logic Controller (PLC), ESD is Electronic System Design, AET is Analog Electronic Technology, DET is Digital Electronic 
Technology, ATC is Application of Computer Technology, FET is Fundamentals for Electrical Towage, PECT is Power Electronic Conversion Technology.  

 

 

6. CONCLUSIONS 

 

Based on data mining, this paper develops a course score 

analysis model for OLS learners. Firstly, the score features of 

OLS learners were categorized, and the calculation method for 

computational features was detailed. Then, EM clustering was 

adopted to cluster the score features of the learners, owing to 

its advantage of unsupervised learning. The salient features 

were obtained through PCA. Experimental results demonstrate 

that our clustering analysis method excels in distinguishing 

fine-grained features of learner scores. Finally, the authors 

designed an SVM classifier, a supervised learning tool, and 

combined it with EM clustering to accurately categorize the 

score features of OLS learners. The proposed method was 

compared with the rule-based classifier. The comparison 

shows that our method achieved the better accuracy and recall, 

an evidence to its feasibility and accuracy. 
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