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 As the largest manufacturer in the world, China has attracted much attention in the green 

transformation of manufacturing. This paper firstly designs an evaluation index system (EIS) 

of green total factor manufacturing energy efficiency (GTFMEE), which covers the three 

industrial wastes as the undesired output. Based on the EIS, the directional distance function 

(DDF) was adopted to measure the GTFMEEs of 30 provincial administrative regions 

(provinces) in China from 2010 to 2017. Then, the Tobit model was introduced to empirically 

analyze the driving factors of the GTFMEE. The results show that: The different provinces 

varied significantly in GTFME; the high GTFMEE provinces concentrated in the eastern 

coastal area, while most inland provinces had undesirable GTFMEEs. The eastern, central, and 

western regions exhibited different dynamic trends of GTFMEE; the eastern region had much 

higher GTFMEE than the central and western regions. The GTFMEE has a significant positive 

correlation with economic growth, technological progress, and opening-up, a significant 

negative correlation with energy structure, and urbanization level, and an insignificant 

correlation with human potential.  
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1. INTRODUCTION 

 

With the rapid advancement of industrialization, China’s 

manufacturing has mushroomed, and made phenomenal 

achievements. In terms of manufacturing scale, China 

surpassed Germany in 2001, overtook Japan in 2007, and 

replaced the United States (US) 2010 as the largest 

manufacturer in the world. In 2017, China’s manufacturing 

achieved an added value of USD 3.55804 trillion, which is 

1.64 times that of the US and 27.02% of the global total 

manufacturing output. Dubbed the world factory, China is now 

a major manufacturing country, featuring the most complete 

industrial system and supporting facilities. 

The expansion of China’s manufacturing is accompanied by 

high energy consumption and heavy pollutant emissions. Most 

manufacturing sectors are energy-intensive. The development 

of manufacturing inevitably consumes a huge amount of fossil 

energy. In 2017, China’s manufacturing consumed 2.5090049 

billion tons of coal equivalent (TCE), an increase of 3.65 times 

from that (687.5246 million TCE) in 2000. The high energy 

consumption leads to heavy emissions of wastewater, waste 

gas, and solid waste, collectively referred to as the three 

industrial wastes. In 2017, the industrial sector, which centers 

on manufacturing, emitted 68.519 trillion standard cubic 

meters of industrial waste gas, 4.96 times higher than that 

(13.8145 trillion standard cubic meters) in 2000, and generated 

3.31055 billion tons of industrial solid waste, 4.06 times 

higher than that (816.077 million tons) in 2000. 

To sum up, manufacturing brings negative effects like 

massive energy consumption and serious environmental 

pollution, while serving as the main driving engine of the 

economy. To realize sustainable development, China must 

speed up the energy conservation and emission reduction 

(ECER), and promote the green transformation and upgrading 

of manufacturing. 

Manufacturing energy efficiency (MEE) has long been a 

research hotspot. The relevant studies mainly concentrate on 

four aspects. The first aspect is the evaluation index system 

(EIS) of MEE. The existing EISs either adopt single-factor 

index or total-factor index. The typical single-factor index of 

energy efficiency is the energy consumption per unit output [1, 

2]. The total-factor index is the combination of multiple 

elements, such as capital, labor, and energy [3, 4]. Single-

factor index is easy to compute, but fails to consider the issue 

of factor substitution. Therefore, most scholars prefer to use 

total-factor index to evaluate the MEE.  

The second aspect is the evaluation method of MEE. Data 

envelopment analysis (DEA) and stochastic frontier analysis 

(SFA) are the two mainstream methods. Azadeh et al. [5] 

relied on the DEA model to analyze the energy efficiency of 

four energy-intensive manufacturing sectors (steelmaking, 

papermaking, oil refining, and cement production). Lin and 

Wang [6] used the distance function of the SFA to measure the 

total factor energy efficiency of China’s steelmaking sector by 

region, and provided suggestions on energy-saving policies. 

The SFA requires the establishment of the production function, 

and only fits for multi-input and single-output problems. The 

DEA, which is more flexible and adaptive than the SFA, has 

been adopted by most scholars to measure the MEE.  

The third aspect is the evaluation scale of MEE. On the 

regional level, Miketa and Mulder [7] measured the energy 

efficiency of 10 manufacturing sectors in 56 developed and 

developing countries in 1971-1995. On the sector level, 

papermaking [8], and steelmaking [9] are the common targets 
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in energy efficiency measurement. 

The fourth aspect is the factors affecting the MEE. The 

existing studies have shown that the MEE is greatly affected 

by enterprise scale [10], technological progress [11], 

marketization level [12], energy price [13], and government 

policy [14]. 

Overall, quite a few results have been achieved on the 

measurement and influencing factors of the MEE. However, 

the existing studies have two shortcomings: Many scholars 

investigated the MEE from the angle of sectors, while few 

tackled the issue from the angle of regional difference; Most 

MEE EISs do not contain the various pollutants produced by 

manufacturing, which inconsistent with the actual situation. 

To solve the shortcomings, this paper includes the three 

industrial wastes into the EIS of green total factor 

manufacturing energy efficiency (GTFMEE), and adopts the 

directional distance function (DDF) to measure the GTFMEE 

of each provincial administrative region (hereinafter referred 

to as province) in China. Furthermore, the authors examined 

the driving factors of the GTFMEE. The research results 

provide an important basis for manufacturers to transform to 

green development. 
 

 

2. METHODOLOGY 

 

2.1 DDF 

 

The MEE measurement has always been a hot topic in the 

academia. For many years, many scholars measured the MEE 

solely based on the manufacturing output, without considering 

the pollutants generated in the manufacturing process. The 

neglection of environmental cost might cause errors in the 

measured efficiency [15]. To prevent the error, it is necessary 

to incorporate the pollutants into the MEE assessment. The 

MEE that includes environmental factor can be referred to as 

the GTFMEE. 

Since the pollutants are bad outputs, the GTFMEE cannot 

be effectively measured by traditional tools like Chames-

Cooper-Rhodes (CCR) model and Banker-Chames-Cooper 

(BCC) model, which only apply when all the outputs in the 

EIS are good. Some scholars tried to evaluate the efficiency 

after processing these bad outputs. To solve the problem of bad 

outputs, Hailu and Veeman [16] suggested treating the bad 

outputs as inputs in efficiency evaluation. This treatment goes 

against the actual production. Scheel [17] used the reciprocals 

of the bad outputs in efficiency evaluation. Neither does their 

strategy work well, for the evaluated efficiency deviates far 

from the actual efficiency. 

The problem of bad outputs was not solved until Chambers 

et al. [18] proposed the DDF, which perfectly solves the 

efficiency evaluation involving bad outputs. By the DDF, the 

bad outputs can be directly incorporated into the EIS as normal 

outputs, making the evaluation much more accurate. Therefore, 

the DDF is adopted here to evaluate the GTFMEE. The 

operation principle of the DDF is as follows: 

Let there be a production system of n decision-making units 

(DMUs), each of which is a complete production process. 

During the operation, a DMU turns m production factors 

(inputs) into d units of desired outputs and u units of undesired 

outputs. For simplicity, the inputs, desired outputs, and 

undesired outputs are denoted as 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝑅+
𝑚×𝑛, 

 𝑌 = (𝑦1, 𝑦2 , … , 𝑦𝑛) ∈ 𝑅+
𝑑×𝑛, and 𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑛) ∈ 𝑅+

𝑢×𝑛, 

respectively. Let 𝐷𝑀𝑈0 = (𝑥0, 𝑦0
𝑔
, 𝑦0

𝑏) be the DMUs in the 

production system. Then, the production possibility set (PPS) 

can be expressed as 𝑃𝑡(𝑥) = {(𝑥, 𝑦): 𝑥 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑦} . 

Hence, the DDF can be established as: 

 

�⃗⃗� 0(𝑥, 𝑦, 𝑏; 𝑔𝑦 , −𝑔𝑏) 

= 𝑠𝑢𝑝
𝜃

{𝜃: (𝑦 + 𝜃𝑔𝑦 , 𝑏 − 𝑔𝑏) ∈ 𝑃(𝑥, 𝑦, 𝑏)} (1) 

 

Formula (1) illustrates the operation flow of the entire DDF, 

i.e. the inputs are converted into desired and undesired outputs. 

Two basic features of DDF can be observed: (1) Any 

production activity will lead to undesired outputs b, in addition 

to desired outputs y; the two kinds of outputs are closely 

associated with each other. (2) The undesired outputs b are 

weakly disposable; the reduction of undesired outputs b will 

definitely cause the desired outputs y to decrease, i.e. the two 

types of outputs change in the same direction. Drawing on 

these features, the relative efficiency of each DMU can be 

solved through linear programming: 

 

( )0 , , ; , maxt tk tk tk tk tk

y bD x y b g g − =  

s.t.

1
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n

t t
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=

 + =   

1

(1 ) , 1,2, ,
n

t t

j lj lk

j

b b l u 
=

= − =   

1

(1 ) , 1,2, ,
n

t t

j ij ik

j

x x i m 
=

 − =   

0, 1,2, ,j j n  =   

(2) 

 

where, 𝑥𝑡𝑘, 𝑦𝑡𝑘 , and 𝑏𝑡𝑘 are the inputs, desired outputs, and 

undesired outputs, respectively; 𝑔𝑦
𝑡𝑘  is the increment of 

desired outputs; −𝑔𝑏
𝑡𝑘 is the decrement of undesired outputs; θ 

is the distance between desired outputs and undesired outputs, 

reflecting the amplitude of the increment of desired outputs 

and the decrement of undesired outputs. If θ is large, the 

desired outputs increase significantly, or the undesired outputs 

decrease significantly; in this case, the DMU has a low 

efficiency. If θ is small, the desired outputs increase 

insignificantly, or the undesired outputs decrease 

insignificantly; in this case, the DMU has a high efficiency. If 

θ equals 0, both desired and undesired outputs are optimal, 

leaving no room for improvement; in this case, the DMU 

efficiency amounts to 1. 

 

2.2 GTFMEE EIS 

 

Our research object, the GTFMEE, is an energy efficiency 

containing environmental variables. As a total factor, the 

GTFMEE covers multiple elements, namely, capital, labor, 

energy, and output [19]. In addition, the GTFMEE was 

measured from both inputs and outputs. From the angle of 

inputs, the GTFMEE reflects the ratio of actual energy input 

to the minimum energy input. The greater the ratio, the larger 

the gap between actual and minimum energy inputs, and the 

smaller the GTFMEE. The inverse is also true. From the angle 

of outputs, the GTFMEE reflects the ratio of actual output to 

optimal output per unit energy in manufacturing. The greater 

the ratio, the closer the actual output to the optimal output, and 

the larger the GTFMEE. The inverse is also true. 
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Table 1. The GTFMEE EIS 

 
Type Name Meaning 

Inputs 

Labor input The annual number of urban manufacturing employees in each province (unit: 10,000 persons) 

Capital 

input 

The capital stock in manufacturing is often estimated by permanent inventory method (PIM), which is compute-

intensive and error-prone. 

Considering data availability, the capital input of manufacturing was measured by the total annual investment in 

fixed assets of manufacturing in each province (unit: RMB 100 million yuan). 

To eliminate the inflation induced by price factor, the total investment in fixed assets of manufacturing in the 

current year was converted into the actual total investment in fixed assets of manufacturing at a comparable price 

with 2010 as the base period, using the price index of investment in fixed assets. 

Energy 

input 

The total annual energy consumption of manufacturing in each province (unit: 10,000 TCE).  

Note that the energy input refers to the terminal consumption, involving such energies as coal, coke, crude oil, 

diesel, gasoline, natural gas, and electricity. 

The consumptions of different energies in manufacturing were converted into TCE (unit: 10,000 TCE), and totaled 

to obtain the energy input. 

Outputs 

Desired 

output 

The actual annual total manufacturing output in each province. 

The statistical yearbooks only provide nominal total manufacturing output. With 2010 as the base period, the 

nominal total manufacturing output was deflated into the actual total manufacturing output at a comparable price, 

using the ex-factory price index of industrial products. 

Undesired 

output 

The annual emissions of the three industrial wastes in each province. 

Due to the difficulty in acquiring the data on the waste gas, wastewater, and solid waste emitted by manufacturing 

in each province, this paper chooses the three industrial wastes (industrial waste gas emissions, 100 million 

standard cubic meters; industrial wastewater emissions, 10,000 tons; industrial solid waste emissions, 10,000 tons) 

as the proxy variable of undesired output. 

 

Drawing on the concept of GTFMEE and the results of [20, 

21], this paper designs a GTFMEE EIS from the angles of 

inputs and outputs. The designed EIS contains three inputs: 

labor input, capital input, and energy input of manufacturing. 

Labor is essential to the production of manufacturers. Without 

sufficient labor, it is impossible for manufacturers to operate 

production equipment, or sell their products, not to mention 

completing the production process. Capital provides a strong 

support to the production of manufacturers. Sufficient capital 

guarantees the purchase of production equipment and raw 

materials, as well as the compensation for labor. Energy is the 

source of power in the production of manufacturers. Given that 

most manufacturing sectors are energy-intensive, sufficient 

energy input is particularly important for manufacturing 

development. 

There are two types of outputs in the designed EIS: Desired 

output (good output) and undesired output (bad output) of the 

production of manufacturers. In general, the total output of 

manufacturing, which reflects the market value of production 

activities, is the goal pursued by manufacturers. Hence, the 

total manufacturing output was chosen as the desired output. 

The undesired output should be avoided in the production 

process. During the production of manufacturers, the main bad 

outputs are various pollutants. The most common pollutants 

are the three industrial wastes. Therefore, the three industrial 

wastes were collected treated as the undesired output in our 

EIS. 

In summary, our EIS consists of three inputs (labor input, 

capital input, and energy input), a desired output, and an 

undesired output. The meaning of each index is explained in 

Table 1. 

 

2.3 Tobit model 

 

As mentioned before, one of the research objectives is to 

identify and verify the driving factors of China’s GTFMEE, 

laying the basis for formulating scientific ECER policies. To 

verify every factor that drives the GTFMEE, it is critical to 

select a suitable measurement model. 

According to the above definition of the GTFMEE, the 

efficiency calculated by the DDF is limited between 0 and 1. 

As the dependent variable in the measurement model, the 

GTFMEE must fall within the interval of [0, 1], that is, the 

upper and lower limits of the variable are 0 and 1, respectively. 

If the traditional ordinary least squares (OLS) is adopted for 

model estimation, the results might be biased toward zero, and 

the model estimation will be distorted [22]. 

The Tobit model, named after its proposer, can effectively 

prevent the data truncation of the dependent variable. Also 

known as truncated or censored regression model, the Tobit 

model only works when the dependent variable has a limited 

range. This unique property adapts well to the needs of 

significance test on GTFMEE driving factors. 

Before establishing the Tobit model, it is necessary to 

identify the driving factors of the GTFMEE. The previous 

research has demonstrated that the MEE could be greatly 

impacted by economic growth, technological progress, 

opening-up, and energy structure [23, 24]. 

Inspired by the previous research, the driving factors of the 

GTFMEE were summarized as physical factors, affair factors, 

and human factors. Specifically, the physical factors include 

economic growth (EG), and technological progress (TP); the 

affair factors include opening-up (OU), and energy structure 

(ES); the human factors include human potential (HP), and 

urbanization level (UL). Taking the GTFMEE as the 

dependent variable, and the driving factors as the independent 

variables, the following Tobit model can be established: 

 


* *

*

*

1 2 3

4 5 6

(  1)

1 (  1)

+

it it it

it it

it it it it

it it it

MIGTFEE MIGTFEE if MIGTFEE

MIGTFEE if MIGTFEE

MIGTFEE EG TP OU

ES HP UL

   

   

= 

= 

= + + +

+ + +  (3) 

 

where, 𝑀𝐼𝐺𝑇𝐹𝐸𝐸𝑖𝑡  is the dependent variable; 𝐸𝐺𝑖𝑡  is 

economic growth (the per-capita gross domestic product (GDP) 

of province i in year t); 𝑇𝑃𝑖𝑡  is technological progress (the 

internal expenditure on research and development (R&D) of 

industrial enterprises as a proportion of industrial added value 

of province i in year t); 𝑂𝑈𝑖𝑡 is opening-up (the actual foreign 
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direct investment (FDI) in RMB as a proportion of GDP of 

province i in year t); 𝐸𝑆it  is energy structure (the coal 

consumption as a proportion of total energy consumption of 

province i in year t); 𝐻𝑃𝑖𝑡  is human potential (mean education 

years of labor force of province i in year t); 𝑈𝐿𝑖𝑡  is 

urbanization level (permanent urban population as a 

proportion of the total population of province i in year t). 

Note that: (1) the natural logarithm of economic growth was 

adopted to eliminate the impact of potential collinearity; (2) 

the technological progress was replaced by the internal 

expenditure on R&D of industrial enterprises as a proportion 

of industrial added value, because most industrial enterprises 

in China are manufacturers, and the internal R&D expenditure 

in manufacturing is unavailable; (3) the mean education years 

of labor force was calculated by: 

The mean education years of labor force = the proportion of 

employees in the illiterate and semi-illiterate * 1.5 + the 

proportion of employees in primary school graduates *7.5 + 

the proportion of employees in junior high school graduates 

*10.5 + the proportion of employees in senior high school 

graduates * 13.5 + the proportion of employees in graduates 

from junior college and above *17. 

 

2.4 Data sources 

 

To ensure the availability and comparability of each 

variable in the DDF and Tobit model, this paper selects the 

panel data on 30 Chinese provinces in 2010-2017 as the 

samples (excluding Tibet, Hong Kong, Macao, and Taiwan). 

The data on the number of urban manufacturing employees, 

the total investment in fixed assets of manufacturing, the price 

index of investment in fixed assets, the total energy 

consumption of manufacturing, the total manufacturing output, 

the industrial waste gas emissions, the industrial wastewater 

emissions, the industrial solid waste emissions, the internal 

expenditure on R&D of industrial enterprises, the industrial 

added value, the actual FDI, GDP, coal consumption, total 

energy consumption, the proportions of employees in the 

population with different education backgrounds, the 

permanent urban population, and the total population were 

obtained from China Statistical Yearbooks, China Energy 

Statistical Yearbooks, China Labor Statistical Yearbooks, 

China Statistical Yearbooks on Environment, China Statistical 

Yearbooks on Science and Technology, China Industry 

Statistical Yearbooks, local statistical yearbooks, and the 

official website of National Bureau of Statistics of China. The 

few missing data were completed by moving average method. 

 

 

3. RESULTS ANALYSIS 

 

3.1 Measuring results on GTFMEE 

 

The data on the inputs and outputs in our GTFMEE IES 

were imported into maxDEA, and the DDF was adopted to 

measure the GTFMEEs of the 30 Chinese provinces in 2010-

2017. The measured results are recorded in Table 2. 

As shown in Table 2, the GTFMEEs in China differed 

greatly from province to province. In the sample period, 

Beijing, Tianjin, Hebei, and Shanghai were the only provinces 

whose GTFMEE remained at the optimal value of 1. The 

GTFMEEs of these provinces fell on the efficient frontier for 

the following reasons: Beijing, Tianjin, and Shanghai, as 

municipalities directly under the central government, boast 

developed economy and advanced manufacturing technology, 

and attach great importance to the ECER. Located in the 

eastern coastal area, Hebei is adjacent to Beijing and Tianjin. 

Its GTFMEE is optimized by its advantageous location 

advantage and early start in manufacturing. 

The mean GTFMEEs of Guangdong, Shandong, Jiangsu, 

Zhejiang, and Hubei fell between 0.9 and 1. The GTFMEEs of 

these provinces reached 1 in some years, and fell short of 1 in 

the other years, leaving a room for improvement. Except 

Hubei, Guangdong, Shandong, Jiangsu, and Zhejiang are 

eastern coastal provinces with large manufacturing scale and 

high manufacturing output. However, the manufacturers in 

these provinces emit many pollutants, especially the three 

industrial wastes, in the production process. These provinces 

must step up the efforts in ECER. Note that Hubei achieved 

desirable GTFMEE, despite being a central province. The 

achievement is inseparable from the green transformation of 

manufacturing in that province. 

The mean GTFMEEs of Anhui, Jilin, Liaoning, Inner 

Mongolia, Hainan, Hunan, Fujian, Jiangxi, Henan, Chongqing, 

and Sichuan ranged from 0.7 to 0.9. The GTFMEEs of these 

provinces belong to the mid-level in China, with a certain 

distance from the efficient frontier. Further improvement is 

needed in the future. In recent years, these provinces have 

witnessed rapid industrial development, and continuous 

expansion of manufacturing. But their GTFMEEs are not 

desirable, because the local manufacturers develop 

extensively, consume lots of energy, use energy non-

intensively, and overlook pollution control. 

The mean GTFMEEs of Guangxi, Ningxia, Gansu, Xinjiang, 

Shaanxi, Guizhou, Yunnan, Heilongjiang, Shanxi, and 

Qinghai were below 0.7, falling behind those of most other 

provinces. The GTFMEEs in these provinces are extremely 

unsatisfactory, waiting to be substantially improved. As late 

starters in industry, these inland provinces are relatively 

backward in terms of economy. In particular, the local 

manufacturers are small, lacking advanced production 

technology. These factors, coupled with the inefficient energy 

use, lead to heavy pollutant emissions. As a result, these 

provinces are slow in the green transformation of 

manufacturing. 

To sum up, the different provinces varied significantly in 

GTFMEE. The high GTFMEE provinces concentrated in the 

eastern coastal area, while most inland provinces had 

undesirable GTFMEEs. Hence, the development of 

manufacturing in China shows obvious regional imbalance. To 

grow into a strong manufacturer, China must mitigate the 

regional imbalance of manufacturing development. 

Geographically, China can be divided into eastern region, 

central region, and western region. To further examine the 

regional difference in GTFMEE, the change trends of 

GTFMEE in China and the three regions are plotted as Figure 

1. 

It can be seen that the GTFMEE of the central region 

changed similarly as the national GTFMEE: both slowly 

increased in the sample period. The GTFMEE of the eastern 

region remained relatively stable, with insignificant change in 

the early phase and slight decline in the late phase. The 

GTFMEE of the western region exhibited an inverted U-

shaped trend, i.e. first increased and then decreased.
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Table 2. The GTFMEEs of Chinese provinces in 2010-2017 

 
Province 2010 2011 2012 2013 2014 2015 2016 2017 Mean 

Beijing 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  

Tianjin 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  

Hebei 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  

Shanghai 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  

Guangdong 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  0.9766  0.8675  0.9805  

Shandong 0.9126  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  0.8637  0.9720  

Jiangsu 1.0000  1.0000  1.0000  1.0000  1.0000  0.9354  0.9256  0.8451  0.9633  

Zhejiang 1.0000  1.0000  1.0000  1.0000  1.0000  0.9694  0.9121  0.8038  0.9607  

Hubei 0.8172  0.8811  0.9427  0.9513  0.9587  0.9394  0.9556  0.8723  0.9148  

Anhui 0.8076  0.8808  0.8341  0.8678  0.8786  0.9156  0.9358  0.8873  0.8759  

Jilin 0.7818  0.8311  0.8371  0.9022  1.0000  0.8826  0.8694  0.8600  0.8705  

Liaoning 0.9826  0.9177  0.9494  1.0000  0.8793  0.6647  0.6776  0.6667  0.8423  

Inner Mongolia 0.8510  0.8695  0.7276  0.9200  0.8120  0.7491  0.7679  0.7925  0.8112  

Hainan 0.7157  0.7769  0.7751  0.6177  0.8031  0.9373  0.9493  0.7985  0.7967  

Hunan 0.6336  0.7095  0.6433  0.7968  0.8516  0.8639  0.9510  0.9007  0.7938  

Fujian 0.7153  0.8039  0.8006  0.7888  0.7500  0.7832  0.7871  0.7518  0.7726  

Jiangxi 0.7396  0.7315  0.7501  0.7934  0.8162  0.7758  0.7615  0.6608  0.7536  

Henan 0.7023  0.7353  0.7563  0.7464  0.7542  0.7206  0.7825  0.7820  0.7474  

Chongqing 0.6589  0.7136  0.7098  0.7812  0.8334  0.8058  0.8435  0.6132  0.7449  

Sichuan 0.6384  0.6999  0.6623  0.6381  0.7423  0.7862  0.7898  0.6701  0.7034  

Guangxi 0.5335  0.5881  0.5659  0.6987  0.7274  0.7617  0.8171  0.8568  0.6936  

Ningxia 0.4883  0.4879  0.5486  0.6754  0.6134  0.6226  0.6679  0.5769  0.5851  

Gansu 0.4956  0.5646  0.5513  0.5858  0.5886  0.6146  0.5573  0.5927  0.5688  

Xinjiang 0.5769  0.4563  0.4522  0.5810  0.5336  0.5473  0.5783  0.5297  0.5319  

Shaanxi 0.4134  0.4747  0.4927  0.4868  0.5119  0.5529  0.5757  0.4393  0.4934  

Guizhou 0.3203  0.3840  0.3470  0.4578  0.5504  0.6742  0.6570  0.5139  0.4881  

Yunnan 0.4045  0.4668  0.4836  0.4979  0.5129  0.5189  0.5036  0.4534  0.4802  

Heilongjiang 0.3973  0.4125  0.4074  0.5079  0.4889  0.5258  0.5284  0.5443  0.4765  

Shanxi 0.4162  0.5030  0.4592  0.4617  0.4696  0.4565  0.4521  0.5359  0.4693  

Qinghai 0.3548 0.3699 0.3576 0.4694 0.5144 0.5287 0.5793 0.4106 0.4481 

 

In addition, the three regions had marked differences in 

mean GTFMEE. In the sample period, the mean GTFMEE of 

the eastern region was as high as 0.9353, far exceeding the 

national average of 0.7980. The mean GTFMEE of the central 

region was 0.7377, comparable to the national average. The 

mean GTFMEE of the western region was 0.5953, far below 

the national average. Thus, the eastern region had the highest 

GTFMEE, followed in turn by the central region, and the 

western region. Obviously, the central and western regions are 

the weak links of China’s manufacturing development.  

 

 
 

Figure 1. The change trends of GTFMEE in China and the 

three regions 

 

3.2 Results analysis of Tobit model 

 

Based on the proposed Tobit model, the significance of each 

driving factor of GTFMEE was tested on Stata12.0. The 

estimated results on the coefficients of the independent 

variables are recorded in Table 3. 

Table 3. The regression results of Tobit model 

 
Variable Coefficient T-value P-value 

EG  0.2738*** 4.47 0.000 

TP  4.6408*** 3.55 0.000 

OU  4.1730*** 5.14 0.000 

ES  -0.1342*** -3.34 0.001 

HP  0.0326 1.31 0.192 

UL  -0.4876* -1.73 0.085 

L- likelihood 46.4345 
Note: *, **, and *** are the significance levels of 10%, 5%, and 1%, 

respectively. 

 

The influence of economic growth (EG) on the GTFMEE 

was positive at the significance level of 1%, indicating that 

higher per-capita GDP promotes the GTFMEE. It can also be 

seen that the level of economic development provides 

manufacturing development with the necessary capital and 

high-quality labor force, which in turn promote the structural 

optimization and upgrading of manufacturing. This benefits 

the green transformation of manufacturers. 

The estimated coefficient of technological progress (TP) 

was positive, passing the significance test at 1%. Hence, the 

growing R&D expenditure promotes the GTFMEE. It can be 

said that, two benefits will be generated, when the industry, 

represented by manufacturing, invests more in R&D: On the 

one hand, the manufacturers will be blessed with advanced 

technology, which improves the efficiency of energy use; on 

the other hand, advanced technologies, such as cloud 

computing, three-dimensional (3D) printing, and industrial 

intelligence, fuel the upgrading of manufacturing from low 

end to high end, and enhance the market competitiveness of 

manufacturers. Fisher-Vanden et al. [25] investigated the 

micro-data of large and medium-sized Chinese manufacturers, 
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and found that technological progress is the main reducer for 

energy intensity of manufacturing: R&D investment 

contributes to 12% of energy efficiency.  

Opening-up (OU) exerted a significantly positive impact on 

the GTFMEE, indicating that a high proportion of FDI in GDP 

boosts the GTFMEE. Opening-up is the fundamental strategy 

of China in the long term. For a long time, the Chinese 

government has been vigorously attracting foreign investment: 

diverting foreign funds to develop manufacturing, and 

absorbing production technology and management experience 

of foreign-funded enterprises. Erdem [26] also confirmed that 

the technology diffusion effect of FDI can improve the energy 

efficiency of enterprises in host country.  

Energy structure (ES) had a significant negative effect on 

the GTFMEE, that is, a high proportion of coal consumption 

in the total region energy consumption hinders the 

improvement of the GTFMEE. Coal has long been considered 

as the most unclean energy source. The combustion of coal 

releases multiple harmful pollutants. As a major coal producer 

and consumer, China has difficulty in the ECER of 

manufacturing, facing the coal-dominated energy structure. 

Shi et al. [27] evaluated the highest energy efficiency and 

energy-saving potential of various provinces in China, 

revealing that coal-rich provinces generally have low energy 

efficiency. 

Human potential (HP) had an insignificant positive impact 

on the GTFMEE. This means improving the education level of 

the labor force can help increase personal labor productivity 

and enhance environmental awareness, exerting a positive 

impact on the ECER of manufacturers. However, only a few 

Chinese provinces have an abundance of high-end 

manufacturing talents. These talents are severely lacking in 

most provinces. According to the data of 58.com, a famous 

classified advertisements website, the labor gaps of 

manufacturing in Beijing and Shanghai reached 52% and 44% 

in 2016, respectively. Suffice it to say that labor shortage is 

commonplace in China’s manufacturing. In short, the 

insignificant impact of human potential on the GTFMEE 

comes from the severe shortage of high-quality labor force. 

The impact of urbanization level (UL) on the GTFMEE was 

positive at the 1% significance level, meaning that higher 

urbanization level inhibits the green transformation of 

manufacturing. A possible reason lies in the extensive model 

of urbanization in China. Over the years, urban construction in 

China emphasizes quantity over quality. In the early phase of 

urbanization, low-end manufacturing sectors with high energy 

consumption are welcomed, due to their low threshold and 

investment. As a result, the energy consumption of 

manufacturing remains high, bringing heavy pollutant 

emissions. 

 

 

4. CONCLUSIONS 

 

This paper sets up a DDF containing undesired outputs, and 

applies it to measure the GTFMEEs of 30 Chinese provinces 

in 2010-2017. In addition, the Tobit model was adopted to 

verify the driving factors of the GTFMEE. The main 

conclusions are as follows: 

First, the GTFMEEs in China differed greatly from 

province to province in the sample period. Specifically, 

Beijing, Tianjin, Hebei, and Shanghai achieved the optimal 

GTFMEE, which reached the efficient frontier; the GTFMEEs 

of Guangdong, Shandong, Jiangsu, Zhejiang, and Hubei were 

relatively desirable, leaving a room for improvement. The 

GTFMEEs of Anhui, Jilin, Liaoning, Inner Mongolia, Hainan, 

Hunan, Fujian, Jiangxi, Henan, Chongqing, and Sichuan 

belong to the mid-level in China, requiring further 

improvement in the future. The GTFMEEs of Guangxi, 

Ningxia, Gansu, Xinjiang, Shaanxi, Guizhou, Yunnan, 

Heilongjiang, Shanxi, and Qinghai were extremely 

unsatisfactory, waiting to be substantially improved. 

Second, the eastern, central, and western regions had 

marked differences in GTFMEE. The three regions exhibited 

different dynamic trends of GTFMEE. The eastern region had 

the highest GTFMEE, followed in turn by the central region, 

and the western region. 

Third, among the driving factors, economic growth, 

technological progress, and opening-up had significant 

positive impact on the GTFMEE; energy structure, and 

urbanization level had significant negative impact on the 

GTFMEE; human potential exerted an insignificant impact on 

the GTFMEE. 
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