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Thermosyphons are used in various energy systems due to their efficient performance 

in heat transfer. These devices can be employed in several solar energy systems because 

of their high effective thermal conductivity. The most important solar applications can 

be listed as PV cooling, desalination units, water heating systems and thermoelectric. In 

the current study, the mentioned applications and the key findings of the related 

researches are reviewed and represented. Based on the reviewed publications, the 

thermal specifications of the thermosyphons affect the overall performance of the 

systems assisted with thermosyphons. For instance, by using nanofluids, the thermal 

performance of these devices improves which results in higher efficiency of the 

systems. Using novel ideas such as using wick in the evaporator section is another 

approach to achieve more proper performance of the thermosyphons in solar energy 

systems.   
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1. INTRODUCTION

Thermosyphons are efficient thermal mediums which are 

broadly employed in various energy systems such as 

ventilation, heat exchangers and etc. [1–4]. The performance 

and heat transfer ability of these devices depend on various 

factors. Operating fluid, inclination angle, filling ratio and 

heat input are among the most important effective parameters 

[5–7]. The main reason of heat transfer in thermosyphons is 

evaporation in heat source and condensation in heat sink [8]. 

A schematic of thermosyphon is depicted in Figure 1. 

Figure 1. Schematic of thermosyphon 

As it was mentioned, working fluid plays key role in the 

thermal behavior of thermosyphons [9-10]. Using nanofluids, 

due to their high thermal conductivity [11-12], is a 

conventional approach which is suggested by several 

researchers. Employing nanofluids can lead to augment in 

thermal performance of various kind of heat pipes [13-15]. In 

addition to the operating fluid, its charging ratio is another 

influential factor [16]. The optimum charging ratio differs for 

various case studies and obtained experimentally. Since the 

gravity causes fluid motion inside thermosyphon, most of the 

studies concluded that the best thermal performance is 

achievable near vertical orientation. In addition to the 

mentioned factors, heat input, due to two-phase heat transfer 

of thermosyphons, affects thermal resistance of the 

thermosyphons. Increase in heat input, enhances boiling heat 

transfer; however, at very high heat loads, the dry-out 

phenomenon occurs due to lack of liquid in evaporator.  

Renewable energy sources have several environmental 

advantages compared with fossil fuels [17–20]. Among 

various renewable sources, solar energy gains importance 

due to its availability and high intensity. Solar energy is 

applicable for several purposes including heat exchangers 

[21], desalinating water [22], heating [23-26] and power 

generation [27]. Power generation can be achieved by using 

PV panels or extracting thermal energy of the sun to run 

thermodynamic cycles such as Brayton or Brayton-Rankine 

[28-29]. For desalination systems, the generated electricity 

via solar energy can be applied in reverse-osmosis systems. 

In addition, solar thermal energy can be used in other types 

of desalination units such as humidification-dehumidification 

types.  
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In order to efficiently use solar thermal energy, it is 

necessary to apply thermal devices with appropriate heat 

transfer ability. Thermosyphons are favorable candidates to 

be employed in the systems require efficient heat transfer. 

These types of heat pipes are used in various solar-based 

technologies in recent years. In the current studies, the 

applications of thermosyphons in solar energy systems are 

reviewed and their findings are represented.  

 

 

2. APPLICATIONS OF THERMOSYPHONS IN 

SOLAR ENERGY SYSTEMS  
 

There are several researches concentrated on the 

applications of thermal mediums in solar energy technologies. 

The aim of the current study is representing the use of 

thermosyphons in these systems. In the following subsections, 

the most attracting applications of thermosyphons in solar 

energy are reviewed. 

 

2.1 PV cooling 

 

P Photovoltaic (PV) panels are employed to produce 

electricity from solar irradiations [30,31]. Various parameters 

effect on their efficiency such as tilt angle, irradiation 

intensity and working temperature [32–35]. Studies have 

shown that increase in solar cell temperature causes reduction 

in efficiency [36]. Finding appropriate methods to cool down 

the PV panels results in efficiency enhancement. PV/T 

systems are among the most conventional approaches used 

for PV cooling [37]. In these configurations, a cooling fluid 

is applied to cool down the cell. In addition to using cooling 

channels at the back of PV modules, using cooling devices 

such as heat pipes is an efficient approach to prevent 

efficiency reduction due to temperature increase. Akbarzadeh 

et al. [38] suggested a PV/T system which was a combination 

of solar concentrator system and PV panel. The schematic of 

the system is shown in Figure 2. In order to assess the 

influence of cooling system on the performance, the tests 

were performed by the cooling apparatus with and without 

fluid. The results revealed that without using the fluid, the 

output power of the cell had 50% reduction compared with 

utilizing the cooling system. It was concluded applying 

thermosyphon is an influential approach to cool down the PV 

panel.  

 

 
 

Figure 2. Schematic of PV/T system with thermosyphon [38] 

 

Another configuration for PV/T system with an array of 

thermosyphons was experimentally evaluated by Moradgholi 

et al. [39]. 16 thermosyphons were applied for cooling the 

PV and the total area of the cell was equal to 0.003 . The 

applied thermosyphons was made of aluminum and 

/methanol and methanol used as operating fluids. 

Results indicated that using thermosyphon led to lower 

operating temperature of PV panel. In addition, it was 

observed that by using methanol as working fluid, the 

electrical efficiency of the PV/T system was 0.7% higher 

compared with PV panel without cooling mediums, while 

using nanofluid resulted in 1% higher efficiency. Increases in 

the energy efficiency of the systems for the systems used 

methanol and the nanofluid were 15.3% and 27.3%, 

respectively.  

 

2.2 Solar desalination 

 

Typically, desalination systems require thermal energy or 

electricity for fresh water production [40,41]. Both of these 

two types of energy can be provided by applying solar 

radiation [42]. There are various types of desalination 

systems including Reverse-Osmosis (RO), humidification-

dehumidification (HDH) and etc [43,44]. Behnam et al. [45] 

experimentally investigated a thermosyphon-assisted HDH 

desalination. The desalination system consisted of air 

humidifier, thermosyphon, dehumidifier, and evacuated tube 

collector. The thermosyphons were used to transfer absorbed 

heat by the collector to heat up the water. The evaporator 

section of the thermosyphon was located at the center of 

collectors and its condenser was in humidifier. The 

transferred heat by the thermosyphon caused boiling in 

humidifier section. Results showed that by using oil between 

the collector and thermosyphons, up to 65% efficiency for 

the system was achievable which indicated appropriate 

performance of the thermosyphons.   

Faegh et al. [46] designed a novel solar desalination 

system by using Phase Change Material (PCM) and 

thermosyphon. In this system, solar energy used for 

evaporating the water during daytime. The PCM was applied 

as energy storage unit and charged by heat transfer with 

vaporized water. Heat transfer between the vaporized water 

and PCM resulted in vapor condensation and energy 

absorption by PCM. In the evening, the stored energy by the 

PCM transferred to the saline water, via thermosyphon, to 

produce fresh water. Comparing the performance of the 

systems with and without PCM showed 86% increase in 

efficiency in the case of applying PCM.  

 

2.3 Water heating systems 

 

The solar energy can be employed to provide hot water for 

facilities and buildings without consumption fossil fuels [47-

49]. These types of water heating systems can be coupled 

with storage tanks to be applicable during night-time [50]. 

Thermosyphons are appropriate devices for transferring the 

absorbed thermal energy of sun to warm up water [51-52]; in 

addition, thermosyphons can be used in the heat exchangers 

applied in water heating systems [53]. The performance of 

the solar water heater depends on several factors such as 

temperature of cold water, quality of manufacturing and 

design specifications [54-55]. In the thermosyphon-assisted 

water heating systems, the evaporator section of the 

thermosyphon located in solar collector. By receiving the 

solar thermal energy, the working fluid inside the 

thermosyphon evaporates and moves to condenser section 
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which is water storage tank [56]. Heat transfer between 

condenser section of thermosyphon and content of the 

storage tank results in condensation of vapor. The vapor 

returns to the evaporator part and this process continues. 

Since the performance of the thermosyphon depends on its 

working fluid, changing the operating fluid affects the overall 

efficiency of the system. Based on a study carried out by 

Esen et al. [56], three operating fluids including R410a, 

R407C and R-134a were used in the thermosyphon of the 

system shown in Error! Reference source not found. Results 

demonstrated that using R410a led to the maximum 

efficiency of the system among the tested fluids. The highest 

daily collecting efficiency of the system filed with R410a 

was 58.96%. 

Since the thermal performance of thermosyphon in water 

heating systems influences on the efficiency of these 

technologies, enhancement in the heat transfer capability of 

thermosyphons results in performance improvement. Huang 

et al. [57] investigated the effect of filling ratio and 

evaporator structure on the performance of two-phase closed 

loop thermosyphon used in solar water heater. The filling 

ratio of the thermosyphon was methanol. Two filling ratios 

including 40% and 60% were considered in the study to 

analyze the effect of charging rate. In addition to 

conventional structure, in another thermosyphon a porous 

wick was inserted in the evaporator part. Obtained results 

revealed that using the wick in evaporator led to 12.7% 

efficiency enhancement of the system. Moreover, it was 

concluded that at high heat inputs, 60% filling ratio resulted 

in better performance in comparison with 40%. The effect of 

filling ratio on the performance of water heating system with 

thermosyphon was investigated in another study performed 

by Zhang et al. [58]. In their research, the operating fluid was 

R600a and five filling ratios including 10%, 20%, 30% and 

50% were evaluated to obtain the best condition. Results 

revealed the highest efficiency was achievable in the filling 

ratio between 30% and 50%.  

In another research, a novel configuration of heating 

system introduced by Velmurugan et al. [59] which was used 

for heating air and water by employing thermosyphon as 

thermal medium. In the proposed configuration, three circuits 

were used to circulate heat carrying fluid, fluid and air used 

for consumer utilization. The performance of the system was 

evaluated under two modes for water and air heating. Based 

on the results, the maximum efficiencies of the system for 

water and air heating were 73.68% and 69.18% respectively.   

  

2.4 Solar thermoelectric systems 

 

The thermal energy of sun is applicable in thermoelectric 

to obtain electricity [60-61]. A configuration integrated with 

thermosyphon was introduced by Miljkovic et al. [62] to 

passively transfer the thermal energy to another cycle in 

order to utilize it for various purposes. In this configuration, 

the evaporator section of thermosyphon was connected to the 

cold side of the thermosyphon. Due to temperature gradient 

between two sides of the thermoelectric, the electricity was 

generated. In addition, the thermosyphon was applied to 

axially transfer heat from cold side of the thermoelectric. 

Based on the results of modeling, the performance of the 

system was dependent on several factors such as temperature 

of bottoming cycle (thermosyphon condenser) and solar 

irradiation. It was concluded that increase in solar 

concentration led to improvement in both thermal and 

electrical efficiencies.  

In another study [63], a thermosyphon and thermoelectric 

module were applied in a solar pond to generate electricity. 

In the proposed system, the thermosyphon was employed in 

order to transfer heat from hot part to the cold part of the 

solar pond. The thermoelectric module was connected to the 

top section of the thermosyphon which was located at the 

upper convective zone. The schematic of the introduced 

system is shown in Figure 3. The dimeter and length of the 

thermosyphon were 100 mm and 2 m, respectively. 16 

thermoelectric cells with 40  dimensions were 

used in this configuration. Results revealed that by using the 

configuration, it is possible to passively produce electricity 

with solar ponds. The maximum generated power by this 

system was 3.2 W which shows its efficient performance.  

 

 
 

Figure 3. Schematic of the solar pond with thermosyphon 

and thermoelectric 

  

2.5 Solar collectors  

 

Thermosyphons can be employed in solar collectors in 

order to have efficient heat transfer. The performance of the 

thermosyphon-assisted solar collectors is dependent on the 

thermal behavior of the thermosyphon which is affected by 

working fluid, inclination angle and etc. According to the 

various studies [64-65], by using nano-sized materials, the 

efficiency of the systems can be enhanced. Chougule et al. 

[66] evaluated the performance of a two-phase thermosyphon 

applied in solar collector. In their study, pure water and 

CNT/water nanofluid in four volumetric concentrations 

including 0.15%, 0.45%, 0.60% and 1% were employed as 

operating fluid of the thermosyphon. Moreover, the five tilt 
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angles (20, 32, 40, 50 and 60 deg) were tested to investigate 

the thermal performance. It was observed that utilizing the 

nanofluid led to enhancement of the efficiency of the system. 

The average efficiency of the collector in various 

concentrations of the nanofluid is represented in Figure 4. 

 

 
 

Figure 4. Effect of volumetric concentration on the 

efficiency of solar collector 

 

As shown in Figure, there was an optimum value for the 

concentration in order to achieve the highest efficiency. In 

addition, it was found that for the system with water as 

thermosyphon operating fluid, the maximum efficiency 

obtained in 50 deg.  

 

 

3. CONCLUSIONS 

 

In the present review article, a comprehensive review is 

conducted on the solar applications of thermosyphons. It is 

found that thermosyphons can be employed in various solar 

energy systems as thermal medium in order to have efficient 

and reliable heat transfer. The most conventional applications 

of thermosyphons in solar systems are desalination, water 

heaters, collectors and PV cooling. Based on the results of 

the reviewed studies, improving the thermal performance of 

the thermosyphons leads to augment in overall efficiency of 

the systems. Using nanofluids, novel structures such as 

inserting wick in the evaporator section and working on 

optimum filling ratio and tilt angle are among the most 

applicable approaches to reach the highest efficiency. Future 

researches can be performed on other related applications of 

thermosyphons. Moreover, investigating other factors such as 

working conditions, hybrid fluids and material of the 

thermosyphons affecting thermal performance and their 

influences on the efficiency of the systems will be the aims of 

future studies. 
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