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In the present study, numerical investigation is carried out to analyze natural convection in 

symmetrically heated square cavity filled with air. Left, right and bottom walls are heated 

partially, whereas remaining portions of these walls are maintained at a lower constant 

temperature with an isolated top wall. Governing equations are solved by a finite volume 

method and the analysis is conducted for different Rayleigh number Ra values ranged 

between 103 and 9x106. The objective of the present study is to determine the critical 

Rayleigh number in which a transition from a stationary to an oscillatory flow takes place. 

The effect of the heating sources placed symmetrically at the two opposite sidewalls in 

addition to the heating source at the bottom wall was investigated. Results are presented in 

terms of streamlines, isotherms, and flow variables including the velocity and, temperature 

profiles and, Fourier frequency spectrum of the temperature. Obtained results shown that for 

Rayleigh numbers smaller than Racr = 3 × 106, the flow inside the cavity remains stationary 

with perfectly symmetric patterns. Whereas, beyond this critical value, the system bifurcates 

in which the flow symmetry is broken and a first Hopf time dependent periodic flow patterns 

take place. 
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1. INTRODUCTION

Natural convection in a square and/or rectangular cavity 

with partially heated wall problem is of great interest and 

frequently encountered in different engineering applications, 

including solar energy, nuclear reactor design, cooling of 

electrical and electronic components and heat exchange 

between buildings and environment. 

In the past few decades, several investigations have been 

carried out on the analysis of the flow and heat transfer for 

natural convection problem in a four-sided cavity with fully or 

partially heated walls. Rahman et al. [1] investigated the 

natural convection problem in four-sided cavity with the 

presence of heat generation using numerical technique. A 

partially heater was positioned at several locations on the right 

wall of the cavity, whereas the left wall was kept at lower 

temperature. Results showed that the flow and heat transfer 

rate are strongly dependent on the length and locations of the 

heater as well as heat generating parameter.  Other researchers 

such as Corcione [2], Basak [3], El Moutaouakil et al. [4] and 

Aswatha et al. [5], have investigated the natural convection 

problem in a square cavity under different applied thermal 

boundary conditions.  

Various published papers that included the study of 

transient natural convection in rectangular or square 

enclosures in which different experimental and numerical 

approaches were adopted and described in detail [6]. An 

important fact for natural convection flows in rectangular 

enclosures is that the thermal boundary layer adjacent to the 

vertical walls remains steady and provides perfectly 

symmetric flow at small Rayleigh numbers. However, at 

sufficiently large Rayleigh numbers, the thermal boundary 

layer distinct travelling waves owing to convective instability 

[7].  

Saury et al. [8] study experimentally the instability 

phenomena which appear in natural convection in air-filled 

cavities with active isothermal walls heated differentially, the 

other walls being adiabatic. The cavity is inclined by an angle 

varying between 0° (heating from the bottom) and 180° 

(heating from the top). Instantaneous measures enable 

localizing regions presenting maximal temperature 

fluctuations when the temperature difference between the 

active walls increases. In order to determine the routes to chaos, 

Kieno et al. [9] investigated numerically the natural 

convection problem in an enclosure inclined to the horizontal 

plane. This enclosure is heated from two opposite side and 

cooled on the other two sides. The impact of Rayleigh number 

and the inclination angle are examined in detail. The analysis 

confirms also the bifurcation of the attractor from a limit point 

to a limit cycle via an overcritical Hopf bifurcation for a 

Rayleigh number between 1.95x106 and 1.96x106. Sheu and 

Lin [10] carried out numerical investigation for natural 

convection problem in cubic cavity over a wide range of 

Rayleigh numbers by the simulated bifurcation diagram, limit 

cycle, power spectrum and phase portrait. Results indicated 

that for successive increase in Rayleigh number, the predicted 

flow is found to change from the steady and symmetric 

laminar solution to the asymmetric state (pitchfork bifurcation) 

and then to supercritical Hopf bifurcation. As the Rayleigh 

number is increased still, the investigated buoyancy-driven 
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flow became increasingly destabilized through quasi-periodic 

bifurcation and then through two predicted frequency-

doubling bifurcations. Then an additional ultra-harmonic 

frequency showed its presence prior to chaos.  

Benouaguef et al. [11] carried out numerically the time 

dependent natural convection in a square cavity heated 

partially on the two opposite vertical walls. The two opposite 

heaters were maintained at different temperatures whereas the 

horizontal walls were considered adiabatic. A first transition 

from stable steady solution to oscillatory flow could be 

characterized at Ra ranging from 2.5x105 to 2.51x105 and the 

second subharmonic bifurcation that evolves into a chaotic 

flow could be obtained as Rayleigh number was increased 

further (Ra > 2.51x105). Later, Xu, and Saha [12] and Kolsiet 

et al. [13] investigated numerically the transition from steady-

state to a transient flow in air-filled cavity. Different values of 

Rayleigh number ranging from 105 to 109 were investigated 

and results showed that the transition from a steady-state to a 

periodic flow arises as Rayleigh number increases. The 

numerical study presented by Laouar et al. [14] was to follow 

the bifurcation sequences to chaos and to investigate different 

flow regimes including, periodic, quasi-periodic and the 

chaotic regimes. 

Zhao and Tian [15] proposed higher-order accuracy method 

for the solution of time-dependent nature convection problem 

in square enclosure with adiabatic horizontal walls and 

differentially heated vertical walls for the wide range of 

Rayleigh numbers (103 < Ra < 1010). An optimized third-order 

upwind compact scheme (Opt-UCD3) and a fourth-order 

symmetrical Padé compact scheme used to approximate the 

nonlinear convective terms and the viscous terms, respectively.  

Results showed that a first Hopf bifurcation to the periodic 

flow regime could be obtained at Rac1 = 1.82 x 108, and then 

undergoes second bifurcation to quasi-periodic flow regime 

could be obtained at a critical Rayleigh number 2.25 x 108 < 

Rac2 < 2.35 x 108 and eventually transits to turbulent through 

a further bifurcation.  

The main objective of the present study is to determine the 

critical Rayleigh number which is the bifurcation point of 

stationary flow to oscillatory flow, when increasing the 

Rayleigh number in a square enclosure that was locally 

discrete heated (the length of this heat source is L/2) from 

below and two others heating portions (with the length of L/4) 

mounted symmetrically on the two vertical side walls. These 

suggested locations may occur in different engineering 

applications such as improvement of cooling process for 

electronic equipment. This study is carried out numerically 

using a developed code based on finite volume method and 

SIMPLE algorithm was used for the coupling of the velocity 

and pressure variables. Simulations are conducted for a range 

of Rayleigh number Ra between 103 and 9x106. The influence 

of Ra number on the flow patterns, the local temperature 

variation, and the heat transfer rate in the square cavity are 

analyzed and discussed. 

 

 

2. MATHEMATICAL MODEL 
 

The geometrical model investigated in the present study is 

a square cavity with a sidewall length L as shown in Figure 1. 

A heater source of a length (L/2) is placed at the center of the 

bottom wall and maintained at a higher temperature Th, 

whereas two other heater sources with same temperature are 

placed at the two opposite vertical sidewalls with a length 

equal to (L/4) and mounted at L/4 from the bottom wall. 

Remaining parts of the bottom, left and right sidewalls are 

maintained at a lower temperature TC and the top is insulated. 

The flow regime is considered laminar, incompressible and 

fluid properties are supposed constant excluding the density in 

which buoyancy forces are not neglected and follow the 

Boussinesq approximation. In general, when natural 

convection mechanism is considered, radiation may have 

considerable effects. However, in some case, these effects can 

be neglected (low temperatures involved and or boundaries 

with very low emissivity or when the used fluid is assumed to 

be perfectly transparent to radiation) [16-18]. In the present 

study, since we are interested in flows induced by small 

temperature levels, radiation and viscous dissipation effects 

are ignored. The length of the third dimension of the cavity 

perpendicular to the plane of the sketch is supposed to be 

sufficiently long, thus the flow can be considered two-

dimensional. Governing equations for transient natural 

convection flow can be summarized as follows: 
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with the applied boundary conditions at the four cavity walls: 
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Figure 1. Schematic of enclosure configuration 
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Introducing the following dimensionless variables: 

 

x
X

L
=  , 

y
Y

L
=  , 

uL
U =


 , 

vL
V =


 , 

2

2

pL
P =


 , 

( )

( )
C

h C

T T

T T

−
 =

−  , 

2

t

L


 =  , Pr


=


, 

( ) 3

h C

2

g T T L Pr
Ra

 −
=


                                   (6) 

 

Substituting the dimensionless variables into the 

dimensional equations, we obtain the non-dimensional system 

equations: 
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with the applied boundary conditions at the four cavity walls: 

 

                         (11) 

 

Along the heated part of the side walls, the calculated local 

heat transfer rate is obtained from the heat balance that 

provides a formulation of the local Nusselt number as follows: 
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The average Nusselt number Nuh on heaters is calculated by: 
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3. SOLUTION PROCEDURE 

 
Governing equations for the simulation of natural 

convection problem in a square cavity are numerically solved 

according to the applied boundary conditions. These 

governing equations were discretized using the finite volume 

method yielding a system of algebraic equations, Patankar [19]. 

After several attempts of the different numerical schemes, we 

have opted to the central differencing scheme to approximate 

the combined convection and diffusion terms. This scheme 

always gives a physically valid solution of the unsteady 

problems with respect to higher order schemes. The continuity 

equation is transformed into a pressure correction equation 

according to the SIMPLE algorithm to overcome the velocity 

and pressure field coupling problem. In the X and Y sweeping 

direction, the resulting linear algebraic system is solved using 

the Tri-Diagonal Matrix Algorithm (TDMA). The 

unconditionally stable implicit method is used to evaluate the 

transient terms in momentum and energy equations. In the 

present study, a (100 x 100) uniform mesh was used for all 

computations and a time step of Δt = 2.5x10-5s. 
 

 

4. GRID INDEPENDENCE TESTANDCODE 

VALIDATION 
 

Grid sensitivity tests were performed first to calculate the 

local variation of the velocity and temperature profiles for Ra 

= 103 and, for different meshes of 40x40, 80x80, 100x100 and 

110x110. 

 

 
(a) 

 

 
(b) 

 

Figure 2. Grid independence study for Ra=103: (a) horizontal 

velocity profile and (b) temperature profile, at the mid-height 

of the cavity 

 

Figures 2a and 2b shows the variation of the velocity 

component in x direction and the temperature throughout the 
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horizontal midline enclosure for the different meshes 

considered. It can be noticed that the changes in the calculated 

values are very small for three meshes of 100x100 and, 

110x110 meshes is less than 0.00911= 0.911%. Hence, the 

mesh of 100x100 was chosen in the present study which 

providesthe best compromise between cost and accuracy of 

calculations. 

The performance and the accuracy of the present numerical 

approach is investigated in a second step by comparing the 

present results with the numerical solution obtained by De 

Vahl [20]. Comparison of the maximum stream function for 

two different Rayleigh numbers is presented in Table 1. A 

maximum difference of about 0.18% is obtained which 

indicates a good agreement of the present results with the data 

presented by De Vahl [20]. 

 

Table 1. Comparison of of the maximum stream 

functionwith the results obtained by De Vahl [20] 

 
Ra De Vahl Davis Present study 

 

max
  

max
  

105 9.612 9.5898 

106 16.750 16.719 

 
A second validation is conducted by comparing the present 

numerical results with the experimental data provided by 

Calcagni et al. [6]. The case investigated is an experimental 

investigation of free convective heat transfer in a square cavity 

in which a discrete heater is placed at the bottom wall whereas 

the lateral walls are cooled.  

As shown in Figure 3, present numerical results for the 

variation of the local Nusselt (Nu) are compared with the data 

of Calcagni et al. [6] for Rayleigh number equal to 6.1x104. 

Results indicate a good agreement between the present results 

and the measured data.  

 

 
 

Figure 3. Comparison of the calculated local Nusselt on the 

heat source (x-axis) with experimental data [6] 

 

 

5. RESULTS AND DISCUSSION 

 

Present numerical simulation is performed for air fluid with 

Pr = 0.71. Results in the form of velocity and temperature 

profiles, streamline and isothermal contours for two cases 

including symmetric (stable) and asymmetric (oscillating) 

flow regimes will be presented and discussed.  

Case 1: Stable flow regime at Ra=3.1x103 

 

Figure 4 show the isotherms and streamlines inside the 

cavity, for low values of Ra number. The flow patterns are 

perfectly symmetric about the vertical axis consisting of two 

primary convective vortices and two weak vortices on the low 

corners of the cavity rotating in the opposite direction. In this 

regime, the intensity of both vortices on the left and right sides 

is identical, and the flow and heat transfer are influenced and 

controlled by the heater on the bottom wall whereas the effect 

of the two opposite heaters is minor and has no sufficient 

influence on the flow field.  

 

 
 

Figure 4. Isotherms (right) and streamlines (left) contours for 

Ra=3,1x103 

 

Case 2: Oscillating flow regime at RaCr = 3x106 

 

As Rayleigh number increases, the size and number of the 

secondary vortices increases at the advantage of the primary 

vortices and, the flow symmetry is broken. As shown in Figure 

5, between Rayleigh number values of 3,1x103 and 3x106, the 

flow bifurcates from a stable symmetric to instable 

asymmetric state. Hence, the onset of this bifurcation counted 

for the Rayleigh critical number of 3x106. At this critical value 

RaCr = 3x106, instabilities arise due to the force competition 

between the main and the secondary vortices, causing the flow 

to lose symmetry and an oscillatory flow field prevails. It 

should be noted that in this solution, the temperature contours 

oscillate with a small frequency in the right sidewalls. In this 

instable flow regime, the two previously symmetric vortices 

(shown in figure 4) became asymmetric with different sizes 

and different intensities (as shown in figure 5) in which the 

stream function values are -40 and 70 for the small vortex at 

the top of he cavity and the larger vortex at the bottom of the 

cavity, respectively, confirming the unbalance flow strength in 

the two regions. In this regime, the effect of the two opposite 

heaters is important and has a significant influence on the flow 

field and heat transfer levels.  

 

 
 

Figure 5. Isotherms (right) and Streamlines (left) contours 

for RaCr=3x106 

 

The temporal progress of the temperature, and velocity 

components calculated in the center of the enclosure, for two 
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Rayleigh numbers are presented in Figures 6 and 7, 

respectively. It can be noticed that for Ra = 3,1x103 a steady-

state solution could be obtained, whereas for RaCr = 3x106 the 

solution oscillates with a mono-period of oscillation. 

The temporal spectrum of the temperature at the point (x = 

0.5, y = 0.5) at RaCr =3x106 is shown in Figure 8 (a) and is 

characterized by a main frequency (with harmonics) of f1 = 

0.012. 

 

 
 

Figure 6. Time-distributions of Temperature at the mid-point 

for Ra=3,1x103 and RaCr=3x106 

 

 
(a) 

 

 
(b) 

 

Figure 7. Time-distributions of V (a) and U (b) at the mid-

point for Ra=3,1x103 and RaCr=3x106 

 

For Rayleigh number smaller than RaCr = 3 × 106, the system 

is at fully stationary state. Beyond this critical value, the 

system bifurcates and indicates a periodic movement of the 

flow; see Figure 8 (b). 

 

 
(a) 

 

 
(b) 

 

Figure 8. Fourier spectra (a) of T and V and U (b) at the 

mid-point for Ra=3x106 

 

 
 

Figure 9. Variation of the square amplitude of U-velocity at 

the point (0.5,0.5) as function of Ra number 

 

It should be noted that the appearance of oscillatory 

instability is linked to the fact that the flow loses its stability 

through a Hopf bifurcation [21]. To make sure that this is a 

Hopf bifurcation type, we proceed as follows: for a 

supercritical Hopf bifurcation, the amplitude of the periodic 

solutions is proportional to (Ra − RaCr)1/2, so first we have 

calculated the supercritical solutions for different values of Ra 

in the vicinity of RaCr in order to avoid any amplitude 

modulation effect, then, we have examined the relation 

between the amplitude Aamp of the solutions and the number of 

Ra. Finally, we could extrapolate the results to Aamp = 0 to 

obtain RaCr. Figure 9 present the curve(𝐴𝑎𝑚𝑝
2 − 𝑅𝑎), in which 

quasi-linear relation could be obtained (the coefficient of 

determination of the fitting curve is R2 = 0.999 which 

represents high linear fitting degree with the obtained data), 

thus, confirms that the bifurcation is supercritical. The 
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extrapolation of this curve provides the Critical Rayleigh 

number which equal to RaCr = 3x106. 

 

 

τ0 

 

 

τ0+P/4 

 

 

τ0+P/2 

 

 

τ0+3P/4 

 

 

τ0+P 

 
(a) streamlines  (b) isotherms 

 
(c) one period of time 

 

Figure 10. Temporal evolution of (a) the streamlines and (b) 

the isotherms during (c) one oscillation period for RaCr 

 

 
 

Figure 11. Temporal evolution of U-velocity for RaCr and 

the corresponding energy spectra 

 

 

 
 

Figure 12. Temporal evolution of U-velocity for Ra =4 

x106and the corresponding energy spectra 

 

To determine the fundamental frequency and these 

harmonics characteristics, Fourier transform is used. To better 

explain the phenomenon and give some information on the 

spatial structure, we have analyzed the oscillatory evolution of 

the flow field and temperatures versus time.   Figure 10 shows 
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the streamlines and isotherms during one period. The 

oscillatory nature of the velocity U in the middle of the cavity 

for Ra = 3x106, indicates that the periodicity of the instabilities 

is related to the dilatation, the narrowing of the main and 

secondary cells and to the birth of new secondary cells. 

     The power spectrum for Ra = 3 × 106 and 4 × 106 shown in 

Figures 11 and 12 has been calculated from the temporal 

evolution of the horizontal velocity U in the middle of the 

cavity. This spectrum illustrates the presence of a base 

frequency ξ = 335.522 and ξ = 397.142 and their odd 

harmonics. As the critical Rayleigh number increases, the 

amplitudes of the oscillations become larger, while their 

periods δ become shorter, see Figure13 (an increase in the 

fundamental frequency). 

 

 
 

Figure 13. Temporal evolution of U-velocity for Ra =3 x106 

and Ra = 4 x106 

 

 

6. CONCLUSIONS 

 

In this study, stability of natural convection in 

symmetrically heated square cavity filled with air is 

investigated. The critical Rayleigh number in which a 

transition from a stationary to an oscillatory flow takes place 

is determined. 

The flow pattern at Ra=3.1x103 is perfectly symmetric 

consisting of two primary convective vortices and two weak 

vortices near the heated portions of the sidewall, which rotate 

in opposite directions. The intensity of both eddies in this flow 

regime is identical due to the symmetry in boundary conditions 

applied at the vertical walls, and the value of the stream 

function along the symmetry line is zero. 

For RaCr= 3x106, the flow bifurcates from a stable 

symmetric to stable asymmetric state. Hence, the onset of this 

bifurcation counted for the Rayleigh critical number of 3x106. 

At this critical value RaCr =3x106, instabilities arise due to the 

force competition between the main and the secondary 

vortices, causing the flow to lose symmetry and an oscillatory 

flow field prevails. The solution at this value of Rayleigh 

number is mono-periodic with one frequency f1=0.012, and 

the curve of V versus U is closed. 

As the critical Rayleigh number increases, the amplitudes 

of the oscillations become larger, while their periods δ become 

shorter (an increase in the fundamental frequency). 
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NOMENCLATURE 

 

g gravitational acceleration, m.s-2 

L width of the cavity, m 

Nu  local Nusselt number along the heat source  

P pressure, Pa 

Pr  Prandtl number  

Ra Rayleigh number 

t Dimentional time, s 

u, v Velocity component in x- and y- directions 

U, V Dimensionless velocity components 

x, y horizontal and vertical coordinates 

X, Y Dimensionless coordinates 

 

Greek symbols 

 

 

 thermal diffusivity, m2. s-1 

 thermal expansion coefficient, K-1 

λ thermal conductivity, W. M-1.K-1 

ρ density, kg. m3 

θ dimensionless temperature, (T-TC)/(Th-TC) 

υ fluid kinematic viscosity, kg. m-1.s-1 

ψ dimensional vorticity 

τ dimensionless time 

δ period 

ξ frequency 

 

Subscripts 

 

 

C cold temperature 

h hot temperature 

cr critical number 
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