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 The moisture diffusivity and activation energy of three tilapia fish varieties were determined 
under convective drying process (CDP). A locally fabricated drying system was used for the 
experiment at 60, 90/60 and 90 oC drying air temperatures. The drying rate showed falling rate 
period for all the drying processes with no sign of constant rate period. The moisture diffusivity 
values which increased with the increase in drying air temperature varied from 7.821 x 10-11 to 
4.591 x 10-10 m2/s. The predicted Arrhenius constant and activation energy were 2.221 x 10-10 
m2/s and 23.79 kJ/mol respectively. 

 
Keywords: 
Tilapia fish, convective drying, 
moisture diffusivity, activation energy 

 

 
 
1. INTRODUCTION 

 
Fish, due to its high protein content and nutritional value 

is being considered a crucial food component in people’s 
meal all over the world [1]. Reduction of moisture content 
from 80 to 25% will reduce autolytic activity and also 
prevent bacteria from surviving. However, further reduction 
of moisture content to 15% or less will stop mould growth 
during storage [2].  

Traditionally, drying of fish is usually done in the open 
sun on the rack or on a raised smoking platform or three 
stone stove where control of heat is difficult and at times 
impossible [3]. The traditional technique is characterized 
with shortcomings such as weather dependency, insect 
infestation, etc. and the result is usually unsatisfactory end 
products. However, if acceptable and suitable drying 
temperature(s) are adopted under a controlled environment, 
post-harvest losses incurred as a result of under-drying and 
over-drying would be greatly reduced.  

Heat and mass transfer, moisture diffusion and activation 
energy are the basic physical and thermal properties of 
agriculture materials necessary for ideal dryer design [4]. 
Moisture diffusivity is strongly dependent on temperature 
and the moisture content [5]. The level of   dependency of 
temperature on the diffusivity is usually described by the 
Arrhenius equation, and that of moisture content on 
diffusivity can be introduced in the Arrhenius equation by 
considering either the activation energy or the Arrhenius 
factor as an empirical function of moisture [5]. Designing 
and modelling of mass transfer processes such as 
dehydration, adsorption and desorption of moisture during 
storage needs knowledge of moisture diffusivity [6].  

Drying methods (simplified, regular regime and 
numerical solution methods) are one of the various 
techniques for determining experimentally moisture 
diffusivity in solids [5]. Moisture diffusivity is a transport 

property related to solid’s drying or dehydration phenomena. 
Diffusion in solids during drying may involve the following: 
molecular diffusion, capillary flow, Knudsen flow, 
hydrodynamic flow, or surface diffusion. Moisture 
diffusivity if accurately predicted can lead to optimization of 
the drying process [7] 

Several studies have been reported on modelling of 
drying kinetics, heat and mass transfer, moisture diffusivity 
and activation energy of fish [8,9,10, 11], other agricultural 
products under different drying conditions such as ginger 
[12], tomato [13], tomato leathers [14], grape leaves [15], 
olive pomace [16], rough rice [17], rumbutan seed [18], star 
fruit slices [19], cocoyam slice [20], pomegranate arils [6] 
and surface building materials [21]. However, no work 
seems to have been reported on the moisture diffusivity and 
activation energy of three tilapia fish varieties (mackerel, 
pilchard and herring) under a locally developed convective 
drying system. This study was therefore undertaken to 
determine the drying kinetics, moisture diffusivity and 
activation energy of three common tilapia fish varieties in 
Nigeria markets namely: mackerel (Scomber scomber spp.), 
pilchard (Sardina pilchardus spp.) and herring (Clupea 
harengus spp.) during convective drying process. 

 
 
2. MATERIALS AND METHODS 
 
2.1 Experimental set-up 

 
A locally fabricated convective drying system (shown 

pictorially and schematically as in Figurers 1 and 2) capable 
of operating at desired drying temperature and blower speed 
was used for the study. Major components of the drying 
system are well insulated drying chamber, drying cage with 
tray (made from stainless steel wire mesh of 2.8 mm 
diameter), a blower (to push the heated air into the drying 
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chamber) and a thermostat with sensor.  
 
2.2 Sample preparation 
 

Three common varieties of fresh tilapia fish in Nigeria 
market namely: Mackerel, Pilchard and Herring obtained 
from local fish market at Ibadan, Nigeria were used for the 
study. The frozen fish samples brought to the laboratory 
were washed thoroughly, head were cut-off. Later, the body 
without head was pre-treated by soaking in brine solution 
following the method described by [22]. Thereafter, the pre-
treated samples were thoroughly rinsed with clean water to 
prevent the salt crystal from depositing on fish surface as 
drying process progresses. The pretreated fishes were then 
arranged in single layer inside the pre-weighted mesh tray 
outside the drying chamber and left to drain for five minutes 
[23]. 
 
2.3 Drying procedure 

 
The drying experiments were conducted at Ibadan, 

Nigeria, latitude 7o 22.51 N and Long 3o 50.51 E at constant 
drying chamber temperature of 60, 90/60 (i.e. drying at high 
temperature at initial stage and later at lower temperature) 
[24] and 90oC. Selection of these temperatures was based on 
the submission of Raham [24] that the drying temperature of 
fish must be at or above 60oC to avoid microbial risk in the 
product. Each fish variety already pretreated and weighed 
was dried at constant drying time of 8 hrs (8 a.m to 4 p.m) 
[25] on separate day at 60, 90/60 and 90°C. In order to 
control drying air temperature, a thermostat with sensor 
(probe) was fixed to the wall of the drying chamber. At 
intervals of 30 minutes in each experiment, the tray was 
taken out and weighed quickly to measure moisture loss.  
 

 
1. Wooden handle 2. Drying chamber cover 3. Drying chamber 4. Blower 
housing 5. Supporting frame 6. Thermostat 7. Electric motor 8. Drying cage 
pulley 9. Electric switch  
 
Figure 1. Pictorial diagram of the convective drying system 

 
 

Figure 2. Schematic front view of the convective drying 
system 

 
2.4 Drying kinetics  
 

The moisture content on wet basis (Mt) was calculated 
according to [26] as:                                       
  
Mt = 𝑊𝑊𝑖𝑖−𝑊𝑊𝑏𝑏𝑏𝑏

𝑊𝑊𝑖𝑖
                                                                        (1) 

 
where Mt is the moisture content (% w.b.); Wi the initial 
weight of the sample (g) and Wbd the final weight of sample 
(g). 

The dimensionless variable of moisture ratio (MR) of fish 
was calculated according to [27] using: 

 
𝑀𝑀𝑀𝑀 =  𝑀𝑀𝑡𝑡−𝑀𝑀𝑒𝑒

𝑀𝑀𝑜𝑜−𝑀𝑀𝑒𝑒
                                                                 (2) 

 
where Mt, Mo and Me are the moisture content measured at 
time t, initial moisture content, and equilibrium moisture 
content respectively. The value of Me is very small 
compared to Mt or Mo for long drying time. Thus eqn. (2) 
can be simplified according to [28] as 
 
𝑀𝑀𝑀𝑀 =  𝑀𝑀𝑡𝑡

𝑀𝑀𝑜𝑜
                                                                        (3) 

 
The drying rate (DR) of fish was expressed using eqn. (4) 

[29, 30] as: 
 

𝐷𝐷𝑀𝑀 =  𝑀𝑀𝑡𝑡−𝑀𝑀 𝑡𝑡+𝑏𝑏𝑡𝑡
𝑑𝑑𝑑𝑑

                                                                  (4) 
 
where 𝑀𝑀𝑑𝑑+𝑑𝑑𝑑𝑑 is moisture content (g water/g wet solid) at t + 
𝑑𝑑𝑑𝑑, t is the drying time (hr) and 𝑑𝑑𝑑𝑑 is change in time (hr).   

The drying rate is defined as moisture diffusion from the 
inside to the outside layer. This can be explained by Fick’s 
second law of diffusion for unsteady state diffusion. 

 
2.5 Moisture diffusivity  
 

The moisture diffusivity is a general property of moist 
involving the following: liquid diffusion, vapour diffusion, 
hydrodynamic flow and other possible mass transfer 
mechanism [31]. Assume fish in the form of approximated 
slab, the Fick’s second law of diffusion adopted to fit the 
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experimental data for determining moisture diffusivity is 
expressed according to [15] as: 

 
  𝜕𝜕𝑀𝑀
𝜕𝜕𝑑𝑑

= 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒∇2                                                             (5) 
 

The analytical solution of eqn. (5) for slab geometry using 
the following assumptions: uniform initial moisture 
distribution, negligible external resistance, constant 
diffusivity and negligible shrinkage [32] is given as:  

 

𝑀𝑀𝑀𝑀 = 8
𝜋𝜋2
∑ 1

2𝑛𝑛−1
∞
𝑛𝑛=1 exp �(2𝑛𝑛−1)2𝜋𝜋2 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑

4𝐿𝐿2
�              (6) 

 
where L is sample’s half-thickness (m), t is the drying time 
(s), n is a positive integer and Deff is the moisture diffusivity. 
Linearizing eqn. (6) [29, 33] as follows: 
 

𝑙𝑙𝑙𝑙 (𝑀𝑀𝑀𝑀) = 𝑙𝑙𝑙𝑙 � 8
𝜋𝜋2
� − � 𝜋𝜋2𝑑𝑑 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒  

4𝐿𝐿2
�                          (7) 

 
The slope of the curve from the plots of ln MR data 

against time data is constant of the above linear equation 
(eqn.7) and the moisture diffusivity was calculated using: 
 
𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠 ×  4𝐿𝐿

2

𝜋𝜋2
                                                    (8) 

 
The moisture diffusivity can also be calculated using the 

Arrhenius equation: 
 

𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐷𝐷 𝑠𝑠𝑒𝑒𝑠𝑠 �− 𝐸𝐸
𝑅𝑅𝑅𝑅
�                                                         (9) 

 
where D is the pre-exponential factor of the Arrhenius 
equation (Arrhenius constant) (m2/s), E is activation energy 
(kJ/mol), R is universal gas constant (8.314 J/mol.K), T is 
absolute temperature (K). 
 
2.6 Activation energy 

 
The Microsoft Excel SOLVER tool was used for the 

prediction of the Arrhenius constant and activation energy.  
 
 

3. RESULTS AND DISCUSSION 
 
3.1 Drying kinetics 
 

Figures. 3-5 show variation in moisture content with the 
time during the convective drying experiments of three 
tilapia fish species at 60, 90/60 and 90 °C drying 
temperature. From the Figurers, the moisture content 
continuously decreases as drying process progresses. At 60 
oC, the initial moisture content of mackerel, pilchard and 
herring within 8 hrs of drying, reduced from 66.3, 67.3 and 
66.2% w.b. to 13.0, 16.5 and 14.7% w.b respectively. 
Similarly, at 90/60 oC and 90 oC, the initial moisture content 
of the three tilapia fish species reduced within the same 
period (8 hrs) from 73.0, 70.6 and 65.2% w.b.; and 68.3, 
71.1 and 66.1 w.b. to 16.3, 17.9 and 13.5%; and 12.4, 14.6 
and 12.3% respectively. The drying curves indicate absence 
of constant rate drying period. The drying process 
dominantly occurred under falling rate period. The 
continuous decrease in moisture content is an indication that 
diffusion is the physical mechanism governing the internal 

mass transfer. This is in congruent with the results of study 
on silverside fish [4], prawn and chelwa fish [22] and 
pomegranate arils [6].  

 
 

Figure 3. Moisture content as a function time at 60oC drying 
temperature 

 
 

Figure 4. Moisture content versus drying time at 90/60oC 
drying te temperature 

 
 

Figure 5. Moisture content versus drying time at 90oC 
drying temperature 

 

 
 

Figure 6. Drying rate as a function time at 60oC drying 
temperature 
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Figure 7. Drying rate as a function time at 90/60oC drying 
temperature 

 

 
                

Figure 8. Drying rate as a function time at 90oC drying 
temperature 

 
Figures 6-8 depict the relationship between the drying 

rate and time. The highest drying rate curves were observed 
in Figurer 8 (i.e. at 90oC drying temperature) as compared to 
two other Figurers (Figure 6 and 7). The highest drying rates 
obtained at 90oC drying temperature were 0.291, 0.253 and 
0.246 g/g wet solid min. for pilchard, herring and mackerel 
respectively. The interpretation of the results is that the 
higher the drying temperature, the faster the drying rate. 
 
3.2 Moisture diffusivity and activation energy 

 
Figures 9-11 present the variation of logarithm of 

moisture ratio with drying time at 60, 90/60 and 90 oC 
drying air temperature. From the Figures, the logarithm of 
moisture ratio decreased with the increase in drying time. 
The coefficient of determination (R2) at 60, 90/60 and 90 oC 
drying air temperature for the three tilapia fish species 
(mackerel, pilchard and herring) were 0.982, 0.971 and 
0.994; 0.997, 0.969 and 0.996; and 0.903, 0.811 and 0.746 
respectively. The calculated effective diffusivities for the 
fish species are shown in Table 1. It is clearly evident from 
Table 1 that the increase in drying temperature resulted to 
increase in moisture diffusivity. The calculated moisture 
diffusivity value ranged between 7.821 x 10-11 and 4.591 x 
10-10 m2/s. The values of Deff obtained from this study are 
within the general range 10-12 to 10-8 for drying of food 
materials [34]. The predicted Arrhenius constant and 
activation energy were 2.221 x 10-10 m2/s and 23.79 kJ/mol 
respectively. The moisture diffusivity and activation energy 
values were in reasonable agreement with 0.11 and 0.25 x 
10-9 m2/s and 20.32 kJ/mol for fish; 1.7 x 10-10   and 1.15 x 
10-9 m2/s and 29.35 to 33.78 kJ/mol for apricot fruit; 7.14 x 
10-9 and 3.70 x 10-8 m2/s and 11.797 to 33.318 kJ/mol for 

asparagus root reported by [35], [36] and [37]. Also, the 
predicted activation energy falls within the range 12.7 to 
110 kJ/mol reported by [38] for various foods. The sum of 
square error SSE and root mean square error RMSE of the 
calculated and predicted moisture diffusivity were 3.8756 x 
10-39 and 1.1142 x 10-10 m2/s. 

 
 

Figure 9. Variation of ln MR with time at 60 oC drying 
temperature 

 
Figure 10. Variation of ln MR with time at 90/60oC drying 

temperature 

 
 

Figure 11. Variation of ln MR with time at 90oC drying 
temp 

 
Table 1. Calculated moisture diffusivity Deff (m2/s)  

 
Fish 

species 
 Drying temp. 

oC 
Moisture diffusivity 

m 2/s 
Mackerel  60 1.133E-10 
Pilchard  60 1.159E-10 
Herring  60 7.821E-11 

Mackerel  (90/60) 2.561E-10 
Pilchard  (90/60) 1.961E-10 
Herring  (90/60) 2.397E-10 

Mackerel  90 4.591E-10 
Pilchard  90 3.183E-10 
Herring  90 2.397E-10 

 
Also, the moisture diffusivity values obtained lie within 
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the range 5.997 and 3.358 x 10-10 m2/s, 5.997 and 3.358 x 10-

10 m2/s, 5.18 and 6.58 x 10-10; 11.11 and 8.708 x 10 -11 m2/s; 
4.13 x 10-10 and 1.83 x 10-9 m2/s and 3.43 x 10-10 and 29.19 x 
10-10 m2/s reported by [10], [11], [6], [39], [15] and [40] 
during solar dying of salted catfish; Microwave heating of 
sardine fish, microwave-vacuum drying of pomegranate 
arils, open sun drying of fish, cabinet drying of grapes leave 
and microwave drying of pomegranate arils respectively.   
 
 
4. CONCLUSION 

 
Moisture diffusivity and activation energy of three locally 

available tilapia fish species in Nigeria market were 
investigated and determined under three different drying 
temperatures. The following results were drawn from the 
experiments. 

 
• The highest drying rates were observed during the 

convective drying process at 90 oC drying temperature. 
• The calculated moisture diffusivity value ranged between 

7.821 x 10-11 and 4.591 x 10-10 m2/s. 
• The predicted Arrhenius constant and activation energy 

were 2.221 x 10-10 m2/s and 23.79 kJ/mol respectively.   
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NOMENCLATURE 
 
Deff              moisture diffusivity (m2/s)                                              
D          Arrhenius constant (m2/s)                                                   
DR        drying rate (g H2O/g wet solid h)                                                                                       
E        activation energy (kJ/mol)                                                 
L        half thickness of slab (mm)                                  
M        moisture content (%)                                                       
MR        moisture ratio (dimensionless) 
R        Universal gas constant (8.314 J/mol.K) 
T        temperature (K) 
W                  weight of sample (g) 
 
Subscripts 
 
dt                 change in time (hr) 
e                    equilibrium 
f                    final 
i                    initial 
m                  moisture 
t        drying time (hr)
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