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 A rigorous analysis of unsteady electrically conducting nanofluid with MHD effect is 

presented. First, the governing partial differential equations for momentum and energy 

conservation are converted to couple nonlinear ordinary differential equations by means of 

exact similarity transformation. The Tiwari-Das nanofluid model is employed to obtain the 

analytical approximations for flow velocity and temperature distributions of alumina-sodium 

alginate nanofluid using HAM. The solution is found to be dependent on some parameters 

including the nanoparticle volume fraction, unsteadiness parameter, magnetic parameter, 

mixed convection parameter and the generalized Prandtl number. A systematic study is carried 

out to illustrate the effects of these parameters on the velocity and temperature distributions. 

Also, the value of skin friction coefficient and local Nusselt number are evaluated with 

variation of Prandtl number and compared with different nanoparticles. 
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1. INTRODUCTION 

 

Nanofluid is formed by colloidal suspension of nanometer-

sized solid particles (1-100nm diameter) into conventional 

liquids such as water, ethylene glycol, or oil. Firstly, the word 

“nanofluid”' was introduced by Choi [1-2], that represent the 

new class of fluid in which nanometer-scale particles are 

dispersed into conventional liquids. The thermal conductivity 

of base fluid can be increased up to 40 percent with low 

concentration (1-5% by volume) of nanoparticles in order to 

acheive higher heat transfer efficiency [3-4]. Xuan [3] 

increased the thermal conductivity of copper-water nanofluid 

upto 43% using hot wire method. Polyvinyl pyrrolidone, 

laurate salt and oleic acid are used as stabilizer to increase the 

stability of nanofluid [5-6].  

Such flow occurs in various fluid engineering applications 

including submarine flow, turbo-machinery, aerofoil and oil 

ships. Hiemenz [7] introduced the stagnation point flow on the 

solid surface and reduced the Navier-Stokes equation into non-

linear ODE using similarity transformation. The study of 

stagnation flow in viscous boundary-layer in two-dimensional 

or axisymmetric stagnation region has gained attention by 

several researchers which have studied in the literature [8-11]. 

These studies were presented the basic behavior of viscous 

flow in stagnation region and applicability of similarity 

transformation with high accurate approximations.  

Ramachandran et al. [12] presented the value of local 

Nusselt number and skin friction coefficient for laminar mixed 

convection flow of two-dimensional Navier-stokes equation 

with base fluid as water. Devi et al. [13] computed Nuxand 

Rex1/2Cfwith variation of Pr for mixed convective boundary-

layer flow on vertical flat surface and Ishak et al. [14] showed 

same parameters with magnetohydrodynamic (MHD) effect 

on vertical surface flow with different Prandtl number. Later 

on, the same rheological problem studied for convective 

surface under the effect of magnetic field [15-16]. 

 Sadoughi et al. [17] applied Reconstruction of Variational 

Iteration Method (RVIM) to find the solution of MHD 

boundary layer incompressible flow of AL2O3 nanofluid over 

a horizontal flat plate with base fluid as water and Alminium-

oxide as nanoparticle. Amit and Habib-Olah [18] approximate 

analytical solutions of the MHD flow and heat transfer of a 

nanofluid using the differential transform method and Padè 

approximation method. Nandeppanavar [19] presented the 

analytical solutions for nonlinear boundary value problem 

under effects of the various governing parameters for the cases 

of Cu-water nanofluid and the Ag-water nanofluid. 

HAM overcomes the limitations of perturbation methods as 

it provides freedom to choose an auxiliary parameter (ћ) which 

leads to increase in the convergence results. The solution to a 

condensation film in three dimensions on an inclined rotating 

disk was analytically done by Rashidi et al. [28]. Ziabakhsh et 

al. [29] applied HAM to compute the solution of 

hydromagnetic viscous flow.  

This paper presents the velocity and flow analysis with 

influence of various parameters viz. nanoparticle volume 

fraction, unsteadiness parameter, magnetic parameter, mixed 

convection parameter and the generalized Prandtl number (Pr) 

for sodium alginate nanofluid with different nanoparticles. 

The values of skin-friction coefficient and local Nusselt 

number for nanofluid are tabulated with different Prandtl 

number and compared from different nanoparticles as copper 

(Cu) and titanium dioxide TiO2 for sodium alginate nanofluid. 

The residual error illustrates the simplicity and accuracy of 

HAM. 
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2. PROBLEM STATEMENT AND MATHEMATICAL 

MODEL 

 

The x axis is measured along the normal of wedge and in 

positive direction from the wedge to the nanofluid whereas y 

axis is considered along the wedge surface. The flow velocity 

is considered by V∞=by/(1-at) and the stretching/shrinking 

velocity of wedge is assumed by vw(y, t)=cy/(1-at), where c 

denotes the stretching/shrinking rate with c<0 or c>0 for 

shrinking or stretching wedge surface condition respectively, 

b is constant and a>0 shows the stagnation flow strength. The 

surface temperature (Tw) is defined as Tw (y, t) =T∞+T0y/(1-

at)2. Lok et al. [30] showed that the assisting flow occurs due 

to the heated upper half plate and the reason of opposing flow 

is cooled lower half plate. That's why the flow move upward 

near the heated wedge and tends to move down near the cooled 

wedge, see figure 1.  

Tiwari and Das [31] presented the MHD nanofluid model 

with the assumption that the base fluid (sodium alginate) is in 

thermal equilibrium with nanoparticle, the governing 

equations for mass, momentum and energy in cartesian 

coordinates are 
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The appropriate boundary conditions are 
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Figure 1. Coordinate system of flow configuration 

 

Using generalized Bernoulli's equation, Eq. (2) will be as 

follows 
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By substituting Eq. (5), Eq. (2) can be presented as 
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Table 1. Thermophysical properties of base fluid and 

nanoparticles [24] 

 
 CP ρ k α x 107 β x 10−5 

Sodium 

Alginate 
4175 989 0.6376 1.62 23 

Copper 385 8933 400 1163.1 1.67 

Titanium 

dioxide 
686.2 4250 8.954 30.7 0.9 

Alumina 765 3970 40 131.7 0.85 

 

The viscosity (µnf), thermal diffusivity (αnf), density (ρnf) 

and heat capacitance (ρ Cp) nf of nanofluid are defined as 
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The thermal conductivity of nanofluid (knf) are given by 

Maxwell-Garnett model [32], which is presented as follows 
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The development process of this model exhibit the 

transformation of governing equations to 𝑛,   system. The 

similar variable 𝑛 involves both x and y, while   is related to 

x alone. Therefore, we assume  =0 for any stream-wise 

location and f is the function of only variable 𝑛. To proceed, 

we adopt the following similarity transformations.  

The physical stream function is introduced as 
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The dimensionless temperature is defined as 
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The transformed similar variable is 
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The stream function can be defined by 
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Using stream function, the velocity component u and v can 

be derived as follows 
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The surface mass flux Uw
* is transformed in term of wall 

transpiration parameter: 
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The mass conservation equation (1) is identically satisfied 

with stream function. Under the transformation (7)-(18), the 

momentum equation (6) and energy conservation equation (3) 

reduce to the following nonlinear ordinary differential 

equation: 
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which are subjected to the transformed boundary conditions: 
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The buoyancy or mixed convection parameter λ , local 

Grashof number (Gry) and Reynold number are defined as 
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The skin-friction coefficient is defined as 
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and the local Nusselt number is defined as 

 

)( −
=

TTk

yQ
Nu

wf

w
y

                                                     (26) 

 

where the wall shear stress w can be written as 
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and the heat flux Qw is 
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Using similarity variables Eq. (12)-(17), the skin-friction 

coefficient and Nusselt number can be presented in the form 
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3. HAM SOLUTIONS 

 

The initial guess f0(𝑛) and 𝜃 ( 𝑛) of the transformed Eqs. (19) 

and (20) are choosen for HAM solutions as follows 
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and we consider the linear operators: 
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Introducing a embedding parameter q and convergence-

control parameter h, the zeroth-order deformation equations 
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For q=0 and q=1, we have respectively 
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f(𝑛;p) varies from f0(𝑛) to f(𝑛) and 𝜃 (𝑛;p) varies from 𝜃 0 

(𝑛) to 𝜃 (𝑛), when q increases from 0 to 1. Using Eqs. (51)-

(52) and Taylor's theorem, f(𝑛;q) and f( 𝑛;q ) can be presented 

in a power series form.  In which the nonlinear operators are 

presented as 
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In which the auxiliary parameter is selected such the series is 

convergent at q=1. Liao [26] pointed out that the convergence-

region depends on a convergence-control parameter  .Then,  
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The $m$th-order deformation equations: 
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we consider the auxiliary function as Hf(η), HƟ(η) =1. The 

calculation is made for sodium alginate nanofluid with 

alumina as nanoparticle with Pr=6.2. The parameters of 

nanofluid are assumed as A=0.5, λ=1, M=1, Uw =0.5 and 

φ =0.2 to obtain the solution of coupled equations with 

appropriate boundary conditions. 
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Similarly, the computation of 15th order approximation of 

HAM is executed on MATHEMATICA 7.0 software with 

BVPh 2.0 package. Convergence the of HAM solutions 

 

 

4. CONVERGENCE OF HAM SOLUTIONS 

 

The family of solutions presented by HAM is expressed in 

the form of an auxiliary parameter. The convergence region 

and rate of approximation strongly depends on the 

convergence-control parameter h, as stated by Liao [27]. Fig. 

2 depicts the h -curves of dimensionless velocity & 

temperature obtained from Eqs. (19) and (20) based on the 

10th order approximation.  

To find out an optimal value of a convergence-control 

parameter  the averaged residual square error can be written  
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where   x=10/K, K=20 for transformed Eqs. (19) and (20). 

The optimal value of h is evaluated by minimizing the average 

residual square error Em corresponding to the transformed 

nonlinear equations 
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Figure 2. The h curves of dimensionless velocity and 

dimensionless temperature for alumina-sodium alginate 

nanofluid with A = 0.5, M = 1, Uw = 0.5, ε = 0, P r = 6.2, φ = 

0.2, λ = 1 

 

Table 2. Acceptable values of h for alumina-sodium alginate 

nanofluid with A = 0.5, M = 1, Uw = 0.5, P r = 6.2, φ = 0.2, λ 

= 1 

 

Series Acceptable range 

f’(η) 

θ (η) 

−0.25 ≤   ≤ −0.05 

−0.18 ≤   ≤ −0.1 
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Table 3 exhibit the comparison of the averaged residual 

square error and optimal value of h for velocity and 

temperature distributions of alumina-sodium alginate 

nanofluid with increasing the order of approximations. 

 

Table 3. Optimal value of n for alumina-sodium alginate 

nanofluid with A = 0.5, M = 1, Uw = 0.5, P r = 6.2, φ = 6.2, λ 

= 1 

 

N 
f’(η) 

optimal   

f’(η) 

El,f 
 optimal     El,   

1 −0.2432 0.68499 −0.1729 2.1767 x 10−2 

2 −0.2385 0.16878 −1.31615 0.1735 x 10−2 

3 −0.2174 0.15924 −1.38356 0.1587 x 10−2 

 

 
 

Figure 3. Residual error for non-dimensional velocity for 

alumina-sodium alginate nanofluid with A = 0.5, M = 1, 

Uw = 0.5, ε = 0, P r = 6.2, φ = 0.2, λ = 1 

 

 
 

Figure 4. Residual error for non-dimensional temperature for 

alumina-sodium alginate nanofluid with A = 0.5, M = 1, Uw = 

0.5, ε = 0, P r = 6.2, φ = 0.2, λ = 1 

 

Table 4. The values of skin friction coefficient and local 

Nusselt number for alumina-sodium alginate nanofluid with 

various values of P r when A = 0, ε = 0, M = 0, Uw = 0, φ = 0, 

λ = 1 

 
Pr Rex

1/2Cf NuxRex-1/2
 

0.7 1.8573 0.8521 

1 1.7520 0.8872 

7 1.7385 1.8036 

10 1.6214 2.0145 

20 1.5501 2.7326 

40 1.4623 3.2214 

50 1.3986 3.7048 

The accuracy and validity of the HAM can be demonstrated 

by the residual square error curves which are plotted in figure 

3 and figure 4 for f ' and 𝜃 with several values of auxiliary 

parameter for alumina-sodium alginate nanofluid. Table 4 

exhibit the value of skin fiction coefficient and local Nusselt 

number for different values of Prandtl number in order to 

illustrate the validity and efficiency of HAM. 

 

 

4. RESULTS AND DISCUSSIONS 

 

HAM has been effectively applied to evaluate the analytical 

solution for transformed nonlinear ordinary differential 

equations (19)-(20) describing boundary-layer flow and heat 

transfer for MHD mixed convection nanofluids with some 

values including wall transpiration parameter (Uw), mixed 

convection parameter λ, velocity ratio parameter (ε), 

nanoparticle volume fraction (φ), unsteadiness parameter (A) 

and magnetic parameter (M). In order to illustrates the effects 

of these parameters, the velocity and temperature profile has 

been presented from figures (5)-(16) for alumina-sodium 

alginate nanofluid using 15th-order of approximation. The 

value of Prandtl numberis considered as 6.2 (for water) and the 

range of nanoparticle volume fraction parameter varies from 0 

(Newtonian fluid) to 0.2 as pointed out by Oztop and Abu-

Nada [32].  

Table (5)-(7) present the values of skin friction coefficient 

and local Nusselt number with nanoparticle volume fraction 

(φ) in case of stretching/shrinking sheet and asssist- 

ing/opposing flows. Tables reveal that value of skin friction 

coefficient and local Nusselt number are higher for Cu as 

nanoparticle compared to Al2O3 and TiO2 nanoparticles. 

 

 

 

Figure 5. The velocity distribution for alumina-sodium 

alginate nanofluid for different values of mixed convection 

and magnetic parameters with A = 0.5,  

Uw = 0.5, ε = 0, P r = 6.2, φ = 0.2 

 

 
 

Figure 6. The temperature distribution for alumina-sodium 

alginate nanofluid for different values of mixed convection 

and magnetic parameters with A = 0.5,  

Uw = 0.5, ε = 0, P r = 6.2, φ = 0.2 
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Figure 7. The velocity distribution for alumina-sodium 

alginate nanofluid for different values of mixed convection 

and unstediness parameters with M = 1,  

Uw = 0.5, ε = 0, P r = 6.2, φ = 0.2 

 

 
 

Figure 8. The temperature distribution for alumina-sodium 

alginate nanofluid for different values of mixed convection 

and unstediness parameters with M = 1, Uw = 0.5, ε = 0, P r = 

6.2, φ = 0.2 

 

 
 

Figure 9. The velocity distribution for alumina-sodium 

alginate nanofluid for different values of magnetic and 

velocity ratio parameters with A = 0.5, Uw = 0.5, λ = 1, P r = 

6.2, φ = 0.2 

 

 
 

Figure 10. The temperature distribution for alumina-sodium 

alginate nanofluid for different values of magnetic and 

velocity ratio parameters with A = 0.5, Uw = 0.5, λ = 1, P r = 

6.2, φ = 0.2 

 

 
 

Figure 11. The velocity distribution for alumina-sodium 

alginate nanofluid for different values of unsteadiness and 

velocity ratio parameters with M = 1, Uw = 0.5,  

λ = 1, Pr = 6.2, φ = 0.2 

 

 
 

Figure 12. The temperature distribution for alumina-sodium 

alginate nanofluid for different values of unsteadiness and 

velocity ratio parameters with M = 1, Uw = 0.5, 

 λ = 1, P r = 6.2, φ = 0.2 
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Figure 13. The velocity distribution for alumina-sodium 

alginate nanofluid for different values of magnetic and wall 

transpiration parameters with A = 0.5, ε = 0, λ = 1, P r = 6.2, 

φ = 0.2 

 

 
 

Figure 14. The temperature distribution for alumina-sodium 

alginate nanofluid for different values of magnetic and wall 

transpiration parameters with A = 0.5, ε = 0, λ = 1, P r = 6.2, 

φ = 0.2 

 

 
 

Figure 15. The velocity distribution for alumina-sodium 

alginate nanofluid for different values of unsteadiness and 

wall transpiration parameters with M = 1, ε = 0, 

 λ = 1, P r = 6.2, φ = 0.2 

 

 
 

Figure 16. The temperature distribution for alumina-sodium 

alginate nanofluid for different values of unsteadiness and  

wall transpiration parameters with M = 1, ε = 0, λ = 1, P r = 

6.2, φ = 0.2 

Table 5. The effect of the nanoparticle volume fraction on 

the skin friction coefficient and local Nusselt number for 

copper-sodium alginate nanofluid with A = 0.5, M = 1, Uw= 

0.5 

 

Parameters 

λ=1 λ=-1 

𝜑 
𝜀
= −0.5 

𝜀
= 0.5 

𝜀
= −0.5 

𝜀
= 0.5 

 

Re1/2Cf            0.00      3.0254     1.7859      2.8435      1.0527 

                    0.10     4.7987     2.0231      3.7231      1.7868 

                    0.20     5.6254     2.8457      5.2428      2.0135 

NuxRex
-1/2    0.00      4.7135     5.7134     4.4237      5.5668 

                    0.10     4.5387     6.0241     4.8268      6.0258 

                     0.20     5.0264    6.8763      5.0214      6.7174      

 

Table 6. The effect of the nanoparticle volume fraction on 

the skin friction coefficient & local Nusselt number for 

alumina-sodium alginate nanofluid A = 0.5, M = 1, Uw= 0.5 

 

Parameters 

λ=1 λ=-1 

𝜑 
𝜀
= −0.5 

𝜀
= 0.5 

𝜀
= −0.5 

𝜀
= 0.5 

 

Re1/2Cf            0.00      3.0254     1.7859      2.8435      1.0527 

                   0.10      4.4632     1.7123      3.4037      1.4478 

                   0.20      4.8724     2.0145      4.9521      1.7137 

NuxRex
-1/2    0.00      4.7135     5.7134     4.4237      5.5668 

                    0.10     4.3375     5.6214      4.5107      5.9807 

                    0.20     4.8547     6.1114      4.5301      6.2528     

 

Table 7. The effect of the nanoparticle volume fraction on 

the skin friction coefficient & local Nusselt number for 

titania-sodium alginate nanofluid A = 0.5, M = 1, Uw= 0.5 

 

Parameters 

λ=1 λ=-1 

𝜑 
𝜀
= −0.5 

𝜀
= 0.5 

𝜀
= −0.5 

𝜀
= 0.5 

 

Re1/2Cf            0.00      3.0254     1.7859      2.8435      1.0527 

                   0.10      4.5874     1.9852      3.8737      1.6897 

                   0.20      5.2548     2.2647      5.0021      1.8962 

NuxRex
-1/2    0.00      4.7135     5.7134     4.4237      5.5668 

                    0.10     4.2958     5.5237      4.2790      5.7502 

                    0.20     4.6250     6.0124      4.3875      6.0125     

 

 

5. CONCLUDING REMARKS 

 

Based on the results and discussions on the MHD nanofluid 

flow over a stretching/shrinking sheet, the following 

conclusions have been arrived for alumina-sodium alginate 

nanofluid: 

(1) With increase in magnetic parameter as well as 

unsteadiness parameter, the velocity increases whereas the 

temperature decreases. 

(2) With increase in Grashof number and mixed convection 

parameter, the temperature decreases whereas the velocity 

increases. 

(3) With increase in velocity ratio parameter (ε), the 

velocity increases whereas the temperature decreases but the 

magnetic parameter and unsteadiness parameter strongly 

affect the velocity and temperature distribution in the case of 

stretching sheet. 
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(4) With increase in wall surface transpiration parameter, 

the velocity increases whereas the temperature decreases but 

the magnetic parameter and unsteadiness parameter strongly 

affect the velocity and temperature distribution in the case of 

suction compared to injection. 

(5) The tabulated results presented the highest value of skin 

friction and local Nusselt number for copper-sodium alginate 

nanofluid as compared to alumina-sodium alginate and titania-

sodium alginate nanofluids. 

The results show the simplicity, efficiency and accuracy of 

HAM for evaluating various kind of rheological problems 

arising in fluid dynamics 
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NOMENCLATURE 

 

A unsteadiness parameter 

a,b,c constant 

ag 

Cf 

acceleration due to gravity 

skin-friction coefficient 

F magnetic field 

f (η) 

Gry 

k 

M 

Nuy 

Pr 

Qw 

Rey 

T 

T0 

T∞ 

Tw(y,t) 

u,v 

Uw 

Uw
* 

V∞(y,t) 

Vw(y,t) 

dimensionless stream function 

local Grashof number 

thermal conductivity 

magnetic parameter 

local Nusselt number 

Prandtl number 

surface heat flux 

local Reynold number 

nanofluid temperature 

characteristic temperature 

ambient temperature 

surface temperature 

velocity component 

wall surface transpiration temperatue 

uniform surface mass flux 

free stream velocity 

surface velocity 

x, y 

 

Greek symbols 

 

cartesian coordinates 

 

 

 thermal diffusivity 

 

η 

λ 

µ 

 

Ψ 

ρ 

σ 

τw 

θ(η) 

υ 

ε 

 

thermal expansion coefficient 

similarity variable 

mixed convection parameter 

dynamic viscosity 

nanoparticle volume fraction 

stream function 

fluid density 

electrical conductivity 

wall shear stress 

dimensionless temperature 

kinematic viscosity 

velocity ratio parameter 

 

Subscripts 

 

 

∞ ambient condition 

f base fluid 

Nf 

s 

w 

nanofluid 

solid nanoparticle 

condition at the surface of wedge 

 

Superscripts 

 

 

‘ Prime denotes the derivative with 

respect to η 
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