
Phishing Website Detection Using Machine Learning Classifiers Optimized by Feature

Selection

Dželila Mehanović*, Jasmin Kevrić

Department of Information Technologies, International Burch University, Sarajevo 71000, Bosnia and Herzegovina

Corresponding Author Email: dzelila.mehanovic@ibu.edu.ba

https://doi.org/10.18280/ts.370403 ABSTRACT

Received: 13 May 2020

Accepted: 10 August 2020

Security is one of the most actual topics in the online world. Lists of security threats are

constantly updated. One of those threats are phishing websites. In this work, we address the

problem of phishing websites classification. Three classifiers were used: K-Nearest

Neighbor, Decision Tree and Random Forest with the feature selection methods from Weka.

Achieved accuracy was 100% and number of features was decreased to seven. Moreover,

when we decreased the number of features, we decreased time to build models too. Time for

Random Forest was decreased from the initial 2.88s and 3.05s for percentage split and 10-

fold cross validation to 0.02s and 0.16s respectively.

Keywords:

classification, Decision Tree, feature

selection, K-Nearest Neighbors, phishing

website detection, Random Forest

1. INTRODUCTION

The Internet is widely used among people and it has become

an inseparable part of our life. Therefore, huge amounts of data

are exchanged. Those users could be more or less experienced

using the web. But, nevertheless, nobody is safe from the huge

threat that is available there outside. Those threats are phishing

websites that are hard to differentiate from the original ones.

These websites are used to collect personal and confidential

user data that usually should be protected. Later, information

is misused and people are experiencing consequences. Some

of the consequences could be identity loss or financial debts.

Statistics for 2019 states that 15% of those who were

successfully attacked will be attacked at least one more time

within a year. Number of phishing attacks increased by 65%

in respect to 2018 and around 1.5 million of phishing websites

were created each month [1]. Almost one third of all data

breaches in 2017 were due to phishing attacks. Approximately

55% of phishing websites in 2019 used SSL certificates [2].

Research also shows that 33% of people closed their business

after a phishing attack [3].

The problem with phishing attacks is not only that they are

increasing, but also, they are improving and becoming more

sophisticated. Due to that, it is necessary to develop systems

that will help in detection of these phishing websites to prevent

negative outcomes. Therefore, in this work we want to develop

an intelligent system that will be used to detect phishing

websites. We are going to use machine learning algorithms for

classification such as K-Nearest Neighbor (KNN), Decision

Tree and Random Forest (RF).

The rest of the work is organized as follows: in section two,

we are giving overview of several works related to the

phishing websites detection. Section three and four provide

details about the database and methodologies, respectively.

Results are presented in section five. We conclude our work

with section six.

2. LITERATURE REVIEW

Web phishing is a serious security threat that is present in

the Internet. Sensitive financial and personal information are

taken from the users thanks to the phishing websites. These

websites look like legitimate websites and they are used to

gather private data. Therefore, phishing attacks use

weaknesses of the user and it is hard to reduce those, but it is

important to work on detection techniques improvement. In

this section we present several works related to detection of

phishing websites.

Salihovic et al. [4] applied Artificial Neural Networks,

Logistic Regression, Random Forest, Support Vector Machine,

k-Nearest Neighbor and Naive Bayes on UCIs phishing

websites dataset. In the first experiment they used the original

dataset which had 31 attributes. Therefore, in the second

experiment, authors applied feature selection using

BestFirst+CfsSubsEvaluation and Ranker+Principal

Components feature selection optimizers. In the first

experiment, Random Forest achieved the highest accuracy

equal to 97.33%. First optimizer reduced the number of

attributes in the phishing dataset to 10 and accuracy was

decreased by 1.53% on average. Second optimizer, Ranker

reduced the phishing dataset for only one attribute. Accuracy

has been increased for Random Forest and Support Vector

Machine, while it was decreased by 0.09% for other

algorithms. Also, they applied the same method with spam

emails dataset and Random Forest had the best performance.

So, they proved that it is possible to use the same algorithm for

both datasets.

Yi et al. [5] proposes a method which detects phishing

websites. Detection model is based on a deep belief network

(DBN). Two types of features are used: original and

interaction features. Original features are those directly related

to the websites, while interactive features include features

related to the interaction between websites such as in-degree

and out-degree of URL. To test DBN real IP flows data are

used. Dataset includes traffic flow for 40 minutes and 24 hours.

Traitement du Signal
Vol. 37, No. 4, August, 2020, pp. 563-569

Journal homepage: http://iieta.org/journals/ts

563

https://crossmark.crossref.org/dialog/?doi=10.18280/ts.370403&domain=pdf

Features like IP address, access time, URL, request page

source, user agent and user cookie are extracted. Information

about each node is collected and connected to the graph.

Contrastive Divergence algorithm is used as a training

algorithm. In the final experiment there are three parameters

that were changed to find the best combination. Those are the

number of layers, number of iterations per layer and number

of hidden layers. Approximate true positive rate is

approximately 90%. The highest detection rate is achieved

with two layers, as the number of layers increases, accuracy

decreases. Optimal number of iterations is 250 and the number

of hidden layers is between 20 and 40.

Mahajan and Siddavatam [6] present a method for

improvement of phishing websites detection. Dataset contains

URLs of legitimate and phishing websites. Legitimate URLs

are collected from www.alexa.com and phishing URLs are

collected from www.phishtank.com. Python program is used

to extract features from these URLs. Extracted features are

presence of IP address in the URL, presence of @ in the URL,

number of dots in hostname, prefix or suffix separated by - to

domain, URL redirection, HTTPS token in URL, length of

host name, number of slash in URL, presence of unicode in

URL, age of SSL certificate, URL of anchor, iframe and

website rank. Applied algorithms are decision trees, random

forests and support vector machines. Dataset is divided into

training and testing dataset in ratio 50:50, 70:30 and 90:10. For

implementation of the experiment, the authors used the Scikit-

learn tool. The highest accuracy 97.14% is achieved using

Random Forest. Also, accuracy increased by increasing the

number of instances in the training dataset. For the future work,

authors are planning to implement hybrid solutions which will

combine machine learning algorithms and blacklist methods.

Ali [7] used a wrapper features selection method to detect

phishing websites. Author used a dataset from UCI Machine

Learning Repository which has 4898 phishing websites which

is 44% and 6157 legitimate websites which is 56% of all data.

There are 30 features that are recognized as key features and

they are grouped in address bar-based features, abnormal

based features, HTML and Javascript based features and

domain-based features. As features selection method, author

used wrapper features selection method which finds the best

set of features for given machine learning classifier. Classifiers

as Naive Bayes, Support Vector Machine, C4.5, k Nearest

Neighbor and Random Forest are tested before and after

features selection. For the feature selection, the author used

wrapper methods, Principal Component Analysis and

Information Gain methods. The 5 cross validation technique

was used and results from the experiments were compared.

The highest true positive and true negative rates are achieved

when using wrapper features selection method. On the other

side, Principal Components Analysis resulted in the worst

performance. Highest true value rates are achieved by Random

Forest 97.3% and k Nearest Neighbor 97.1%. True negative

values 97% are achieved by these two algorithms too.

Kevric et al. [8] combined NBTree, C4.5 and Random

Forest to build an effective classifier for network intrusion

detection. NSL-KDD dataset with 41 features was used.

Random Tree outperformed other individual algorithms with

accuracy 88.46% and Random Forest and NBTree achieved

highest accuracy 89.24% when applied together.

Random Forest, C4.5, REP Tree, Decision Stump,

Hoeffding Tree, Rotation Forest and MLP are applied in the

study [9] to compare results for phishing websites

classification. Authors used phishing websites dataset

available at UCI Machine Learning Repository. Rotation

Forest with REP Tree had highest accuracy 89.1% before

feature selection. After feature selection was applied using

Correlation Attribute Evaluation, 12 attributes were selected

and tests for all algorithms are applied again. Accuracy of

MLP increased from 85.5% to 89% which was the best for

reduced dataset, while accuracy of Rotation Forest decreased

to 87.1%.

3. DATABASE

Table 1. Features in phishing websites database

Name Description

ID a unique id for the website
alexa rank for websites parsed from the top 1000 of alexa.com this is the rank of the websites, otherwise null

isPhish is this webpage url from a phishing list (1) or non-fraudulent (0)
Parent what is the parent website for this website (for phishes this contains the verified original website) otherwise null

Parent Count a counter how many parents have been found for this website
url the url that was originally provided for the scan

urlHash an md5 hash of this url for quicker finding of identical urls

urlBasedomain
the base domain of this url (this usually means the top-level domain plus the domain part in front of it e.g.

"google.com" for some special domain names this may include some more e.g. "google.co.uk")

final Url the url that was finally parsed after following all redirect requests

finalUrlBasedomain same as urlBaseDomain for finalUrl
name a name identifier that is sometimes assigned to websites (otherwise null)

quality reserved for future use (always null)
scanned a UNIX-Timestamp when this url was visited
rescan used internally for rescanning already scanned website (always 0)

statusCode
the statusCode that was returned for this website. Only websites with 200 were manually checked and assigned to

states
htmlContent the HTML content of the page that was loaded under finalUrl

loadTime the time it took querying the content and taking all screenshots

phishTank_XYZ fields parsed from the phishtank.com list of fraudulent websites

state the state of the phishing website (explained in Table 2)

duplicatedForm

In some case websites have been assigned more quickly by assigning them as duplicated to other phishing websites.

This was stored here. This field does NOT denote that those websites are all duplicated that can be found for that

website neither does it denote that the websites look 100% similar

created UNIX-Timestamp when this website was created and stored in the Table (usually prior to scanned)

564

Table 2. State of the website

Value Short name Message

1 Disabled by Hoster
This website has been disabled by the hoster or it redirects to a site of the hoster that is clearly no phishing

website

2 Phishonly

The website is a phishing website that tries to steal user data but it has not real parent. This can be websites

just asking for an arbitrary email-address and password or websites that use multiple logos and cannot be

assigned to one specific parent.

3 Phishing Website This is a real phishing website with a parent that has been assigned.

5
Still Loading/No

content

It seems that this website has been captured while still loading or at least it does not yet contain any

sensemaking content. Mostly those are completely white websites.

6 Dead Link

Although the initial website could load (because the statusCode showed 200) no proper website was

loaded in the end. Either the browser did not reach any page at all, or the page reached can be distinguished

as a 404 or similar error page.

This could have been because of a meta-reload-tag pointing to an illegal location.

7 Original Back

The Original Website seems to be back online. A server was hacked and the phishing website was placed

on this usually non-fraudulent domain. But now the original website is back and has been captured instead

of the original phish.

8

Weird

Content/Weird

language

The content of the site is not the original content, neither dead, nor a phishing attack. In this category there

are also pages that are written in foreign languages.

9 Coding Error
A script error occurred. Part of the website code was executed but threw an error. Mostly the website just

shows some PHP-Warnings and no real content.

10 No Image

The capturing engine did not capture a proper image for the website content. This error occurred for some

websites that produced an error when rendering on the screenshot canvas of Firefox. It is possible that

another screenshot type may still contain website content.

11 Domainparking The website shows a series of links and is disabled or parked.

For the purpose of this research we used a phishing websites

database available at the link [10]. Database contains 11 215

records and 21 features. From the total number of samples

there are 1 185 non-fraudulent, while 10 030 of them are

categorized as phishing websites. Description of 21 features is

provided in Table 1.

Attributes quality which is always null and rescan which is

always 0 are removed at the beginning together with created

and scan attributes. Table 2 lists all possible values for the state

attribute described in Table 1.

4. METHODOLOGY

4.1 Feature selection

To select features, we used the Weka tool and its algorithms

for feature selection. Applied algorithms are: Gain Ratio

Attribute Evaluator (GainRatioAttributeEval), Info Gain Ratio

Attribute Evaluator (InfoGainAttributeEval), One R Attribute

Evaluator (OneRAttributeEval), Relief Attribute Evaluator

(ReliefAttributeEval) and Symmetric Uncertainty Attribute

Evaluator (SymmetricUncertAttributeEval). For all of these

algorithms we used Ranker search method.

Gain Ratio Attribute Evaluator [11] calculates value of

feature by calculating gain ratio of feature with respect to the

class. Gain ratio is calculated by the following equation:

GainR (Class, Feature) = (H(Class)-H(Class |

Feature)) / H(Feature)
(1)

Info Gain Ratio Attribute Evaluator [12] calculates value of

feature by calculating info gain ratio of the feature with respect

to the class. Info gain ratio is calculated by the following

equation:

InfoGain(Class, Feature) = H(Class | Feature) (2)

One R Attribute Evaluator [13] finds the value of features

by performing OneR classifier. This classifier makes a rule for

each predictor and selects the one rule which has the smallest

error. Rule is made by counting the number of occurrences of

each class for attribute and assigning the attribute to the class

with the highest occurrence. Then, error is calculated for each

attribute. Attribute with the smallest error rate is selected [14].

Relief Attribute Evaluator [15] calculates the value of

features such that performs sampling of the instance and

compares the value of that instance with that feature value for

the nearest instance. Weight vector of instance is calculated by

the Eq. (3) where nearHit is the nearest instances that has the

same class as given instance and nearMiss is nearest instance

with different class.

Wi=Wi-(xi-nearHiti)2+(xi-nearMissi)2 (3)

Symmetric Uncertainty Attribute Evaluator [16] calculates

value of feature by calculating symmetrical uncertainty of the

feature with respect to the class. Symmetrical uncertainty is

calculated by the following equation:

SymmU(Class, Feature) = 2 * (H(Class) - H(Class |

Feature)) / H(Class) + H(Feature)
(4)

The H(Class) and H(Feature) denote entropy [17] of the

class and feature respectively. The H(Class | Feature) is

conditional entropy of class with respect to the given feature.

4.2 Machine learning algorithms

Machine learning becomes popular in different areas. It

presents the use of algorithms to build models which will make

predictions based on input data which is called training data

without need to explicitly program solutions for the task [18,

19].

Classification is supervised machine learning technique,

used to determine to which group of output labels new

observation belongs to Ref. [20]. Model is trained using part

of the entire data set which is called a training set. Later,

565

performance of the model is tested using the remaining part of

the data set which is called test set. In the testing phase, the

model should be able to discover what is the output label for

the provided input data.

To perform phishing websites detection, in this work we

applied K-Nearest Neighbor (KNN), Decision Tree and

Random Forest classifiers. Below, an overview for each of

them is provided.

KNN is an algorithm that could be used for both regression

and classification, but mostly it is used for classification

problems [21]. Algorithm does not make any assumptions

about data and it is simple to interpret, but on the other side it

requires a lot of memory and prediction could be slow [22].

The Figure 1 shows an example of classification using KNN.

We have two possible classes red and green and we need to

decide to which class the new yellow instance belongs.

Distance between new instance and neighbors is calculated.

Based on the majority of nearest neighbor prediction has been

made.

Figure 1. K-Nearest Neighbor [23]

Decision tree is a tree -like model used for classification. It

is built using nodes, branches and leaves. Each branch

represents decisions made depending on the value of the

attributes. Leaves represent class labels (possible outcome

classes) [22, 24]. Sometimes trees can be too long due to large

numbers of features in the data set.

This makes the tree complex and can lead to the problem of

overfitting. In this situation, we can set maximum depth which

is the longest path from the root to a leaf. Also, we can set a

minimum number of inputs for each leaf. One more term faced

while creating decision trees is pruning. It means to remove

branches with low priority features. Decision trees can be used

with both numerical and categorical data [25]. Figure 2 below

shows an example of a decision tree that is built to make

decisions about job acceptance. Features that are taken as

beneficial for decision are salary, time to commute and

whether there is free coffee or not. At the bottom of each

branch is a leaf that represents decisions which could be

accepted or declined.

Random forests in classification algorithms create multiple

trees and combine their results to obtain final prediction. It

overcomes the overfitting problem by selecting multiple

random subsets of features and uses those subsets as data

inputs for different trees. Random forest provides good

implementation of feature importance calculation [27]. Also,

this algorithm is a very fast and the final decision is made using

majority voting.

Figure 2. Decision tree [26]

Figure 3 shows a random forest classifier. The first step is

to select random subset and create trees from those subsets.

After that, prediction is made for each tree separately and

voting is performed. Prediction with the highest number of

votes is selected as final decision.

Figure 3. Random forest [28]

In order to decide the maximum number of trees one can run

an algorithm with several values to analyse performance. In

the obtained results, it should be possible to detect the point at

which performance is in the sleep mode or starts decreasing.

Furthermore, when analyzing results, it should be detected

what is tree depth when overfitting starts, that is the value at

which the tree performs well on training data, but poor on test

data.

To find maximum number of the features one can tune the

number of features and investigate results to detect point when

overfitting starts. To select features, random forest calculates

the importance of each feature, that is the amount for which

accuracy decreases when the feature is removed. The higher

decrease means higher importance of the feature.

5. RESULTS

In this section we present results obtained by the feature

selection and machine learning methods described in the

previous section. Several feature selection methods were

applied, and their results were compared to find the attributes

with highest impact to the result. Furthermore, classification

algorithms, such as KNN, Decision Tree and Random Forest

were applied to initial and reduced dataset.

566

Table 3. Feature selection filters and selected features

Filter type Selected features

GainRatioAttributeEval

0 phishtank_verified

0 phishtank_isonline

0.4738 parentCount

0.2250 name

0.1939 scanned

0.1567 phishtank_targetname

0.0911 state

0.0423 urlBasedomain

0.0417 finalUrlBasedomain

0.0406 phishtank_verifiedtime

0.0394

phishtank_submissiontime

0.0393 phishtank_id

0.0393 phishtank_detailurl

0.0366 finalUrl

0.0362 url

0.0362 urlHash

0.0274 parent

0.0219 duplicatedFrom

InfoGainAttributeEval

0.4867 phishtank_verified

0.4867 phishtank_verifiedtime

0.4867 phishtank_id

0.4867 phishtank_isonline

0.4867 phishtank_detailurl

0.4867 phishtank_targetname

0.4867

phishtank_submissiontime

0.4863 url

0.4863 urlHash

0.4671 scanned

0.4659 urlBasedomain

0.4540 finalUrl

0.4304 finalUrlBasedomain

0.2395 state

0.1032 duplicatedFrom

0.0658 parent

0.0655 parentCount

0.0534 name

OneRAttributeEval

100 phishtank_isonline

100 phishtank_verified

99.8841

phishtank_targetname

99.8038 scanned

91.3776 parentCount

91.0834 name

89.4338 state

88.4262 parent

87.2581 duplicatedFrom

71.4935

finalUrlBasedomain

69.0771 urlBasedomain

36.7187

phishtank_verifiedtime

29.835 finalUrl

13.0183

phishtank_submissiontime

10.5662 phishtank_id

10.5662 phishtank_detailurl

10.5484 urlHash

10.5484 url

ReliefAttributeEval

1.000000000 phishtank

verified

1.000000000

phishtank_isonline

0.896691930

phishtank_targetname

0.722960320 state

0.303174320

duplicatedFrom

0.299786000

urlBasedomain

0.290441373 parent

0.274926437

finalUrlBasedomain

0.128283548

phishtank_verifiedtime

0.107935800

phishtank_submissiontime

0.105662059 phishtank_id

0.105662059

phishtank_detailurl

0.052340615 finalUrl

0.004641927 name

0.000463936 scanned

0.000090257 parentCount

0.000017833 url

0.000017833 urlHash

SymmetricUncertAttributeEval

1 phishtank_verified

1 phishtank_isonline

0.3226 scanned

0.271 phishtank_targetname

0.2096 parentCount

0.1538 state

0.1476 name

0.0811 urlBasedomain

0.0797 finalUrlBasedomain

0.078

phishtank_verifiedtime

0.0758

phishtank_submissiontime

0.0757 phishtank_id

0.0757 phishtank_detailurl

0.0704 finalUrl

0.0698 url

0.0698 urlHash

0.0456 parent

0.0398 duplicatedFrom

Table 4. Comparison of the classification performances with

different researches in Phishing Websites Detection

Research Method Accuracy (%)

Salihovic et al. [4] Random Forest 97.33
Yi et al. [5] Contrastive Divergence 90
Mahajan &

Siddavatam, [6]
Random Forest 97.14

Ali [7] Random Forest 97.3

Kevric et al. [8] Random Forest and NBTree 89.24

[9] MLP 89

Our Research Random Forest 100

Table 3 shows attribute evaluators from Weka that we used

and a list of attributes that are selected for each of them. From

those lists we can see that some attributes are highly positioned

by one method, but for another they are not in the top few

attributes. Also, we have attributes that are at the top of the

lists produced by majority of filters that were used.

When it comes to classification, firstly, we used all

attributes from the feature selection phase. Also, we used two

test options: percentage split and 10-fold cross validation. For

percentage split we used 66% of data for the training set and

34% of data for the test set. To evaluate results, we measured

accuracy and the obtained accuracy for these algorithms was

100%.

Since we had high accuracy, we wanted to check if it is

possible to keep the same or similar accuracy, but with less

567

attributes. That is why in the next phase of model building, we

used only attributes that are highly positioned by all feature

selection methods. Those attributes are parentCount, scanned,

phishtank_verified, phishtank_isonline,

phishtank_targetname, state and name. Now, after these

updates of features, we built models again. Accuracy was the

same, 100%, but time needed to build the model was

significantly decreased. In the first experiment, Random

Forest needed 2.88s and 3.05s to build the model using

percentage split and 10-fold cross validation respectively.

Later, with modified number of features this time was reduced

to the 0.02s and 0.16s. Also, KNN needed 2.64s for the initial

model, and 1.14s for the second model.

Table 4 summarizes results of researches present in section

two. It is noticeable that Random Forest outperforms other

classifiers with high accuracy values. Salihovic et al. [4], Ali

[7], Hodžić et al. [9] used a data set from UCI Machine

Learning Repository [29] which contains 11 055 samples from

which 4898 are phishing websites and 6157 are legitimate.

This data set is often used in research related to phishing

websites detection. In our research we used a dataset that we

did not find that others used in their works, because we wanted

to compare results when using different dataset. This dataset

contains 11 215 samples from which 1185 are legitimate and

10 030 are phishing websites and it seems to give satisfactory

results.

Number of attributes in the dataset [29] is 30, while our

dataset contains 21 attributes. After we applied feature

selection, we ended with a dataset that contained 7 features

obtained combining results of all feature selectors that were

applied. Authors in [9] used Correlation Attribute Evaluation

and reduced dataset to 12 features. Using the same dataset,

Salihovic et al. [4] reported to have 10 features after they

applied BestFirst + CfsSubsEvaluation.

Research done in the study [8] was not related to phishing

websites detection, but network intrusion detection. They used

a dataset with 41 attributes and compared classifiers that were

used in other mentioned works. As a result, they proved that

Random Forest is the best algorithm to use for this kind of

detection which is considered as an important part of the

security sphere.

6. CONCLUSIONS

Phishing websites are a serious threat that exists there in the

online world. Damage caused by owners of these websites

could be huge for users. Because of that, we wanted to see if it

is possible to use machine learning classification algorithms to

prevent or decrease the number of harm due to these websites.

In this work, we applied feature selection methods from the

Weka and tested three classification algorithms: KNN,

decision tree and RF.

Also, we found a database, which is not often used in similar

works and tested if it is suitable for this kind of application. As

a result, we achieved accuracy of 100%. This accuracy seems

to outperforms results presented in the section two.

In our approach, to find most valuable features we used

multiple feature selection filters. The outputs of these filters

are analyzed and features that are proposed as most important

by majority of the filters are selected to use in the classification

phase.

Moreover, we noticed that it is possible to reduce the

number of features and keep the same accuracy. Random

Forest needed 2.88s and 3.05s before feature selection and

0.02s and 0.16s after feature selection is applied. This is

important, because with a decrease in the number of features,

we decreased time needed to build a model which is valuable

as performance achievement and main contribution of this

work.

REFERENCES

[1] Retruster. https://retruster.com, accessed on Mar. 25,

2020.

[2] Crane, C. (2019). 20 Phishing Statistics to Keep You

from Getting Hooked in 2019 - Hashed Out by The SSL

StoreTM. Hashed Out by The SSL StoreTM, Jul. 24, 2019.

https://www.thesslstore.com/blog/20-phishing-statistics-

to-keep-you-from-getting-hooked-in-2019/, accessed on

Mar. 25, 2020.

[3] Crane, C. (2020). Phishing Statistics 2020: 15 Phishing

Stats to Help You Avoid Getting Reeled In|InfoSec

Insights. InfoSec Insights, Jan. 22, 2020.

https://sectigostore.com/blog/phishing-statistics-

phishing-stats-to-help-avoid-getting-reeled-in/, accessed

Mar. 25, 2020.

[4] Salihovic, I., Serdarevic, H., Kevric, J. (2018). The role

of feature selection in machine learning for detection of

spam and phishing attacks. Advanced Technologies,

Systems, and Applications III, 476-483.

https://doi.org/10.1007/978-3-030-02577-9_47

[5] Yi, P., Guan, Y., Zou, F., Yao, Y., Wang, W., Zhu, T.

(2018). Web phishing detection using a deep learning

framework. Wireless Communications and Mobile

Computing, 2018: 1-9.

https://doi.org/10.1155/2018/4678746

[6] Mahajan, R., Siddavatam, I. (2018). Phishing website

detection using machine learning algorithms.

International Journal of Computer Applications, 181(23):

45-47. https://doi.org/10.5120/ijca2018918026

[7] Ali, W. (2017). Phishing website detection based on

supervised machine learning with wrapper features

selection. International Journal of Advanced Computer

Science and Applications, 8(9).

https://doi.org/10.14569/ijacsa.2017.080910

[8] Kevric, J., Jukic, S., Subasi, A. (2017). An effective

combining classifier approach using tree algorithms for

network intrusion detection. Neural Computing and

Applications, 28(S1): 1051-1058.

https://doi.org/10.1007/s00521-016-2418-1

[9] Hodžić, A., Kevrić, J., Karadag, A. (2016). Comparison

of machine learning techniques in phishing website

classification. International Conference on Economic

and Social Studies (ICESoS’16), Apr. 2016, accessed on

May 10, 2020.

[10] Phishload.

http://www.medien.ifi.lmu.de/team/max.maurer/files/ph

ishload/index.html, accessed on Dec. 22, 2019.

[11] GainRatioAttributeEval, Dec. 20, 2019.

http://weka.sourceforge.net/doc.dev/weka/attributeSelec

tion/GainRatioAttributeEval.html, accessed on Mar. 30,

2020.

[12] Class InfoGainAttributeEval.

http://weka.sourceforge.net/doc.dev/weka/attributeSelec

tion/InfoGainAttributeEval.html, accessed on Mar. 30,

2020.

568

[13] Class OneRAttributeEval.

http://weka.sourceforge.net/doc.dev/weka/attributeSelec

tion/OneRAttributeEval.html, accessed on Mar. 30, 2020.

[14] Singh, J., Singh, G., Singh, R. (2017). Optimization of

sentiment analysis using machine learning classifiers.

Human-centric Computing and Information Sciences,

7(1): 32. https://doi.org/10.1186/s13673-017-0116-3

[15] Class ReliefFAttributeEval.

http://weka.sourceforge.net/doc.dev/weka/attributeSelec

tion/ReliefFAttributeEval.html, accessed on Mar. 30,

2020.

[16] Class SymmetricalUncertAttributeEval.

http://weka.sourceforge.net/doc.dev/weka/attributeSelec

tion/SymmetricalUncertAttributeEval.html, accessed on

Mar. 30, 2020.

[17] Basurto-Flores, R., Guzmán-Vargas, L., Velasco, S.

Medina, A., Calvo Hernandez, A. (2018). On entropy

research analysis: cross-disciplinary knowledge transfer.

Scientometrics, 117(1): 123-139.

https://doi.org/10.1007/s11192-018-2860-1

[18] Machine learning-Wikipedia.

https://en.wikipedia.org/wiki/Machine_learning,

accessed Nov. 26, 2018.

[19] Contributors to Wikimedia projects, Machine learning –

Wikipedia. Wikimedia Foundation, Inc., May 25, 2003.

https://en.wikipedia.org/wiki/Machine_learning,

accessed on Mar. 31, 2020.

[20] Ouchtati, S., Chergui, A., Mavromatis, S., Aissa, B.,

Rafik, D., Sequeira J. (2019). Novel method for brain

tumor classification based on use of image entropy and

seven Hu’s invariant moments. Traitement du Signal,

36(6): 483-491. https://doi.org/10.18280/ts.360602

[21] Srivastava, T. (2018). Introduction to k-Nearest

Neighbors: A powerful Machine Learning Algorithm

(with implementation in Python & R). Analytics Vidhya,

Mar. 26, 2018.

https://www.analyticsvidhya.com/blog/2018/03/introdu

ction-k-neighbours-algorithm-clustering/, accessed on

Mar. 31, 2020.

[22] Bronshtein, A. (2017). A Quick Introduction to K-

Nearest Neighbors Algorithm. Medium, Apr. 11, 2017.

https://medium.com/@adi.bronshtein/a-quick-

introduction-to-k-nearest-neighbors-algorithm-

62214cea29c7, accessed on Nov. 26, 2018.

[23] Dey, S. (2020). Introduction to k-Nearest Neighbours.

Medium, Aug. 26, 2020.

https://medium.com/@sdey2658/introduction-to-k-

nearest-neighbours-6aa9b86eb876, accessed on Sep. 12,

2020.

[24] Contributors to Wikimedia projects, Decision tree

learning – Wikipedia. Wikimedia Foundation, Inc., Apr.

05, 2004.

https://en.wikipedia.org/wiki/Decision_tree_learning,

accessed on Mar. 31, 2020.

[25] Gupta, P. (2018). Decision Trees in Machine Learning –

Towards Data Science. Towards Data Science, May 17,

2017. https://towardsdatascience.com/decision-trees-in-

machine-learning-641b9c4e8052, accessed on Nov. 28,

2018.

[26] Asiri, S. (2018). Machine Learning Classifiers. Medium,

Jun. 11, 2018. https://towardsdatascience.com/machine-

learning-classifiers-a5cc4e1b0623, accessed on May 3,

2020.

[27] Donges, N. (2018). The Random Forest Algorithm –

Towards Data Science. Towards Data Science, Feb. 22,

2018. https://towardsdatascience.com/the-random-

forest-algorithm-d457d499ffcd, accessed on Dec. 1,

2018.

[28] Kannan, S. (2020). Predicting NBA Rookie Stats with

Machine Learning. Medium, Jun. 29, 2019.

https://towardsdatascience.com/predicting-nba-rookie-

stats-with-machine-learning-28621e49b8a4, accessed on

May 3, 2020.

[29] UCI Machine Learning Repository.

https://archive.ics.uci.edu/ml/index.php, accessed on

May 11, 2020.

NOMENCLATURE

KNN K-Nearest Neighbor

RF Random Forest

URL Uniform Resource Locator

HTML Hypertext Markup Language

HTTPS Hypertext Transfer Protocol Secure

SSL Security Socket Layer

569

