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Security is one of the most actual topics in the online world. Lists of security threats are 

constantly updated. One of those threats are phishing websites. In this work, we address the 

problem of phishing websites classification. Three classifiers were used: K-Nearest 

Neighbor, Decision Tree and Random Forest with the feature selection methods from Weka. 

Achieved accuracy was 100% and number of features was decreased to seven. Moreover, 

when we decreased the number of features, we decreased time to build models too. Time for 

Random Forest was decreased from the initial 2.88s and 3.05s for percentage split and 10-

fold cross validation to 0.02s and 0.16s respectively. 
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1. INTRODUCTION

The Internet is widely used among people and it has become 

an inseparable part of our life. Therefore, huge amounts of data 

are exchanged. Those users could be more or less experienced 

using the web. But, nevertheless, nobody is safe from the huge 

threat that is available there outside. Those threats are phishing 

websites that are hard to differentiate from the original ones. 

These websites are used to collect personal and confidential 

user data that usually should be protected. Later, information 

is misused and people are experiencing consequences. Some 

of the consequences could be identity loss or financial debts. 

Statistics for 2019 states that 15% of those who were 

successfully attacked will be attacked at least one more time 

within a year. Number of phishing attacks increased by 65% 

in respect to 2018 and around 1.5 million of phishing websites 

were created each month [1]. Almost one third of all data 

breaches in 2017 were due to phishing attacks. Approximately 

55% of phishing websites in 2019 used SSL certificates [2]. 

Research also shows that 33% of people closed their business 

after a phishing attack [3]. 

The problem with phishing attacks is not only that they are 

increasing, but also, they are improving and becoming more 

sophisticated. Due to that, it is necessary to develop systems 

that will help in detection of these phishing websites to prevent 

negative outcomes. Therefore, in this work we want to develop 

an intelligent system that will be used to detect phishing 

websites. We are going to use machine learning algorithms for 

classification such as K-Nearest Neighbor (KNN), Decision 

Tree and Random Forest (RF). 

The rest of the work is organized as follows: in section two, 

we are giving overview of several works related to the 

phishing websites detection. Section three and four provide 

details about the database and methodologies, respectively. 

Results are presented in section five. We conclude our work 

with section six. 

2. LITERATURE REVIEW

Web phishing is a serious security threat that is present in 

the Internet. Sensitive financial and personal information are 

taken from the users thanks to the phishing websites. These 

websites look like legitimate websites and they are used to 

gather private data. Therefore, phishing attacks use 

weaknesses of the user and it is hard to reduce those, but it is 

important to work on detection techniques improvement. In 

this section we present several works related to detection of 

phishing websites. 

Salihovic et al. [4] applied Artificial Neural Networks, 

Logistic Regression, Random Forest, Support Vector Machine, 

k-Nearest Neighbor and Naive Bayes on UCIs phishing

websites dataset. In the first experiment they used the original

dataset which had 31 attributes. Therefore, in the second

experiment, authors applied feature selection using

BestFirst+CfsSubsEvaluation and Ranker+Principal

Components feature selection optimizers. In the first

experiment, Random Forest achieved the highest accuracy

equal to 97.33%. First optimizer reduced the number of

attributes in the phishing dataset to 10 and accuracy was

decreased by 1.53% on average. Second optimizer, Ranker

reduced the phishing dataset for only one attribute. Accuracy

has been increased for Random Forest and Support Vector

Machine, while it was decreased by 0.09% for other

algorithms. Also, they applied the same method with spam

emails dataset and Random Forest had the best performance.

So, they proved that it is possible to use the same algorithm for

both datasets.

Yi et al. [5] proposes a method which detects phishing 

websites. Detection model is based on a deep belief network 

(DBN). Two types of features are used: original and 

interaction features. Original features are those directly related 

to the websites, while interactive features include features 

related to the interaction between websites such as in-degree 

and out-degree of URL. To test DBN real IP flows data are 

used. Dataset includes traffic flow for 40 minutes and 24 hours. 
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Features like IP address, access time, URL, request page 

source, user agent and user cookie are extracted. Information 

about each node is collected and connected to the graph. 

Contrastive Divergence algorithm is used as a training 

algorithm. In the final experiment there are three parameters 

that were changed to find the best combination. Those are the 

number of layers, number of iterations per layer and number 

of hidden layers. Approximate true positive rate is 

approximately 90%. The highest detection rate is achieved 

with two layers, as the number of layers increases, accuracy 

decreases. Optimal number of iterations is 250 and the number 

of hidden layers is between 20 and 40. 

Mahajan and Siddavatam [6] present a method for 

improvement of phishing websites detection. Dataset contains 

URLs of legitimate and phishing websites. Legitimate URLs 

are collected from www.alexa.com and phishing URLs are 

collected from www.phishtank.com. Python program is used 

to extract features from these URLs. Extracted features are 

presence of IP address in the URL, presence of @ in the URL, 

number of dots in hostname, prefix or suffix separated by - to 

domain, URL redirection, HTTPS token in URL, length of 

host name, number of slash in URL, presence of unicode in 

URL, age of SSL certificate, URL of anchor, iframe and 

website rank. Applied algorithms are decision trees, random 

forests and support vector machines. Dataset is divided into 

training and testing dataset in ratio 50:50, 70:30 and 90:10. For 

implementation of the experiment, the authors used the Scikit-

learn tool. The highest accuracy 97.14% is achieved using 

Random Forest. Also, accuracy increased by increasing the 

number of instances in the training dataset. For the future work, 

authors are planning to implement hybrid solutions which will 

combine machine learning algorithms and blacklist methods. 

Ali [7] used a wrapper features selection method to detect 

phishing websites. Author used a dataset from UCI Machine 

Learning Repository which has 4898 phishing websites which 

is 44% and 6157 legitimate websites which is 56% of all data. 

There are 30 features that are recognized as key features and 

they are grouped in address bar-based features, abnormal 

based features, HTML and Javascript based features and 

domain-based features. As features selection method, author 

used wrapper features selection method which finds the best 

set of features for given machine learning classifier. Classifiers 

as Naive Bayes, Support Vector Machine, C4.5, k Nearest 

Neighbor and Random Forest are tested before and after 

features selection. For the feature selection, the author used 

wrapper methods, Principal Component Analysis and 

Information Gain methods. The 5 cross validation technique 

was used and results from the experiments were compared. 

The highest true positive and true negative rates are achieved 

when using wrapper features selection method. On the other 

side, Principal Components Analysis resulted in the worst 

performance. Highest true value rates are achieved by Random 

Forest 97.3% and k Nearest Neighbor 97.1%. True negative 

values 97% are achieved by these two algorithms too. 

Kevric et al. [8] combined NBTree, C4.5 and Random 

Forest to build an effective classifier for network intrusion 

detection. NSL-KDD dataset with 41 features was used. 

Random Tree outperformed other individual algorithms with 

accuracy 88.46% and Random Forest and NBTree achieved 

highest accuracy 89.24% when applied together. 

Random Forest, C4.5, REP Tree, Decision Stump, 

Hoeffding Tree, Rotation Forest and MLP are applied in the 

study [9] to compare results for phishing websites 

classification. Authors used phishing websites dataset 

available at UCI Machine Learning Repository. Rotation 

Forest with REP Tree had highest accuracy 89.1% before 

feature selection. After feature selection was applied using 

Correlation Attribute Evaluation, 12 attributes were selected 

and tests for all algorithms are applied again. Accuracy of 

MLP increased from 85.5% to 89% which was the best for 

reduced dataset, while accuracy of Rotation Forest decreased 

to 87.1%. 

 

 

3. DATABASE 

 

Table 1. Features in phishing websites database 

 
Name Description 

ID a unique id for the website 
alexa rank for websites parsed from the top 1000 of alexa.com this is the rank of the websites, otherwise null 

isPhish is this webpage url from a phishing list (1) or non-fraudulent (0) 
Parent what is the parent website for this website (for phishes this contains the verified original website) otherwise null 

Parent Count a counter how many parents have been found for this website 
url the url that was originally provided for the scan 

urlHash an md5 hash of this url for quicker finding of identical urls 

urlBasedomain 
the base domain of this url (this usually means the top-level domain plus the domain part in front of it e.g. 

"google.com" for some special domain names this may include some more e.g. "google.co.uk") 

final Url the url that was finally parsed after following all redirect requests 

finalUrlBasedomain same as urlBaseDomain for finalUrl 
name a name identifier that is sometimes assigned to websites (otherwise null) 

quality reserved for future use (always null) 
scanned a UNIX-Timestamp when this url was visited 
rescan used internally for rescanning already scanned website (always 0) 

statusCode 
the statusCode that was returned for this website. Only websites with 200 were manually checked and assigned to 

states 
htmlContent the HTML content of the page that was loaded under finalUrl 

loadTime the time it took querying the content and taking all screenshots 

phishTank_XYZ fields parsed from the phishtank.com list of fraudulent websites 

state the state of the phishing website (explained in Table 2) 

duplicatedForm 

In some case websites have been assigned more quickly by assigning them as duplicated to other phishing websites. 

This was stored here. This field does NOT denote that those websites are all duplicated that can be found for that 

website neither does it denote that the websites look 100% similar 

created UNIX-Timestamp when this website was created and stored in the Table (usually prior to scanned) 
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Table 2. State of the website 

 
Value Short name Message 

1 Disabled by Hoster 
This website has been disabled by the hoster or it redirects to a site of the hoster that is clearly no phishing 

website 

2 Phishonly 

The website is a phishing website that tries to steal user data but it has not real parent. This can be websites 

just asking for an arbitrary email-address and password or websites that use multiple logos and cannot be 

assigned to one specific parent. 

3 Phishing Website This is a real phishing website with a parent that has been assigned. 

5 
Still Loading/No 

content 

It seems that this website has been captured while still loading or at least it does not yet contain any 

sensemaking content. Mostly those are completely white websites. 

6 Dead Link 

Although the initial website could load (because the statusCode showed 200) no proper website was 

loaded in the end. Either the browser did not reach any page at all, or the page reached can be distinguished 

as a 404 or similar error page. 

This could have been because of a meta-reload-tag pointing to an illegal location. 

7 Original Back 

The Original Website seems to be back online. A server was hacked and the phishing website was placed 

on this usually non-fraudulent domain. But now the original website is back and has been captured instead 

of the original phish. 

8 

Weird 

Content/Weird 

language 

The content of the site is not the original content, neither dead, nor a phishing attack. In this category there 

are also pages that are written in foreign languages. 

9 Coding Error 
A script error occurred. Part of the website code was executed but threw an error. Mostly the website just 

shows some PHP-Warnings and no real content. 

10 No Image 

The capturing engine did not capture a proper image for the website content. This error occurred for some 

websites that produced an error when rendering on the screenshot canvas of Firefox. It is possible that 

another screenshot type may still contain website content. 

11 Domainparking The website shows a series of links and is disabled or parked. 

 

For the purpose of this research we used a phishing websites 

database available at the link [10]. Database contains 11 215 

records and 21 features. From the total number of samples 

there are 1 185 non-fraudulent, while 10 030 of them are 

categorized as phishing websites. Description of 21 features is 

provided in Table 1. 

Attributes quality which is always null and rescan which is 

always 0 are removed at the beginning together with created 

and scan attributes. Table 2 lists all possible values for the state 

attribute described in Table 1. 

 

 

4. METHODOLOGY 

 

4.1 Feature selection 

 

To select features, we used the Weka tool and its algorithms 

for feature selection. Applied algorithms are: Gain Ratio 

Attribute Evaluator (GainRatioAttributeEval), Info Gain Ratio 

Attribute Evaluator (InfoGainAttributeEval), One R Attribute 

Evaluator (OneRAttributeEval), Relief Attribute Evaluator 

(ReliefAttributeEval) and Symmetric Uncertainty Attribute 

Evaluator (SymmetricUncertAttributeEval). For all of these 

algorithms we used Ranker search method. 

Gain Ratio Attribute Evaluator [11] calculates value of 

feature by calculating gain ratio of feature with respect to the 

class. Gain ratio is calculated by the following equation: 

 

GainR (Class, Feature) = (H(Class)-H(Class | 

Feature)) / H(Feature) 
(1) 

 

Info Gain Ratio Attribute Evaluator [12] calculates value of 

feature by calculating info gain ratio of the feature with respect 

to the class. Info gain ratio is calculated by the following 

equation: 

 

InfoGain(Class, Feature) = H(Class | Feature) (2) 

 

One R Attribute Evaluator [13] finds the value of features 

by performing OneR classifier. This classifier makes a rule for 

each predictor and selects the one rule which has the smallest 

error. Rule is made by counting the number of occurrences of 

each class for attribute and assigning the attribute to the class 

with the highest occurrence. Then, error is calculated for each 

attribute. Attribute with the smallest error rate is selected [14]. 

Relief Attribute Evaluator [15] calculates the value of 

features such that performs sampling of the instance and 

compares the value of that instance with that feature value for 

the nearest instance. Weight vector of instance is calculated by 

the Eq. (3) where nearHit is the nearest instances that has the 

same class as given instance and nearMiss is nearest instance 

with different class.   

 

Wi=Wi-(xi-nearHiti)2+(xi-nearMissi)2 (3) 

 

Symmetric Uncertainty Attribute Evaluator [16] calculates 

value of feature by calculating symmetrical uncertainty of the 

feature with respect to the class. Symmetrical uncertainty is 

calculated by the following equation: 

 

SymmU(Class, Feature) = 2 * (H(Class) - H(Class | 

Feature)) / H(Class) + H(Feature) 
(4) 

 

The H(Class) and H(Feature) denote entropy [17] of the 

class and feature respectively. The H(Class | Feature) is 

conditional entropy of class with respect to the given feature. 

 

4.2 Machine learning algorithms 

 

Machine learning becomes popular in different areas. It 

presents the use of algorithms to build models which will make 

predictions based on input data which is called training data 

without need to explicitly program solutions for the task [18, 

19]. 

Classification is supervised machine learning technique, 

used to determine to which group of output labels new 

observation belongs to Ref. [20]. Model is trained using part 

of the entire data set which is called a training set. Later, 
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performance of the model is tested using the remaining part of 

the data set which is called test set. In the testing phase, the 

model should be able to discover what is the output label for 

the provided input data. 

To perform phishing websites detection, in this work we 

applied K-Nearest Neighbor (KNN), Decision Tree and 

Random Forest classifiers. Below, an overview for each of 

them is provided. 

KNN is an algorithm that could be used for both regression 

and classification, but mostly it is used for classification 

problems [21]. Algorithm does not make any assumptions 

about data and it is simple to interpret, but on the other side it 

requires a lot of memory and prediction could be slow [22]. 

The Figure 1 shows an example of classification using KNN. 

We have two possible classes red and green and we need to 

decide to which class the new yellow instance belongs. 

Distance between new instance and neighbors is calculated. 

Based on the majority of nearest neighbor prediction has been 

made. 

 

 
 

Figure 1. K-Nearest Neighbor [23] 

 

Decision tree is a tree -like model used for classification. It 

is built using nodes, branches and leaves. Each branch 

represents decisions made depending on the value of the 

attributes. Leaves represent class labels (possible outcome 

classes) [22, 24]. Sometimes trees can be too long due to large 

numbers of features in the data set. 

This makes the tree complex and can lead to the problem of 

overfitting. In this situation, we can set maximum depth which 

is the longest path from the root to a leaf. Also, we can set a 

minimum number of inputs for each leaf. One more term faced 

while creating decision trees is pruning. It means to remove 

branches with low priority features. Decision trees can be used 

with both numerical and categorical data [25]. Figure 2 below 

shows an example of a decision tree that is built to make 

decisions about job acceptance. Features that are taken as 

beneficial for decision are salary, time to commute and 

whether there is free coffee or not. At the bottom of each 

branch is a leaf that represents decisions which could be 

accepted or declined. 

Random forests in classification algorithms create multiple 

trees and combine their results to obtain final prediction. It 

overcomes the overfitting problem by selecting multiple 

random subsets of features and uses those subsets as data 

inputs for different trees. Random forest provides good 

implementation of feature importance calculation [27]. Also, 

this algorithm is a very fast and the final decision is made using 

majority voting.  

 

 
 

Figure 2. Decision tree [26] 

 

Figure 3 shows a random forest classifier. The first step is 

to select random subset and create trees from those subsets. 

After that, prediction is made for each tree separately and 

voting is performed. Prediction with the highest number of 

votes is selected as final decision. 

 

 
 

Figure 3. Random forest [28] 

 

In order to decide the maximum number of trees one can run 

an algorithm with several values to analyse performance. In 

the obtained results, it should be possible to detect the point at 

which performance is in the sleep mode or starts decreasing. 

Furthermore, when analyzing results, it should be detected 

what is tree depth when overfitting starts, that is the value at 

which the tree performs well on training data, but poor on test 

data. 

To find maximum number of the features one can tune the 

number of features and investigate results to detect point when 

overfitting starts. To select features, random forest calculates 

the importance of each feature, that is the amount for which 

accuracy decreases when the feature is removed. The higher 

decrease means higher importance of the feature. 

 

 

5. RESULTS 

 

In this section we present results obtained by the feature 

selection and machine learning methods described in the 

previous section. Several feature selection methods were 

applied, and their results were compared to find the attributes 

with highest impact to the result. Furthermore, classification 

algorithms, such as KNN, Decision Tree and Random Forest 

were applied to initial and reduced dataset. 
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Table 3. Feature selection filters and selected features 

 
Filter type Selected features 

GainRatioAttributeEval 

0 phishtank_verified 

0 phishtank_isonline 

0.4738 parentCount 

0.2250 name 

0.1939 scanned 

0.1567 phishtank_targetname 

0.0911 state 

0.0423 urlBasedomain 

0.0417 finalUrlBasedomain 

0.0406 phishtank_verifiedtime 

0.0394 

phishtank_submissiontime 

0.0393 phishtank_id 

0.0393 phishtank_detailurl 

0.0366 finalUrl 

0.0362 url 

0.0362 urlHash 

0.0274 parent 

0.0219 duplicatedFrom 

InfoGainAttributeEval 

0.4867 phishtank_verified 

0.4867 phishtank_verifiedtime 

0.4867 phishtank_id 

0.4867 phishtank_isonline 

0.4867 phishtank_detailurl 

0.4867 phishtank_targetname 

0.4867 

phishtank_submissiontime 

0.4863 url 

0.4863 urlHash 

0.4671 scanned 

0.4659 urlBasedomain 

0.4540 finalUrl 

0.4304 finalUrlBasedomain 

0.2395 state 

0.1032 duplicatedFrom 

0.0658 parent 

0.0655 parentCount 

0.0534 name 

OneRAttributeEval 

100 phishtank_isonline 

100 phishtank_verified 

99.8841 

phishtank_targetname 

99.8038 scanned 

91.3776 parentCount 

91.0834 name 

89.4338 state 

88.4262 parent 

87.2581 duplicatedFrom 

71.4935 

finalUrlBasedomain 

69.0771 urlBasedomain 

36.7187 

phishtank_verifiedtime 

29.835 finalUrl 

13.0183 

phishtank_submissiontime 

10.5662 phishtank_id 

10.5662 phishtank_detailurl 

10.5484 urlHash 

10.5484 url 

ReliefAttributeEval 

1.000000000 phishtank 

verified 

1.000000000 

phishtank_isonline 

0.896691930 

phishtank_targetname 

0.722960320 state 

0.303174320 

duplicatedFrom 

0.299786000 

urlBasedomain 

0.290441373 parent 

0.274926437 

finalUrlBasedomain 

0.128283548 

phishtank_verifiedtime 

0.107935800 

phishtank_submissiontime 

0.105662059 phishtank_id 

0.105662059 

phishtank_detailurl 

0.052340615 finalUrl 

0.004641927 name 

0.000463936 scanned 

0.000090257 parentCount 

0.000017833 url 

0.000017833 urlHash 

SymmetricUncertAttributeEval 

1 phishtank_verified 

1 phishtank_isonline 

0.3226 scanned 

0.271 phishtank_targetname 

0.2096 parentCount 

0.1538 state 

0.1476 name 

0.0811 urlBasedomain 

0.0797 finalUrlBasedomain 

0.078 

phishtank_verifiedtime 

0.0758 

phishtank_submissiontime 

0.0757 phishtank_id 

0.0757 phishtank_detailurl 

0.0704 finalUrl 

0.0698 url 

0.0698 urlHash 

0.0456 parent 

0.0398 duplicatedFrom 

 

Table 4. Comparison of the classification performances with 

different researches in Phishing Websites Detection 

 
Research Method Accuracy (%) 

Salihovic et al. [4] Random Forest 97.33 
Yi et al. [5] Contrastive Divergence 90 
Mahajan & 

Siddavatam, [6] 
Random Forest 97.14 

Ali [7] Random Forest 97.3 

Kevric et al. [8] Random Forest and NBTree 89.24 

[9] MLP 89 

Our Research Random Forest 100 

 

Table 3 shows attribute evaluators from Weka that we used 

and a list of attributes that are selected for each of them. From 

those lists we can see that some attributes are highly positioned 

by one method, but for another they are not in the top few 

attributes. Also, we have attributes that are at the top of the 

lists produced by majority of filters that were used. 

When it comes to classification, firstly, we used all 

attributes from the feature selection phase. Also, we used two 

test options: percentage split and 10-fold cross validation. For 

percentage split we used 66% of data for the training set and 

34% of data for the test set. To evaluate results, we measured 

accuracy and the obtained accuracy for these algorithms was 

100%. 

Since we had high accuracy, we wanted to check if it is 

possible to keep the same or similar accuracy, but with less 
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attributes. That is why in the next phase of model building, we 

used only attributes that are highly positioned by all feature 

selection methods. Those attributes are parentCount, scanned, 

phishtank_verified, phishtank_isonline, 

phishtank_targetname, state and name. Now, after these 

updates of features, we built models again. Accuracy was the 

same, 100%, but time needed to build the model was 

significantly decreased. In the first experiment, Random 

Forest needed 2.88s and 3.05s to build the model using 

percentage split and 10-fold cross validation respectively. 

Later, with modified number of features this time was reduced 

to the 0.02s and 0.16s. Also, KNN needed 2.64s for the initial 

model, and 1.14s for the second model. 

Table 4 summarizes results of researches present in section 

two. It is noticeable that Random Forest outperforms other 

classifiers with high accuracy values. Salihovic et al. [4], Ali 

[7], Hodžić et al. [9] used a data set from UCI Machine 

Learning Repository [29] which contains 11 055 samples from 

which 4898 are phishing websites and 6157 are legitimate. 

This data set is often used in research related to phishing 

websites detection. In our research we used a dataset that we 

did not find that others used in their works, because we wanted 

to compare results when using different dataset. This dataset 

contains 11 215 samples from which 1185 are legitimate and 

10 030 are phishing websites and it seems to give satisfactory 

results. 

Number of attributes in the dataset [29] is 30, while our 

dataset contains 21 attributes. After we applied feature 

selection, we ended with a dataset that contained 7 features 

obtained combining results of all feature selectors that were 

applied. Authors in [9] used Correlation Attribute Evaluation 

and reduced dataset to 12 features. Using the same dataset, 

Salihovic et al. [4] reported to have 10 features after they 

applied BestFirst + CfsSubsEvaluation. 

Research done in the study [8] was not related to phishing 

websites detection, but network intrusion detection. They used 

a dataset with 41 attributes and compared classifiers that were 

used in other mentioned works. As a result, they proved that 

Random Forest is the best algorithm to use for this kind of 

detection which is considered as an important part of the 

security sphere.  

 

 

6. CONCLUSIONS 

 

Phishing websites are a serious threat that exists there in the 

online world. Damage caused by owners of these websites 

could be huge for users. Because of that, we wanted to see if it 

is possible to use machine learning classification algorithms to 

prevent or decrease the number of harm due to these websites. 

In this work, we applied feature selection methods from the 

Weka and tested three classification algorithms: KNN, 

decision tree and RF.  

Also, we found a database, which is not often used in similar 

works and tested if it is suitable for this kind of application. As 

a result, we achieved accuracy of 100%. This accuracy seems 

to outperforms results presented in the section two.  

In our approach, to find most valuable features we used 

multiple feature selection filters. The outputs of these filters 

are analyzed and features that are proposed as most important 

by majority of the filters are selected to use in the classification 

phase.  

Moreover, we noticed that it is possible to reduce the 

number of features and keep the same accuracy. Random 

Forest needed 2.88s and 3.05s before feature selection and 

0.02s and 0.16s after feature selection is applied. This is 

important, because with a decrease in the number of features, 

we decreased time needed to build a model which is valuable 

as performance achievement and main contribution of this 

work. 
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NOMENCLATURE 

 

KNN K-Nearest Neighbor 

RF Random Forest 

URL Uniform Resource Locator 

HTML Hypertext Markup Language 

HTTPS Hypertext Transfer Protocol Secure 

SSL Security Socket Layer 
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