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 This paper mainly designs an image recognition algorithm of bolt loss in underground 

pipelines. Firstly, the local binary pattern (LBP) operator was improved to optimize the 

information content of eigenvectors and enhance the discriminability. Next, the patterns 

were selected through weighting and ranking, thereby optimizing the original features in 

each channel of the image. Meanwhile, the main patterns of each channel were classified 

and identified with the support vector machine (SVM) classifier. The radial basis function 

(RBF) was taken as the kernel function for the SVM, and the teaching-learning-based 

optimization (TLBO) algorithm was improved to optimize the SVM parameters. Finally, the 

improved SVM classifier assigns suitable weights to the predicted class tags of different 

channels, facilitating the recognition of bolt loss. The research results shed new light on the 

application of swarm intelligence in image recognition. 
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1. INTRODUCTION 

 

In modern cities, an important aspect of urban planning is 

the construction of underground pipelines. However, the 

underground conditions in urban areas are very complex, and 

the available underground space is extremely limited. It is 

difficult to detect the damages of underground pipelines or the 

loss of relevant accessories in time.  

At present, the damages of underground pipelines are 

mainly detected in two stages: the image of the target pipeline 

is captured by a robot, and then evaluated by professional 

inspectors.  By this strategy, lots of pipeline images need to be 

analyzed manually, which limits the accuracy and timeliness 

of detection. To overcome the defects, this paper proposes an 

image detection algorithm of bolt loss in underground 

pipelines. Using image recognition technology, the proposed 

algorithm can automatically detect the missing position of 

bolts on the target pipeline. 

Image recognition technology [1] replaces humans with 

computers to process and recognize such signals as words and 

images, and complete the tasks of classification and 

identification. This technology features advanced intelligence 

similar to human vision. Figure 1 provides the basic flow of 

image recognition. 

As shown in Figure 1, image recognition covers three 

critical steps: preprocessing, feature extraction, and pattern 

classification. Specifically, preprocessing filters and reduces 

the noise and interference signal from the original image, and 

transforms the brightness or color of the image, improving its 

visual quality and effect. Feature extraction mainly segments 

the region of interest (ROI), extracts the features or special 

information, and identifies the key features that are most 

conducive to classification. Pattern classification selects a 

suitable classifier to determine the class of the image, 

according to the key features. Therefore, this paper attempts to 

improve the image recognition performance of the proposed 

algorithm from the three aspects of preprocessing, feature 

extraction, and pattern classification. 

 

 
 

Figure 1. The basic flow of image recognition 

 

 

2. LITERATURE REVIEW 

 

Under the effects of external factors and equipment 

conditions, the images of underground pipelines are often 

affected by impulse noise during the process of formation, 

transmission, reception, and processing. The original 

images usually contain various types of noises, such as 

Gaussian noise and salt-and-pepper noise. The negative effects 

of the noises are generally eliminated through filtering. 

So far, many algorithms have been improved to reduce the 

noises in images for different applications. For example, Chen 

et al. [2] identified salt-and-pepper noise of the target image 

by grayscale difference and extreme value distribution in the 

local direction, and removed the identified noise through 
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recursive or non-recursive weighted grayscale average 

filtering. Under the tolerance mechanism, Du [3] designed an 

anisotropic Gaussian filtering algorithm to protect and 

smoothen the edges of the target image, which successfully 

produces a fog-free image. Schmeing and Jiang [4] proposed 

a maximum median filtering algorithm that preserves the edge 

textures of the target image, while removing the noises. Zhu et 

al. [5] analyzed the statistical features of the target image in 

the wavelet domain, improved the wavelet function through 

Bayesian method, and denoised the image through wavelet 

thresholding and bilateral filtering; their approach effectively 

filters out speckle noise, and achieves a good effect of edge 

preservation. 

Feature extraction is one of the premises of image 

recognition. The recognized target is usually converted 

into an eigenvector with low-dimensional classification 

information, laying the basis for subsequent pattern 

classification. The local binary pattern (LBP) [6] is a widely 

accepted descriptor of texture features. Many scholars have 

improved the robustness of the descriptor by optimizing the 

encoding method. For instance, Prakash and Prasad [7] 

derived the local ternary pattern (LTP) operator from 

differential positive and negative signs. Guo et al. [8] added 

amplitude into encoding, creating the compound LBP (CLBP) 

operator. Yang and Chen [9] proposed the centralized binary 

pattern (CBP) by comparing the threshold with local 

neighborhood mean. Considering the grayscale change of 

centrosymmetric pixels, Yuan et al. [10] designed the 

centrosymmetric LBP (CSLBP) operator. Zhu et al. [11] 

created the orthogonal combination of LBP (OCLBP) operator, 

drawing on the grayscale change of orthogonally distributed 

pixels. Datta Rakshit et al. [12] put forward the extended 

center-symmetric LBP (XCSLBP) operator, according to the 

grayscale change of the central pixel and the symmetrically 

distributed pixels. 

Pattern classification identifies the classes of the target 

image against the judgement criteria formulated based on the 

eigenvectors, which are obtained in feature extraction.  In the 

field of image classification, the most popular pattern 

classifiers include Bayesian classifier, decision tree (DT) 

classifier, nearest neighbor classifier, neural network (NN) 

classifier, and support vector machine (SVM) classifier [13-

15]. Among them, the SVM takes root in statistical 

learning, and boasts excellent generalization ability. In 

practical application, however, the SVM parameters are 

selected empirically, due to the lack of theoretical basis for 

parameter selection. Many researchers have attempted to 

optimize the SVM parameters with intelligent optimization 

algorithms. Mo and Zhao [16] evaluated the influence of 

penalty factor and kernel parameters on SVM classification 

performance. Through particle swarm optimization (PSO), 

Wang et al. [17] optimized the allocation of penalty factor and 

kernel parameters of SVM classifier. Montiel [18] introduced 

the hybrid quantum genetic algorithm to optimize the 

parameters and enhance the accuracy of the SVM. 

 

 

3. FEATURE EXTRACTION 

 

Feature extraction is a prerequisite for image recognition. In 

the field of image recognition, the LBP-based extraction of 

texture features is a research hotspot. However, the existing 

LBP operators need to be further improved. In this section, the 

encoding and pattern selection method of LBP operator are 

improved to extract eigenvectors with strong discriminability, 

and eliminate the interference of useless patterns. 

 

3.1 Theory on LBP operator 

 

The LBP operator is a feature extractor that describes the 

texture distribution in the local region. Taking the grayscale of 

the central pixel in the local region as the benchmark, the LBP 

operator differentiates the other pixels in the local region, 

encodes the direction of the local difference, statistically 

analyzes the codes, and extracts the local texture features of 

the image. 

In general, the LBP operator adopts the 3×3 neighborhood 

centering on the current pixel as the template for encoding, and 

the grayscale of the current central pixel as the threshold. 

Along the specified direction, the central pixel is compared 

with the eight pixels in its neighborhood in turn. The 

comparison results are binarized and assigned different 

weights. Finally, the cumulative value of the coding is added 

up with the LBP code value of the current pixel. Through 

point-wise scanning of the entire image, an LBP response 

image can be obtained. The histogram of this image is called 

the LBP feature. 

To adapt to the texture feature analysis with different image 

sizes and sampling intensities, Ojala et al. [19] extended the 

3×3 neighborhood to a circular neighborhood with different 

radii and number of sampling points. In this way, the LBP 

operator is modified into LBPC,R: 

 

𝐿𝐵𝑃𝐶,𝑅 = ∑𝑢(𝑔𝑖 − 𝑔𝑜)2
𝑖

𝐶−1

𝑖=0

 (1) 

 

where, go is the grayscale of the central pixel in the 

neighborhood; gi is the grayscale of C sampling points evenly 

distributed on the circle with 𝑔𝑜  as the center and R as the 

radius; u(gi-go)=1 if 𝑔𝑖 ≥ 𝑔𝑜, and u(gi-go)=0 if otherwise; 2i is 

the weight of each sampling point in the neighborhood, which 

ensures the uniqueness of LBPC,R encoding of the current go. 

By the definition of LBPC,R, the C pixels in the local 

neighborhood can form 2C different outputs. For a region of 

ordinary size, the LBP operator can generate various patterns, 

making the final histogram so sparse as to be statistically 

insignificant. Pattern selection is necessary to reduce the 

pattern redundancy of the LBP operator, without sacrificing 

the ability of texture description. 

For the circular neighborhood, as long as the value of u(gi-

go) is not all 0 or 1, the code value of the LBP will change with 

the rotation angle of the image. As the circular neighborhood 

rotates about the current pixel, a series of different LBP 

code values can be obtained, of which the minimum is taken 

as the final LBP code of the current pixel: 

 

𝐿𝐵𝑃𝐶,𝑅
𝑡𝑖 = min⁡{𝑓𝑅𝑂(𝐿𝐵𝑃𝐶,𝑅, 𝑖), 𝑖 = 0,… , 𝐶 − 1} (2) 

 

where, fRO() is the rotation function, by which the 

neighborhood pixels of the current LBP operator rotates 

clockwise for i times. 

It can be inferred from the encoding process of 𝐿𝐵𝑃𝐶,𝑅
𝑡𝑖  

operator that the code value is invariant to rotation, but poorly 

discriminable. The image is very likely to contain some LBP 

patterns, while unlikely to have some other patterns. The most 

probable patterns contain most of the texture features. For 

them, there are at most two variations from 0 to 1 or from 1 to 
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0 in the binary encoding of the circular neighborhood. This 

kind of LBP patterns is defined as the uniform pattern of the 

LBP: 

 

𝐿𝐵𝑃𝐶,𝑅
𝑈 =∑|𝑢(𝑔𝑖 − 𝑔𝑜) − 𝑢(𝑔𝑖−1 − 𝑔𝑜)|

𝐶

𝑖=1

 (3) 

 

Under different brightness levels, the LBP operator has 

strong discriminability and robustness. During the extraction 

of texture features, however, the operator only encodes the 

direction of the local difference, and ignores the texture 

features in terms of amplitude. 

As shown in Figure 2, the same LBP code value was 

obtained through differential comparison and binarization for 

two local neighborhoods, which lie at different positions and 

differ sharply in texture feature. This indicates that the LBP 

operator loses part of the texture information during the 

extraction of texture features. 

 

 
 

Figure 2. The loss of texture information 

 

Therefore, the encoding method of the basic LBP operator 

was improved by comparing the mean grayscales and mean 

differential amplitudes of the local neighborhood and the 

global image.  

 

3.2 Improved LBP operator 

 

3.2.1 Encoding strategy 

The encoding strategy is a three-stage process: the possible 

texture directions in the local neighborhood are grouped, the 

spatial template of each possible direction is used to 

differentiate the central pixel from each local pixel, and the 

direction and amplitude of the difference are included in the 

encoding process. 

In the local neighborhood, there are three possible texture 

directions: edge texture, rectangular texture and oblique angle 

texture. For each texture, four spatial templates are needed to 

calculate the corresponding LBP code value. 

For edge texture encoding, the LBP code value can be 

calculated by: 

 

𝐿𝐵𝑃𝐿1
𝐶𝐷 = ∑ ((𝑢(𝑔𝑖 − 𝑔𝑜)⨀𝑢(𝑔𝑜 − 𝑔𝑖+𝐶 2⁄ ))2

2𝑖

𝐶 2⁄ −1

𝑖=0

+ 𝑢((𝑔𝑖 − 𝑔𝑜)

− (𝑔𝑜 − 𝑔𝑖+𝐶 2⁄ ))22𝑖+1) 

(4) 

 

where, 𝑢(𝑔𝑖 − 𝑔𝑜)⨀𝑢(𝑔𝑜 − 𝑔𝑖+𝐶 2⁄ ) is the possible directions 

of edge texture, i.e. 0°, 45°, 90°, and 135°; 𝑢((𝑔𝑖 − 𝑔𝑜) −

(𝑔𝑜 − 𝑔𝑖+𝐶 2⁄ ))  is the trend of grayscale intensity in the 

current texture direction. 

For rectangular texture encoding, the LBP code value can 

be calculated by: 

 

𝐿𝐵𝑃𝐿2
𝐶𝐷 = ∑ ((𝑢(𝑔2𝑖−1 − 𝑔𝑜)⨀𝑢(𝑔𝑜

𝐶 2⁄ −1

𝑖=0

− 𝑔2𝑖+1))2
2𝑖 + 𝑢((𝑔2𝑖−1 − 𝑔𝑜)

− (𝑔𝑜 − 𝑔2𝑖+1))2
2𝑖+1) 

(5) 

 

where, 𝑢(𝑔2𝑖−1 − 𝑔𝑜)⨀𝑢(𝑔𝑜 − 𝑔2𝑖+1)  is the possible 

directions of rectangular texture; 𝑢((𝑔2𝑖−1 − 𝑔𝑜) − (𝑔𝑜 −
𝑔2𝑖+1)) is the trend of grayscale intensity in the current texture 

direction. 

For oblique angle texture encoding, the LBP code value can 

be calculated by: 

 

𝐿𝐵𝑃𝐿3
𝐶𝐷 = ∑ ((𝑢(𝑔2𝑖 − 𝑔𝑜)⨀𝑢(𝑔𝑜 − 𝑔2𝑖+2))2

2𝑖

𝐶 2⁄ −1

𝑖=0

+ 𝑢((𝑔2𝑖 − 𝑔𝑜)

− (𝑔𝑜 − 𝑔2𝑖+2))2
2𝑖+1) 

(6) 

 

where, 𝑢(𝑔2𝑖 − 𝑔𝑜)⨀𝑢(𝑔𝑜 − 𝑔2𝑖+2) is the possible directions 

of oblique angle texture; 𝑢((𝑔2𝑖 − 𝑔𝑜) − (𝑔𝑜 − 𝑔2𝑖+2)) is the 

trend of grayscale intensity in the current texture direction. 

The traditional LBP operator only emphasizes on the texture 

information in the local neighborhood, failing to consider the 

correlation and difference between local and global grayscales. 

Here, the comparison between local and global grayscales is 

added to improve the recognition performance of the LBP 

operator. 

First, the comparison between local and global grayscales 

can be encoded by: 

 

𝐿𝐵𝑃𝑎𝑣𝑔
𝐶𝐷 = 𝑢(∑(𝑔𝑖 + 𝑔𝑜)

𝐶−1

𝑖=0

𝐶 + 1⁄ − ∑𝑔𝑖

𝑁−1

𝑖=0

𝑁⁄ ) (7) 

 

where, ∑ (𝑔𝑖 + 𝑔𝑜)
𝐶−1
𝑖=0 𝐶 + 1⁄  is the mean grayscale of the 

(C+1) pixels in the local neighborhood of the current central 

pixel; ∑ 𝑔𝑖
𝑁−1
𝑖=0 𝑁⁄  is the global mean grayscale of the image. 

Next, the comparison between the mean change amplitudes 

of local and global grayscales can be encoded by: 

 

𝐿𝐵𝑃𝑚𝑎𝑔
𝐶𝐷 = 𝑢(∑𝑎𝑏𝑥(𝑔𝑖 − 𝑔𝑜)

𝐶−1

𝑖=0

𝐶⁄

−∑∑𝑎𝑏𝑠(𝑔𝑖 − 𝑔𝑜)

𝐶−1

𝑖=0

𝑁−1

𝑖=0

𝑁 × 𝐶⁄ ) 

(8) 

 

where, ∑ 𝑎𝑏𝑥(𝑔𝑖 − 𝑔𝑜)
𝐶−1
𝑖=0 𝐶⁄  is the mean change amplitude 

of the C neighborhood pixels and the central pixel in the local 

neighborhood after grayscale difference; 

∑ ∑ 𝑎𝑏𝑠(𝑔𝑖 − 𝑔𝑜)
𝐶−1
𝑖=0

𝑁−1
𝑖=0 𝑁 × 𝐶⁄ )  is the global mean 

amplitude of the whole image after the grayscale difference of 

C-neighborhood. 

Then, an improved LBP operator encoding was formed by 

concatenating three groups of sub-codes of local texture 
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encodings (𝐿𝐵𝑃𝐿1
𝐶𝐷 , 𝐿𝐵𝑃𝐿2

𝐶𝐷 , 𝐿𝐵𝑃𝐿3
𝐶𝐷) and two groups of sub-

codes of global comparison information encodings (𝐿𝐵𝑃𝑎𝑣𝑔
𝐶𝐷 , 

𝐿𝐵𝑃𝑚𝑎𝑔
𝐶𝐷 ). The improved LBP operator not only reflects the 

local features like texture direction and grayscale trend, but 

also contains the global features of the entire image. It can 

extract richer texture information, and achieve better 

discriminability. 

The standard LBPC,R operator can generate 2C patterns (code 

values). For example, 256 patterns will be generated if C=8. 

Obviously, it is not suitable to directly take the output of the 

standard operator as the final eigenvector. Meanwhile, 

𝐿𝐵𝑃𝐶,𝑅
𝑡𝑖  can reduce the total number of patterns to 36, and 

𝐿𝐵𝑃𝐶,𝑅
𝑈  can lower that number to 59.  

The above operators modify the encoding pattern of the 

LBP operator to varied degrees. Choosing an operator means 

accepting the corresponding modified encoding pattern. To 

select the most discriminable pattern class, the following 

factors were fully considered: the similarity and difference 

between images, the occurrence probabilities of different 

patterns, the consistency of pattern distribution, and the 

contribution of class information to pattern selection. 

After the features of a texture image have been extracted by 

the LBP operator, the probability for each pattern to appear in 

the image was counted. The patterns with high probabilities 

were treated as the main patterns that illustrate image texture, 

while those with low probabilities were deemed as irrelevant 

information or noise. Next, the consistency of pattern 

distribution was measured, that is, the variation in the number 

of the same pattern appearing in different images. If the pattern 

distribution is relatively consistent, the pattern was regarded 

as the image background. On this basis, the authors designed 

a pattern selection strategy based on the weighted ranking of 

classes: 

First, the original LBP patterns of the training set are 

grouped into different classes. Then, the occurrence 

probability and standard deviation of each pattern are 

calculated for each class. According to the standard deviation, 

different weights are assigned to the occurrence probabilities 

of different patterns. After that, the weighted occurrence 

probabilities are ranked in descending order. Finally, the main 

patterns of different classes of images are combined as the 

final main pattern eigenvector. The above process can be 

mathematically described as follows: 

Step 1. Initialize a set of N training images S={X1, X2, …, 

XN}, and the LBP pattern vector of each image Xi=(v1, v2, …, 

vM), where vi is the times that the LBP pattern appears in the 

current image. 

Step 2. Set the number C of the possible classes of the 

current image, and categorize the image set S into C classes, 

such that the same images fall into the same class 𝑆𝐶𝑖 =

{𝑋1, 𝑋2, … , 𝑋𝑁𝑖}, Ci=1, 2, …, C. 

Step 3. Calculate the total number of occurrences of each 

LBP pattern: 𝑇𝑜𝑡𝑎𝑙𝐻𝑖𝑠𝑡𝑐𝑖,𝑖 = ∑ 𝑣𝑖,𝑋𝑖𝑋𝑖
𝑁1
𝑋𝑖=1

, and the standard 

deviation of each LBP pattern: 𝑆𝐷𝐻𝑖𝑠𝑡𝑐𝑖,𝑖 =

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑣𝑖,𝑋1 , 𝑣𝑖,𝑋2 , … , 𝑣𝑖,𝑋𝑁). 

Step 4. Assign a weight to the occurrence probability of 

each pattern based on the standard deviation. 

Step 5. Calculate the weighted probability of each, sort the 

new image set 𝑆  in descending order of the weighted 

probability, and take the top k patterns as the main patterns of 

the current class. 

Step 7. Select the k main patterns of each class 𝑆𝐶𝑖  in turn 

by Steps 3-5, and record the �⃗⃗�𝐶1  value of the selected patterns. 

Step 8. For the eigenvector set S of LBP patterns of the 

original image, take the pattern class corresponding to ktotal as 

the final eigenvector of main patterns. 

 

 

4. PATTERN CLASSIFICATION 

 

Classification is an important step of image recognition. 

The recognition performance hinges on the classifier 

performance. In this paper, the SVM classifier is selected to 

recognize the image of bolt loss in underground pipelines, and 

the swarm intelligence algorithm [20] is introduced to 

optimize the SVM parameters. 

 

4.1 Parameter optimization 

 

The classification performance of the SVM mainly depends 

on kernel selection and parameter setting. If the kernel 

function or parameters is improper, the SVM will experience 

performance degradation, and even lose the ability to classify 

samples. Despite being a hot topic, there is not yet a widely 

recognized theory on the selection of the kernel function 

and parameters of the SVM. In practical application, the kernel 

function is basically determined by experience. 

In most cases, radial basis function (RBF) is the most 

superior kernel function for the SVM. But the two SVM 

parameters, namely, the penalty function and the kernel width, 

are difficult to determine. The ideal values of the two 

parameters can only be ascertained by traversing the entire 

search space. To optimize the SVM parameters, this paper 

improves the optimization strategy and adaptive phase of a 

swarm intelligence search algorithm called teaching-learning-

based optimization (TLBO) algorithm [21]. The improvement 

aims to speed up the convergence, maintain the population 

diversity in the search process, and enhance the ability to jump 

out of the local optimum trap. 

The TLBO algorithm is mainly improved in three aspects: 

(1) the judgement of whether to update the knowledge of the 

current student after each round of learning was improved 

from individual greedy strategy to class optimal strategy; (2) a 

self-adaptive learning phase was designed, in which the 

adaptive learning step size and knowledge level can be 

adjusted as per the current knowledge level of students; (3) a 

self-adaptive communication phase was designed to change 

the learning between two students into that between three 

students. 

In the standard TLBO algorithm, each student is reset into a 

freshman after the current round of learning, and immediately 

compared with each student who has not learned anything 

(hereinafter referred to as unlearned student). According to the 

greedy strategy, the student with the better performance is 

retained in the next round. Focusing on individual renewal, the 

greedy strategy might eliminate some high-quality individuals, 

while retaining a few inferior individuals. Thus, the 

convergence of the entire population might be slowed down. 

To solve the problem, this paper optimizes the greedy strategy 

into class optimal strategy, drawing on the principle of group 

updating. First, all freshmen and unlearned students form a 

class at the end of the current round of learning, and all the 

students in the class are ranked by score. Then, only the 

students with relatively high scores in the class are retained for 

the new class in the next round. 
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In the teaching stage, the students mainly accept the 

knowledge imparted by the teacher. During actual learning, 

however, the students often differ in performance and the 

knowledge gap with the teacher. Each student ought to learn 

from the teacher based on his/her knowledge level. In the 

standard TLBO algorithm, the learning step size of each 

student is randomly assigned, rather than adjusted as per the 

individual situation. This paper designs an adaptive learning 

step size, allowing each student to adjust the size as per his/her 

knowledge gap with the teacher. The adjustment process can 

be described mathematically as: 

In the i-th iteration, the adaptive learning step size w was 

added when student a is learning the knowledge of subject k: 

 

𝑤 = 𝑅𝑏𝑒𝑠𝑡 − 𝑅𝑎 𝑅𝑏𝑒𝑠𝑡 − 𝑅𝑤𝑜𝑟𝑠𝑡⁄  (9) 

 

where, Ra is the score of student a; Rbest is the best score in the 

current class; Rworst is the worst score in the current class. 

The improved knowledge update method for student a can 

be expressed as: 

 

𝐷𝑖𝑓𝑓_𝑀𝑒𝑎𝑛𝑘,𝑎,𝑖
𝑛𝑒𝑤 = 𝑤 × (𝑇𝑘,𝑖 − 𝑇𝐹𝑀𝑘,𝑖) (10) 

 

where, Mk,i is the mean knowledge level of the current 

class. 

In this way, student a can adjust his/her learning step size as 

per his/her knowledge gap with the teacher. 

In the teaching stage, the teacher attempts to increase the 

mean knowledge level Mk,i of the current class Mk,i. But the 

students tend to vary in the knowledge gap with the 

teacher. The variation cannot be reflected by the mean 

knowledge level Mk,i. This paper proposes an adaptive 

knowledge level, enabling each student to adjust the 

learning progress as per his/her knowledge gap with the 

teacher. The adjustment process can be described 

mathematically as: 

In the i-th iteration, the adaptive knowledge level 𝑀𝑘,𝑖
𝑛𝑒𝑤 was 

added when student a is learning the knowledge of subject k: 

 

𝑀𝑘,𝑖
𝑛𝑒𝑤 = 𝑇𝑘,𝑖 + 𝑎𝑘,𝑖 2⁄  (11) 

 

where, ak,i is the knowledge level of student a on subject k; 

Tk,i is the knowledge level of the teacher on subject k. 

In this way, student a can adjust his/her knowledge level as 

per his/her knowledge gap with the teacher. 

In the standard TLBO algorithm, student a randomly selects 

a student b as the object in the student communication stage. 

If student b does better, student a will move towards him/her; 

If student b does poorer, student a will move away from 

him/her. To broaden student knowledge and improve 

population diversity, the number of students engaged in the 

communication was increased from 2 to 3. 

In the i-th iteration, the current student a learns from 

students b and c, both of who are doing better than student a 

on subject k, to adjust his/her learning step size through 

autonomous learning: 

 

𝐿𝑘,𝑎,𝑖
𝑛𝑒𝑤 = 𝐿𝑘,𝑎,𝑖 + (2 × 𝑟 − 1)|𝐿𝑘,𝑏,𝑖 − 𝐿𝑘,𝑐,𝑖| (12) 

 

where, r is a random number within [0, 1]. 

If student a falls between b and c in terms of score, he/she 

will adjust his/her learning strategy towards that of the other 

two student. In the i-th iteration, suppose student b has the 

highest score, a has the middle score, and c has the lowest 

score. In this case, the current student a will learn from the 

experience of b and the lesson of c, and exchange knowledge 

with them on subject k. This process can be mathematically 

described as: 

 

𝐿𝑘,𝑎,𝑖
𝑛𝑒𝑤  

= 𝐿𝑘,𝑎,𝑖 + 𝑟𝑏(𝐿𝑘,𝑏,𝑖 − 𝐿𝑘,𝑎,𝑖) − 𝑟𝑐(𝐿𝑘,𝑐,𝑖 − 𝐿𝑘,𝑎,𝑖) 
(13) 

 

where, rb and rc are random numbers within [0, 1]. 

 

4.2 Image recognition based on Gabor transform 

 

Gabor wavelet [22] has a perceptual response similar to 

human visual system, and a good resolution in both spatial and 

frequency domains. This paper selects the kernel function of 

Gabor wavelet to convolute the original image. In this way, an 

image matrix with 40 complex coefficients was extracted, 

reflecting the features of the original images in different 

frequency scales and texture directions. 

Gabor wavelet transform can achieve the best 

localization effect in both time domain and frequency 

domain. However, the dimension of the eigenvectors 

obtained by Gabor wavelet transform is 40 times of the 

original image, a taletelling sign of high redundancy. This 

seriously suppresses the recognition efficiency. Meanwhile, 

the texture features extracted by LBP operator are robust to 

angle and occlusion changes, and strongly discriminable. 

Therefore, Gabor transform was applied to the original image 

to obtain the response image in 5 scales and 8 directions. 

Then, the improved LBP operator was implemented to 

extract the eigenvectors of different channels. After that, 

the 40 groups of eigenvectors were optimized to obtain 

better recognition performance. Figure 3 explains the 

processes of the improved classification algorithm for bolt loss 

recognition. 

 

 
 

Figure 3. The overall processes of improved classification 

algorithm for bolt loss recognition 
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5. EXPERIMENTS AND RESULT ANALYSIS 

 

After Gabor transform of the original image, a total of 40 

response images could be obtained in different channels. Then, 

the LBP operator was applied for feature extraction, producing 

a 112-dimensional eigenvector in each channel. Obviously, the 

40×112 dimensional eigenvector cannot be directly 

recognized by the SVM classifier. Therefore, the improved 

LBP operator was called to select the main patterns of the 40 

channel eigenvectors. The optimal feature combination of 

each channel was obtained through separate recognition of 

each channel. Table 1 records the optimal feature retention 

dimension and recognition rate of each channel. 

 

Table 1. The optimal feature retention dimension and 

recognition rate of each channel 

 
Channel Dimension Recognition rate (%) 

1 38 58.76 

2 40 54.11 

3 39 54.11 

4 41 51.25 

5 37 62.31 

6 42 57.26 

7 41 52.73 

8 42 58.32 

9 28 60.51 

10 37 60.38 

11 36 64.57 

12 38 63.35 

13 31 71.75 

14 38 60.12 

15 37 62.87 

16 38 57.92 

17 22 60.30 

18 31 71.58 

19 33 60.83 

20 27 55.82 

21 25 63.82 

22 40 68.90 

23 31 72.51 

24 32 87.34 

25 17 82.62 

26 32 71.93 

27 28 76.82 

28 30 78.37 

29 17 78.17 

30 31 65.83 

31 27 55.90 

32 33 80.49 

33 11 89.20 

34 20 89.10 

35 19 82.93 

36 10 88.59 

37 17 81.72 

38 18 85.73 

39 21 84.85 

40 19 90.77 

 

As shown in Table 1, the recognition rates of different 

channels differed sharply. The performance of our algorithm 

can be greatly improved by optimizing the combination of 

eigenvectors. 

After optimal combination of eigenvectors was determined 

for each channel, the SVM classifier was adopted to identify 

the eigenvectors of each channel, and different weights were 

assigned to the predicted class tags of each channel. To test the 

effects of the weighting process on the recognition 

performance, the recognition rates of our algorithm were 

compared with different weight optimization methods: no 

weight optimization, taking recognition rate as weight, 

adaptive boost, and the improved TLBO. The experimental 

results are shown in Table 2. 

 

Table 2. The recognition rates with different weight 

optimization methods 

 
Weight optimization method Recognition rate (%) 

No weight optimization 97.52 

Taking recognition rate as weight 97.55 

Adaptive boost 98.16 

Improved TLBO 99.03 

 

As shown in Table 2, the improved TLBO led to better 

results than the other two weight optimization methods, in 

terms of search ability and recognition accuracy. The weight 

optimization by the improved TLBO provides a good basis for 

pattern classification and image recognition. 

 

 

6. CONCLUSIONS 

 

To realize automatic detection of bolt loss images of 

underground pipelines, this paper establishes a recognition 

algorithm that can effectiveness identify the images of key 

parts of underground pipelines. The main innovation is the 

design of an improved LBP operator for the extraction of 

texture features. To enhance the texture discriminability, the 

local texture features were compared with global features, and 

the comparative results were included in the encoding method. 

In addition, the TLBO algorithm was improved to optimize 

multiple parameters of the SVM, which improves the 

convergence speed and optimization accuracy of the 

recognition algorithm. 
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