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School-age children have vastly different behavior features from adults. Most of the relevant 

studies are theoretical summaries of behavior features of these children, failing to detect the 

behaviors or recognize the behavior features in an accurate manner. To solve the problem, 

this paper puts forward a novel method to recognize the behavior features of school-age 

children through video image processing. Firstly, the authors designed a method to extract 

static behavior features of school-age children from surveillance video images. Next, the 

behavior features of school-age children were extracted by optical flow method. On this 

basis, a dual-network flow neural network (DNFNN) was designed, in which the time flow 

network processes the dense optical flow of multiple continuous frames of the surveillance 

video, while the spatial flow network treats the region of interest (ROI) in the static frame 

from the video. After that, the workflow of the DNFNN was introduced in details. 

Experimental results fully demonstrate the effectiveness of the proposed network. The 

research findings provide a reference for the application of video image processing to 

behavior recognition in other fields.  
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1. INTRODUCTION

The behaviors of adults have fixed patterns and take place 

in regular locations. In contrast, the behaviors of school-age 

children carry some distinctive features [1-4]. The daily 

activities of school-age children often take place in open 

spaces like schools and streets. While undergoing rapid mental 

and physical growth, school-age children are prone to be 

injured, due to their immature and unstable state of mind. To 

safeguard the healthy growth of school-age children, it is of 

great significance to explore the space and laws of their 

behaviors, with full consideration of their mental needs and 

physiological scale. The proliferation of video surveillance 

system makes it possible to recognize, analyze, and summarize 

the behavior features of school-age children, with the aid of 

advanced image processing technology [5-9]. 

Some scholars have theoretically summarized the behavior 

features of school-age children [10-14]. For instance, Maramis 

et al. [8] defined the features of children behaviors, 

constructed three behavior patterns (i.e. essential behavior, 

spontaneous behavior, and social behavior) of school-age 

children in five aspects (i.e. mode, behavior, relationship, 

requirement, and location), and identified relevance as the 

most striking behavior feature of school-age children, that is, 

each behavior pattern is usually derived from the other two 

patterns. Mabrouk and Zagrouba [15] explored the 

relationship between the safety of children behavior space and 

children behavior features, and provided the safety analysis 

and design methods of playground design. Zhang et al. [16] 

classified and summarized the cognitive behaviors of 

preschool children, and refined their behavior features in four 

dimensions (i.e. cognitive behavior, perception behavior, 

action behavior and social behavior), from the angle of sensory 

integration. 

Moving target detection is the basis for recognizing the 

behavior features of school-age children based on video 

images. Most of the relevant studies focus on moving target 

extraction algorithms, namely, frame difference method and 

background modeling [15, 17-19]. Kennedy et al. [20] 

optimized the moving foreground detection algorithm in the 

case of camera shake, and updated the detection strategy by 

treating the background with first-in, first-out method and 

setting an adaptive threshold, thereby improving the 

adaptability to scene changes. Cord [21] combined 

nonparametric human moving target estimation and image 

registration method to generate background images with the 

same perspective as the background, while extracting the 

foreground. Cao et al. [12] developed an incremental activity 

learning framework that can continuously update the human 

activity model and renew the learning model from unknown 

videos, providing a solution to the manual labeling of the 

samples learned from different kinds of human behaviors. 

Sandler et al. [22] proposed a human behavior detection 

method, which relies on local binary similarity to extract 

foreground targets and joint features, and classified the 

behaviors of monitoring targets by fusing the joint features 

with histogram of oriented gradients (HOG) features and 

pyramid features. 

In the open outdoor environment, there is a heavy presence 

of interference, which may induce errors in the behavior 

detection and recognition of school-age children. Technically, 

it is an urgent problem to guarantee the recognition accuracy 

of the behavior features of school-age children, despite the 

growing maturity of technologies like artificial intelligence 

(AI) and data mining, as well as the rising accuracy and speed 

of image feature extraction and moving target detection 
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algorithms. 

Based on video image processing, this paper puts forward a 

novel method to recognize the behavior features of school-age 

children. Firstly, the authors designed a method to extract 

static behavior features of school-age children from 

surveillance video images. Then, the movement features of 

school-age children were extracted by optical flow method. On 

this basis, a dual-network flow neural network (DNFNN) was 

designed, in which the time flow network processes the dense 

optical flow of multiple continuous frames of the surveillance 

video, while the spatial flow network treats the region of 

interest (ROI) in the static frame from the video. The workflow 

of the DNFNN was introduced in details. Finally, the proposed 

network was proved valid through experiments. 

 

 

2. EXTRACTION OF STATIC FEATURES  

 

To detect the behaviors of school-age children, the first step 

is the moving target detection in video images. The detection 

effect directly bears on the extraction accuracy of behavior 

features. Compared with the traditional background modeling 

algorithm, the ViBe algorithm is good at simulating the 

stochastic changes of pixels. But the algorithm might make 

false detection, under the influence of image background and 

ghosting. In this paper, the ViBe algorithm is improved from 

the perspective of pixel classification threshold (PCT). Firstly, 

the background complexity in the static frame from the video 

was defined as: 
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where, p(x)-pk(x) is the difference between a pixel in the 

current frame and the corresponding pixel in an image from 

the sample set of the background model; α is the suppression 

coefficient reflecting the degree of change of video image 

background. Let ∇T be the degree of change of the background. 

Then, the PCT that adapts to the change of ∇T can be 

expressed as: 
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where, β is the adjustment variable of fixed threshold. To 

rapidly adjust the change speed of PCT with the change of ∇T, 

β should be adjusted by: 
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Substituting (3) into (4), the PCT can be expressed as: 
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Simplifying (4), the adaptive PCT can be expressed as: 
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To prevent misjudgment of the adaptive PCT, the threshold 

should be adjusted back to 1.5∇T, if the adaptive threshold 

reaches or surpasses 2∇T. 

On the extraction of moving target features, speeded up 

robust features (SURF) is much simpler than the scale-

invariant feature transform (SIFT). When it comes to the 

extraction of interesting feature points from video images, the 

Hessian matrix of SURF needs a complex calculation process 

and a long time to filter out the incorrect points of interest 

(POIs). 

To solve the above defect and suppress noise interference, 

this paper introduces the similar pixel-based response function 

correction factor to the Harris corner detection. In the input 

video image, the similarity between the target pixel p(a1,b1) 

and any pixel p(a2,b2) in its neighborhood can be calculated by: 
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where, s(a,b) is a binary function representing the relationship 

between the absolute value of the grayscale difference of the 

two pixels and the set threshold. If the absolute value is smaller 

than the set threshold, s(a,b)=1; otherwise, s(a,b)=0. 

 

 
 

Figure 1. The similarity values in three cases 

 

Figure 1 shows the similarity values in three cases: (a) an 

isolated point or a noise point; (b) candidate corners; (c) edge 

points of the target. The gradients of the selected candidate 

corners can be multiplied horizontally and vertically by: 
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The matrix form of the gradient product can be weighted by 

the Gaussian function below: 

 

2

2

  

  

a a b

mat

a b a

M M M

M
M M M

 

 

 
 
 =
 
 
 

 

 
  (10) 

 

604



 

where, ω is the weight coefficient of pixel (a,b). The Harris 

function of each pixel can be calculated by: 

 

 
2

det( ) tra( )mat matH M M= −   (11) 

 

where, det(Mmat) and tra(Mmat) are the product and the sum of 

the eigenvalues of matrix Mmat, respectively; δ is an empirical 

constant in the range of 0.04~0.06. The above formula can be 

modified with a correction factor: 
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The POI or the final corner of SURF can be determined 

through non-maximum suppression by (12). 

 

 

3. EXTRACTION OF MOVEMENT FEATURES 

  

To a certain extent, the brightness of video images reflects 

the movements of school-age children. Hence, the optical flow 

was chosen to characterize the movement features of these 

children. Let g(a,b,t) be the grayscale of pixel (a,b) in a video 

frame at time t. Then, the Taylor formula can be derived from 

the functions of the pixel’s position and time: 
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where, Fa, Fb, and Ft are the partial derivatives of F in 

directions a, b, and t, respectively. If pixel (a,b) moves a 

distance of (da,db) in a tiny period Δt, and if the pixel 

brightness does not vary with time, then the following 

equation holds: 
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If da, db, and dt are infinitely small, then Δ(υ2) in (13) is a 

negligible second-order infinitesimal. Thus, the optical flow 

equation can be expressed as: 
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Let v and u be the velocity vectors of the optical flow along 

the X and Y axis, respectively. Then, the optical flow feature 

(v,u) is the required optical flow vector. After estimating the 

movement features of school-age children by the optical flow 

method, the video frame can be divided into several blocks 

along the width and height. Figure 2 shows the workflow of 

histogram statistics for multi-scale optical flows. 

 

 
 

Figure 2. The workflow of histogram statistics for multi-scale optical flows 

 

  
(a) (b) 

 

Figure 3. The multi-scale optical flow histograms of adults (a) and school-age children (b) 

 

First, the entire frame was divided into several fixed-size 

blocks. Based on the angle of the optical flow, each block was 

further divided into q intervals of the size 2π/q. As shown in 

Figure 2, the video frame is split into 16 80×80 blocks, each 

of which is divided into 16 intervals of 22.5°.  

According to the size of the optical flow, all the intervals 

were categorized into 2 scales. The first 16 intervals 

correspond to the 8 directions in which the inner optical flow 

is smaller than the set threshold Δω, while the last 16 intervals 

correspond to the 8 directions in which the outer optical flow 

is greater than that threshold. 

The interval division of pixel (a, b) can be expressed as: 
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where, W(a,b) is the serial number of histogram intervals; 

V(a,b) and R(a,b) are the velocity and direction of the optical 

flow at pixel (x,y), respectively. After the classification of the 

optical flow, the sum of optical flow in each interval was 

counted and taken as the height of the histogram of that 

interval. 

Figures 3 (a) and (b) are the multi-scale optical flow 

histograms derived from normal samples of adults and school-

age children, respectively. It can be seen that the optical flow 

amplitude in each interval of adults was smaller than that of 

school-age children. This is because the main movement 

directions of adults are more uniform than those of school-age 

children. 

 

 

4. DNFNN CONSTRUCTION 

 

To effectively recognize the behaviors of school-age 

children in the set of multiple video frames, this paper puts 

forward a DNFNN architecture based on time flow network 

and spatial flow network. Specifically, the time flow network 

processes the dense optical flow of multiple continuous frames, 

to acquire the movement features of school-age children from 

the surveillance video; the spatial flow network treats the ROI 

in the static frame from the video, to obtain static information 

like background and appearance. 

To recognize the typical behaviors of school-age children, 

the spatial flow network is a convolutional neural network 

(CNN) that extracts the features of each video frame, and 

mines the static information (e.g. background and appearance) 

from RGB (red, green, blue) imageS by the principle of image 

recognition. A shown in Figure 4, the spatial CNN is an 

improved 8-layer VGGNet, where max pooling and rectified 

linear unit (ReLU) activation function are adopted on each 

layer. 

 

 
 

Figure 4. The improved VGGNet 

 

 
 

Figure 5. The sketch map of trajectory superposition 

 

The time flow network is a temporal CNN that mainly 

extracts the optical flow containing the movements or time 

series information of the behaviors of school-age children. 

Here, the optical flow signals are inputted through trajectory 

superposition (Figure 5). The pixels at the same position of 

continuous frames were sampled, and the movement 

trajectories were adopted to track the superposed optical flows. 

For any frame η, the input Xη can be expressed as: 
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where, oη+i+1
x and oη+i+1

y are the vector fields of the horizontal 

and vertical components on the η+i+1-th frame, respectively. 

a=[1,w], b=[1,h], and i=[1,L] for any pixel (a,b); pi is the k-th 

point along the trajectory of the L sequence frames, which 

starting from the position of pixel (a,b) in the η-th frame. The 

value of pi can be defined by the recursive relationship below: 
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The DNFNN is implemented in the following steps: 

Step 1. Under the framework of the input layer, the image 

size is uniformly scaled to 224*224; the RGB images are 

imported to the spatial flow network, and 8 consecutive frames 

of superposed optical flow images are imported to the time 

flow network. 

Step 2. In the first convolutional layer conv1, the spatial 

flow network and time flow network convolute the ROIs of the 

motions of school-age children and the 8 consecutive frames 

of optical flow images, which are obtained in the previous step. 

In this way, 64 salient features can be extracted. Let λ be the 

filling size, 1 be the filling parameter, and snuc be the kernel 

size. Then, the number of 224*224 feature maps output by the 

convl can be calculated by: 
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where, I and O are the size of the input and output video frames, 

respectively; l is the step length. The final output of conv1 is 

64 224*224 feature maps. 

Step 3. In the first pooling layer, the window size is 2×2, 

and the step length is 2. This layer performs max pooling of 

the 64 feature maps, changing their size to 112*112. 

Step 4. The second convolutional layer conv2 further 

convolutes the pooled feature maps into 128 112*112 feature 

maps, using the same kernel size as conv1. 

Step 5. Using the same window size, the second pooling 

layer performs max pooling of the 128 feature maps, changing 

their size to 56*56. 

Step 6. The same convolution and pooling parameters are 

adopted in the subsequent convolutional and pooling layers. 

The third convolutional layer conv3 convolutes the 128 pooled 

feature maps, producing 256 56*56 feature maps. These 

feature maps are adjusted to the size of 28*28 through max 

pooling. Next, the fourth convolutional layer conv4 

convolutes the 256 pooled feature maps into 512 28*28 feature 

maps. These feature maps are adjusted again to the size of 

14*14 through max pooling. 
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Step 7. The 512 14*14 feature maps are imported to two 

fully-connected layers, generates a 4,096-dimensional 

eigenvector and a 2,048-dimensional eigenvector. The 2048-

dimensional vector, as the final representation of movement 

features of school-age children, is imported to the long short-

term memory (LSTM) network, which recursively learns all 

the long-term movement features in the time dimension. 

Finally, the softmax outputs of spatial and time flow networks 

are weighted and merged to obtain the classification results of 

school-age children’s behaviors. 

After the LSTM processing, the output of the last layer was 

connected to the softmax classifier, and the proposed network 

was trained by the weighted and merged high-level features. 

The output of the classifier is usually an N-dimensional vector 

Cμ(⁎), reflecting the probability for the current input to fall into 

each class. Let μ be the learning parameter. Then, the classifier 

output can be normalized by: 
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The deviation of the predicted probability distribution from 

the actual result can be evaluated by the cross-entropy loss: 
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The greater the cross-entropy loss, the larger the deviation. 

Rather than take the mean output of softmax classifier as the 

final prediction, the recognition effect of the DNFNN on 

school-age children’s behaviors was optimized by the 

weighting method below: 

 

 ˆ arg max ( ) (1 ) ( )t s ty P t P t = + −   (22) 

 

where, τ∈[0,1] is the weight coefficient of the spatial flow 

network; Ps(ω) and Pt(ω) are the output probabilities of spatial 

flow network and time flow network, respectively. 

 

 

5. EXPERIMENTS AND RESULTS ANALYSIS 

 

This paper mainly aims to identify the behavior features of 

school-age children in video images. Therefore, a surveillance 

video dataset of a school playground was chosen for our 

experiments. The dataset contains 50 frame sequences (frame 

rate: 35fps; resolution: 720*480). Each video clip covers 

several kinds of behaviors of school-age children, including 

general behaviors (e.g. walking, running, and jumping), 

interactive behaviors (e.g. handshaking, pointing, and 

hugging), and uncivilized behaviors (e.g. hitting, pushing, and 

kicking).  

 

 
 

Figure 6. The adaptive threshold curves 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 7. The loss curves of spatial flow network (a), time 

flow network (b), and DNFNN (c) 
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In the proposed network, a limit is imposed on the adaptive 

threshold to enhance the adaptability to the changing 

background complexity, during the extraction of static features 

from video images. Figure 6 compares the adaptive threshold 

curves with and without the limit. It can be seen that, when the 

background complexity changed suddenly, the limited 

adaptive threshold converged faster and better than the 

original adaptive threshold. 

Figure 7 presents the loss curves of spatial flow network, 

time flow network, and DNFNN in the training process. With 

the growing number of iterations, the losses, i.e. training errors, 

of all three networks continued to decline, and the predicted 

classes of the behavior features of school-age children 

gradually approximated the actual classes. The loss functions 

of spatial flow network and time flow network converged 

ideally after about 14,000 iterations; the loss function of the 

DNFNN also tended to be stable at around the 14,000-th 

iteration. 

 

 
 

Figure 8. The error curves at 8 and 16 optical flow intervals 

 

 
 

Figure 9. The recognition accuracies of spatial flow network 

and time flow network 

 

In our method, different video frames are divided into 

different number of optical flow intervals. Figure 8 compares 

the root mean square errors (RMSE) curves at 8 and 16 optical 

flow intervals. Obviously, the RMSE was smaller at 16 

intervals than that at 8 intervals. The greater the number of 

intervals, the richer the semantics being mined, and the better 

the recognition effect of the behavior features of school-age 

children. 

The next is to verify the necessity of the merge between the 

two networks and the adoption of the LSTM network, and to 

provide the basis for the weight setting during the merge. First, 

the recognition accuracies of spatial flow network and time 

flow network are compared in Figure 9. It can be seen that the 

recognition accuracies of spatial flow network and time flow 

network fluctuated about 83% and 85%, respectively. The 

mean accuracies reached 84.5%. The time flow network 

achieved slightly better recognition effect on the behavior 

features of school-age children. 

Figure 10(a) compares the recognition errors of school-age 

children’s behaviors with and without LSTM. It can be seen 

that, the LSTM processing lowered the recognition error in the 

first 10,000 iterations, because the network fully mines the 

spatiotemporal information from the video frames. 

Considering its slightly better recognition effect than spatial 

flow network, the time flow network is given the greater 

weight in our method. To optimize the weight setting, Figure 

10(b) compares the recognition accuracies, when the time flow 

network has different weights. With the growing weight of the 

time flow network, the recognition accuracy gradually 

increased; when the weight reached 0.7, the recognition 

accuracy reached the peak value; further growth of the weight 

caused the accuracy to drop. The reason is that the optical 

flows contain rich information about the movement time 

sequence of school-age children. The superposed optical flow 

can enhance the movement trend, enabling our network to 

learn more salient features of behaviors. 

 

 
(a) 

 
(b) 

 

Figure 10. The effects of LSTM (a) and weight setting (b) on 

recognition effect 

 

 

6. CONCLUSIONS 

 

Based on video image processing, this paper puts forward a 

novel method to recognize the behavior features of school-age 

children. Firstly, the authors designed a method to extract 
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static behavior features of school-age children from 

surveillance video images, and suggested extracting the 

movement features of these children by optical flow method. 

Experimental results prove that the two methods can adapt 

well to images with different background complexities. Next, 

the spatial flow network was merged with the time flow 

network into the DNFNN, and the workflow of the DNFNN 

was introduced in details. Through experiments, it is observed 

that the DNFNN tended to be stable after about 14,000 

iterations, and the predicted classes of the behavior features of 

school-age children gradually approximated the real classes, 

with the growing number of training iterations. The 

experiments also demonstrated the necessity to merge the 

spatial and time flow networks and adopt the LSTM network, 

and provided the basis for weight setting for the merge. 
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