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Newtonian steady state flow of fluids with electrical conduction properties was examined 

adjacent to a moving heated vertical plate subjected to a magnetic field and a heat 

source/sink. The impact of magnetic parameter, Prandtl number, permeability coefficient, 

heat source/sink volumetric rate and temperature difference between heated plate and 

ambient temperature. A reduced system of ODEs was created via group similarity method. 

The solution led to some important results.  Increasing permeability coefficient of the plate 

material resulted in a significant increase in flow velocity and a slight increase in heat flux 

but the magnitude of shear stress and temperature distribution decreased. Moreover, 

increasing the magnetic parameter, M, led to a significant decrease in velocity and a 

decrease in heat flux, whereas shear stress and temperature distribution increased. 

Furthermore, increasing Prandtl number, Pr, reduced the velocity significantly and the heat 

flux slightly. On the other hand, the magnitude of shear stress and temperature distribution 

increased. In case of using heat source, the increase in its energy rate decreased the heat 

flux with no significant effect on shear stress. Finally, the increment of temperature 

difference led to noticeable increase in velocity and a slight increase in heat flux, whereas 

the shear stress decreased. 
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1. INTRODUCTION

For many decades, Newtonian flows attracts many 

researchers to investigate and study their behaviors.  Steady 

and unsteady fluid dynamics were studied for different cases 

of operations to model and simulate many engineering 

applications. Power generators, cooling systems of nuclear 

reactors and liquid metal flow control are few examples of 

such applications. Electrically conducting fluids subjected to 

magnetic field, which are also known as 

magnetohydrodynamic (MHD) fluids, are important fluids 

models. Many researchers have studied different cases of 

MHD fluids using numerous methods. Kataria and Patel [1] 

studied the effects of heat generation on MHD fluid flow 

through porous medium past an oscillating vertical plate. 

Huang and Liu [2], analyzed the features of laminar MHD 

fluid in a pipe. Liu and Guo [3] examined the fractional 

Maxwell MHD fluid. Ahmad et al. [4] used a periodically 

accelerated plate to find a new analytical technique for MHD 

fluid flow. Ajam et al. [5] used Buongiorno’s model and found 

a new analytical approximation of MHD resulting from a 

stretching permeable surface. Chen et al. [6] obtained a 

solution for fractional viscoelastic MHD fluid using Lie group 

similarity over a stretching sheet. Khan et al. [7] attained a 

numerical solution of MHD flow with homogenous 

heterogeneous reactions. Prasad et al. [8] studied the thermal 

properties of MHD Casson fluid. Umavathi et al. [9] studied 

the effect of temperature on MHD flow in a vertical channel. 

Ahmed et al. [10] investigated the non-Newtonian Maxwell 

fluid with variable thermal conductivity. Rehman et al. [11] 

studied MHD flow of Casson fluid in stretching cylinder. 

Different mathematical methods were exploited to investigate 

and analyze numerous cases of fluid dynamics. Lie 

Infinitesimal and group methods [12-14], homotopy method 

[15-17], finite element [18-20] and finite volume [21-23] are 

examples for such common methods. Several modeling of 

MHD fluids have been studied [24, 25]. 

Inspired by all these researches, the present work provides 

analytical and numerical solutions for heated moving vertical 

plate submerged in MHD fluid. The objectives of the recent 

study are to combine many parameters to the considered flow 

and investigate their effect on the velocity profile, shear stress, 

heat distribution and heat flux inside the boundary layer. The 

considered parameters are magnetic parameter, permeability 

coefficient, Prandtl number, temperature difference and 

volumetric heat rate of a heat source/sink. 

2. MATHEMATICAL FORMULATION

Consider a moving vertical porous plate immersed in MHD 

fluid with temperature adjacent to plate of 𝑇𝑤  while

temperature outside boundary layer is 𝑇∞. The flow undergoes

a constant pressure and subjected to a constant magnetic field 

of density B0 in y-direction that results in Lorentz force in x-

direction (−𝜎𝐵0
2𝑢). The momentum in y-direction has been

neglected while the heat diffusion is more significant in y-

direction. Based on the previous assumptions, the physical 

model is depicted in Figure 1 while the governing equations 

are described as: 
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Figure 1. Physical model of the problem 
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where, 𝜈  is the kinematic viscosity, T is the temperature, k 

stands for permeability while 𝛼 is the thermal diffusivity 𝛼 =
𝜈

𝑃𝑟
 (Pr is Prandtl number). 

The flow is Subjected to the following boundary conditions: 

 

𝑢(𝑥, 0) = 𝑢𝑤(𝑥), 𝑢(𝑥,∞) = 0, 𝑣(𝑥, 0) = 0,
𝑇(𝑥, 0) = 𝑇∞  

(4) 

 

The equations, Eq. (1) - Eq. (3), are normalized using the 

following substitutions: 
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The equations, Eq. (1) - Eq. (3), are transformed to: 
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The boundary conditions are: 

 

𝑈(𝑥, 0) = 1, 𝑣(𝑥, 0) = 0, 𝜃(𝑥, 0) = 1,  
𝑈(𝑥,∞) = 0, 𝜃(𝑥,∞) = 0 

(10) 

 

 

3. GROUP TRANSFORMATION OF MHD SYSTEM 

 

A group transformation of one parameter, a, was used to 

reduce the PDE system into an ODE system in one similarity 

variable, 𝜂. 

3.1 Formulation of the problem using group method 

 

The group structure is assumed to be on the form [12, 13]: 

 

𝐺: 𝑆̅ = 𝐾𝑠(𝑎)𝑆 + 𝑄𝑠(𝑎)  (11) 

 

where, S stands for the system variables. The differential 

coefficients function, 𝐾𝑠  and 𝑄𝑠 , are real constants. The 

partial derivatives are defined as: 
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3.2 Analysis of the problem 

 

Eqns. (7) - (9) are transformed to: 
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Invariance condition [12, 13] for Eq. (13)-Eq. (15) leads to: 

 

𝐾𝑦 = 𝐾𝑣 = 1, 𝐾𝑥 = 𝐾𝑈𝐾𝑢𝑤 , 𝐾𝜃 = 𝐾𝑥  (16) 

 

𝑄𝑈 = 𝑄𝑢𝑤 = 𝑄𝑣 = 𝑄𝜃 = 0  (17) 

 

Finally, the full group structure can be described as: 

 

𝐺:
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3.3 The complete transform of MHD system 

 

Recalling Morgan's theorem for group method of one 

parameter, the independent variables can be reduced into one 

similarity variable. Moreover, the dependent variables, 

𝑈, 𝑢𝑤 , 𝑣 𝑎𝑛𝑑 𝜃 are transformed into new invariant variables. 

Morgan’s theorem states: 

 

∑ (𝛾𝑖𝑆𝑖 + 𝛿𝑖)
𝜕𝑞𝑖

𝜕𝑆𝑖
= 06
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where, 𝑆𝑖  refers to the original system variables 

(𝑥, 𝑦, 𝑈, 𝑢𝑤, 𝑉, 𝜃) and 𝑞𝑖  refers to the transformed variables 

while the 𝛾𝑖  𝑎𝑛𝑑 𝛿𝑖 are defined as: 
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{
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𝛿𝑖 =
𝜕𝑄𝑆𝑖(𝑎)
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  (20) 

 

3.3.1 Transformation of the independent variables 

Applying Eq. (19) to the original independent variables, 

helps in attaining a new similarity variable in the form: 

 

𝜂(𝑥, 𝑦) = 𝑦Γ(𝑥)  (21) 

 

whereas the dependent variables are transformed to new 

invariant variables in the form: 

 

{
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  (22) 

 

where, Γ(𝑥), 𝜔(𝑥), 𝑢𝑤(𝑥)𝑎𝑛𝑑 𝜋(𝑥)  are arbitrary functions 

which will be evaluated during the reduction process of the 

system. The system, Eq. (7) - Eq. (9), will be reduced to the 

following system where dashes indicate derivatives with 

respect to 𝜂: 
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Such that the arbitrary functions were evaluated to be: 
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where, 𝑀 =
𝜎

𝜌
𝐵0
2 , 𝐻 =

16𝜎∗

3𝜌𝑐𝑝𝜒
𝑇∞
3 . Moreover, 𝑐0, 𝑐1 𝑎𝑛𝑑 𝑐2  are 

arbitrary constants. 

The obtained ODE system is subjected to the following 

conditions: 

𝐹(0) = 1, 𝑉(0) = 0, 𝐸(0) = 1, 
𝐹(∞) = 0, 𝐸(∞) = 0  

(27) 

 

 

4. RESULTS AND DISCUSSION 

 

Eqns. (23) - (25) are numerically solved using shooting 

method. The effects of Prandtl number, Pr, magnetic 

parameter, M, permeability coefficient of the plate, k, the 

volumetric heat rate of the source/sink, q, and temperature 

difference, Δ𝑇, were investigated for MHD flow. 

 

4.1 Effect of permeability coefficient, k 

 

The results showed that, increasing permeability coefficient 

of the plate material led to a corresponding significant increase 

in the fluid velocity and a slight increase in the heat flux inside 

the boundary layer. On the other hand, the magnitude of shear 

stress and temperature distribution decreased with increasing 

permeability coefficient. This can be explained by the fact that 

the pores in porous plate facilitated the flow diffusion and heat 

flux as shown in Figures 2-5. 

 

4.2 Effect of magnetic parameter, M 

 

The results showed that, increasing magnetic parameter, M, 

or increasing the magnetic flux density led to a corresponding 

significant decrease in the fluid velocity and a slight decrease 

in the heat flux inside the boundary layer. This is due to the 

retarding effect of Lorentz magnetic forces on the fluid 

diffusion. On the other hand, the magnitude of shear stress and 

temperature distribution increased with increasing M values as 

illustrated in Figures 6-9. 

 

4.3 Effect of Prandtl number, Pr 

 

The results showed that, increasing Prandtl number, Pr, or 

increasing the viscosity of the fluid led to a corresponding 

significant decrease in flow velocity and a slight decrease in 

the heat flux inside the boundary layer. This is due to the effect 

of increasing fluid viscosity on retarding the fluid flow. On the 

other hand, the magnitude of shear stress and temperature 

distribution increase with increasing Pr values as illustrated in 

Figures 10-13. 

 

 

 
 

Figure 2. Effect of permeability 

coefficient on velocity 

 
 

Figure 3. Effect of permeability 

coefficient on shear stress 

 
 

Figure 4. Effect of permeability 

coefficient on temperature distribution 
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Figure 5. Effect of permeability 

coefficient on heat flux 

 

 
 

Figure 6. Effect of magnetic parameter 

on velocity 

 

 
 

Figure 7. Effect of magnetic parameter 

on shear stress 

 

 
 

Figure 8. Effect of magnetic parameter 

on temperature 

 

 
 

Figure 9. Effect of magnetic parameter 

on heat flux 

 

 
 

Figure 10. Effect of Prandtl number on 

velocity 

 

 
 

Figure 11. Effect of Prandtl number on 

shear stress 

 
 

Figure 12. Effect of Prandtl number on 

temperature 

 
 

Figure 13. Effect of Prandtl number on 

heat flux 

 

4.4 Effect of source/sink volumetric heat rate, q 

 

The results showed that, increasing source energy from 0.2 

to 1 slightly increased the fluid velocity and slightly decreased 

the heat flux, whereas it had no significant effect on shear 

stress. Moreover, increasing sink energy from -2 to -3 had a 

slight effect on the velocity and heat flux while it had no 

significant effect on shear stress as shown in Figures 14-16. 

 

4.5 Effect of temperature difference, (𝚫𝑻 = 𝑻𝒘 − 𝑻∞) 
 

Also, the results showed that, increasing 𝛥𝑇  led to a 

corresponding significant increase in the fluid velocity and a 

slight increase in the heat flux inside the boundary layer. This 

is due to the energy gained by the fluid which activated the 

fluid particles. On the other hand, the magnitude of shear stress 

decreased with increasing 𝛥𝑇 values as illustrated in Figures 

17-19. 
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Figure 14. Effect of source/sink heat 

rate energy on velocity 

 

 
 

Figure 15. Effect of source/sink heat 

rate energy on shear stress 

 

 
 

Figure 16. Effect of source/sink heat 

rate energy on heat flux 

 

 
 

Figure 17. Effect of temperature 

difference between the plate and 

ambient temperature on velocity 

 
 

Figure 18. Effect of temperature 

difference between the plate and 

ambient temperature on shear stress 

 
 

Figure 19. Effect of temperature 

difference between the plate and 

ambient temperature on heat flux profile 

 

 

5. CONCLUSIONS 

 

Investigation and analysis of electrically conducting fluid 

containing a moving vertical plate has been executed in the 

presence of external magnetic field and heat source/sink. The 

following results have been obtained 

(1) Increasing the permeability coefficient, k, of the plate 

material increases the fluid velocity and heat flux, significantly, 

whereas it decreases the shear stress and temperature 

distribution. 

(2) If a heat source exists, the increment in its volumetric 

heat rate, q, slightly increases the fluid velocity, but slightly 

decreases heat flux with no significant effect on shear stress. 

(3) If a heat sink exists, the increment in its volumetric heat 

rate, q, has a slight effect on the fluid velocity and heat flux, 

but it has no noticeable effect on shear stress. 

(4) The temperature difference between the heated plate and 

ambient temperature outside the boundary layer increases the 

fluid velocity and the heat flux. On the contrary, it decreases 

the shear stress and temperature distribution. 

(5) Increasing the magnetic parameter, M, and Prandtl 

number, Pr, decrease velocity and heat flux due to the Lorentz 

forces and fluid viscosity increment, respectively, which 

obstruct the fluid particles. The opposite behavior occurs with 

shear stress and temperature distribution. 
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NOMENCLATURE 

 

a Group parameter 

B0 magnetic flux density 

𝑐𝑝 specific heat at constant pressure 

𝑔 gravity acceleration 

k permeability coefficient 

K, Q Group coefficient function 

Pr Prandtl number 

q volumetric rate of heat generation or absorption 

T temperature of the fluid 

𝑇∞ temperature outside the boundary layer 

u velocity component in x-direction 

v velocity component in y-direction 

x vertical distance 

687



 

y horizontal distance from the plate 

 

Greek symbols 

 

𝛼 thermal diffusivity 
𝜈

𝑃𝑟
 

𝛽 volumetric coefficient of expansion 

𝜂 similarity independent variable 

𝜈 kinematic viscosity of the fluid 

𝜌 fluid density 

𝜎 fluid conductivity  

𝜎∗ Stefan-Boltzmann constant  

𝜒  the mean absorption coefficient 
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