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The traditional transmission methods for array signals face problems like signal loss and 

inaccurate output, due to the inadequacy of signal processing. To solve the problems, this 

paper presents a synchronous transmission method for array signals of sensor network under 

resonance technology. For better transmission efficiency, the array signals were collected 

through three-node collaboration in the sensor network, and denoised through wavelet 

transform. After that, the abnormal nodes in the sensor network were detected to improve 

transmission accuracy. On this basis, vibration frequency of the array signals was adjusted 

by the degree of harmonic vibration. Finally, the synchronous and accurate transmission of 

array signals was realized through normalization and adaptive solution of echo signals. 

Experimental results show that the proposed method achieved greater information 

throughput and higher transmission accuracy than traditional methods within the same time. 

Therefore, this research provides a highly applicable synchronous transmission method for 

array signals. 
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1. INTRODUCTION

Sensor technology is widely recognized for its excellence in 

automatic detection and measurement. If multiple sensors with 

communication and computing capabilities are deployed in the 

same area, they will self-organize into a distributed intelligent 

network called sensor network. In the sensor network, the 

signals from several sensors, which are arranged by a certain 

rule, will form an array of signals commonly referred to as the 

array signals. The accurate transmission of the array signals 

directly bears on the accuracy and reliability of the output of 

the sensor network. 

Jagatheswari et al. [1] proposed a carrier-based synchronous 

transmission method for wireless signals. First, system 

modeling was performed by the coupling theory to analyze the 

features and efficiency of signal synchronous transmission. 

Then, the adjustable voltage regulator circuit was used to 

modulate the transmitter voltage. After modulation, the pickup 

end of the system collects energy through the coupling 

mechanism, and restores the signals through carrier analysis. 

On the upside, their method can realize energy-carrying 

communication without changing the topology of the 

transmission system. On the downside, the information 

throughput is small and signal losses are frequent, due to the 

mismatch between the coupling mechanism and the pickup 

end. Guner et al. [2] designed a synchronous transmission 

method for energy and signals with a parallel inductive 

structure of fundamental energy channel and harmonic energy 

channel. By this method, the power distribution between the 

two channels is adjusted to transmit the energy and signals 

without changing the system resonance. The effectiveness of 

the method is independent of the output voltage and load of 

the system. But the accuracy of synchronous transmission 

needs to be further improved. 

Considering the features of array signals, this paper presents 

a synchronous transmission method for array signals of sensor 

network under resonance technology. The array signals were 

collected through three-node collaboration: three nodes were 

evenly placed by an equal interval, and the arrival time of the 

target recorded by the central node was taken as the standard 

time. Based on the time differences and distances between the 

three nodes, the mean velocity of the target passing through 

the three-node region was calculated. To detect the array 

signals more accurately, the wavelet analysis was performed 

to denoise the collected signals, and to identify the abnormal 

nodes in time. Finally, the vibration frequency of the array 

signals was adjusted by resonance technology, completing the 

synchronous transmission of the array signals. The proposed 

method was proved highly feasible through experiments. 

2. METHODOLOGY

2.1 Array signal collection through three-node 

collaboration 

Following the principle of three-node collaborative target 

measurement in the sensor network, three nodes were evenly 

placed by an equal interval, and the arrival time of the target 

recorded by the central node was taken as the standard time. 

Then, the mean velocity of the target passing through the 

three-node region was derived from the time differences and 

distances between the three nodes. 

Let L be the interval between the three nodes. When the 

target passes through node S1, this node will send a signal to 

S2. The latter node will record the arrival time t1 of the target 

at node S1. When the target passes through node S2, this node 

will record the arrival time t2 of the target at it. The arrival time 
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t3 of the target at node S3 is recorded by node S2
 
in a similar 

manner. Then, the velocity v of the target transmission can be 

expressed as: 
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There are three advantages of three-node collaboration in 

the detection of target velocity: 

(1) Eliminate the complicated identification of target type; 

(2) Avoid the hardware clock difference between nodes; 

(3) Realistically reflect the target velocity in the data 

collection region with the mean velocity [3-7]. 

It is assumed that any four nodes in the sensor network can 

form a rectangle, and the minimize interval between two nodes 

is 40mm. Then, the minimum network was constructed with 

three nodes. When a target enters the data collection region, a 

model can be established as shown in Figure 1. 

 

Target (x, y)L3
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L2L4

Node 1 Node 2
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Figure 1. Three-node positioning 

 

The moving direction and position of the target can be 

determined by computing the coordinates of the target in the 

above relative coordinate system. Based on geometric 

relations, the following can be derived from Figure 1. 

By the law of cosines [8-10]: 
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Formulas (2) and (3) can be transformed into: 
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Thus: 
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From the geometric relations in Figure 1: 

 

( )3 3sin 45x L C= +  (8) 

 

( )2 2sin 135y L C= −  (9) 

 

Substituting formulas (6) and (7) into formulas (8) and (9): 
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The azimuth angle 𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑦

𝑥
 can be expressed as: 
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Through the above process, the moving direction and 

coordinates of the target can be obtained. For the established 

minimum sensor network, C=35°, L=40m, and L1=√2𝐿. The 

coordinates of the target can be calculated accurately, once the 

values of L2 and L3 are determined. 

The above calculation process shows that the array signals 

will attenuate with the growing transmission distance. The 

following can be determined by analyzing the traditional 

experimental data: the array signal amplitude [11-15], and the 

distance relationships between target and nodes. Therefore, the 

distances of the array signals L2 and L3 in the nodes can be 

derived from their amplitude. 

In this way, the x and y values can be calculated accurately. 

Then, the moving direction and position of the target can be 

determined in the coordinate system of Figure 1: the 

coordinates are (x, y) and the azimuth angle is =arctan(y/x). 

This three-node collaboration method is very easy to 

implement. Besides, the key parameters L2 and L3 for solving 

the target coordinates can be pinpointed through three-node 

collaboration, making it possible to position and collect array 

signals. 

 

2.2 Array signal denoising through wavelet analysis 

 

The array signals collected from the sensor network contain 

lots of noises. Some of these noisy signals will be lost during 

transmission [16-18]. To prevent signal loss, wavelet analysis 

was performed to filter out the noises.  

The collected array signals (t)L2(R) are a basic wavelet 

or mother wavelet, if its Fourier transform result () satisfies: 
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where, ω is frequency. 
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By translating and scaling the mother wavelet 𝛹(𝑡), it is 

possible to derive a wavelet sequence [19]. If it is continuous, 

the wavelet sequence can be expressed as: 
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t b
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(14) 

 

where, 𝑎(𝑎 ≠ 0)  is the scaling factor; b is the translation 

factor. 

For a random function f(t)L2(R), the continuous wavelet 

transform can be expressed as: 
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1/2
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R

t b
W a b f a f t dt

a
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=   

 
  (15) 

 

Under binary discrete state, the wavelet sequence can be 

expressed as: 

 

( ) ( )/2

, , 2 2 , ,j j

j k a b t k j k z− − =  −   (16) 

 

The one-dimensional (1D) noisy signals can be described as:  

 

i i iy f e= +  (17) 

 

where, yi is the noisy array signals; fi is the real signals; ei is 

the Gaussian white noise 𝑁(0, 𝜎2). 
In a real sensor network, useful array signals are usually 

low-frequency signals, while noise signals are usually high-

frequency signals. Therefore, the denoising process can be 

divided into three steps: 

Step 1: Wavelet decomposition of array signals 

Select a wavelet and determine the number of decomposed 

layers N, and then perform wavelet decomposition of the array 

signals s into N layers. Figure 2 explains the three-layer 

wavelet decomposition. The noises generally exist in high-

frequency parts D1-D3, while the useful signals in low-

frequency parts A1-3. 

 

S

A1 D1

A3

D2A2

D3

 
 

Figure 2. The process of three-layer wavelet decomposition 

 

Step 2: Threshold quantization of high-frequency 

coefficients 

Select a threshold to quantize the high-frequency 

coefficients from layer 1 to layer N [20]. 

Step 3: Wavelet reconstruction 

Reconstruct the useful signals with the wavelet of the 1D 

signals, according to the low-frequency coefficients on layer 

N and the quantized high-frequency coefficients of layers 1-N. 

The denoising process aims to suppress the noises in the 

signals, and reveal the real signals. 

 

2.3 Detection of abnormal nodes 

 

To further improve the transmission accuracy, it is 

necessary to detect the abnormal nodes in the sensor network. 

Suppose f(t)L2(R), and (t) is a continuously differentiable 

wavelet with an n-order vanishing moment, satisfying the 

condition (13). Then, there exists: 

 

( , ) aWf s t Ks  (18) 

 

where, K is a constant. Thus, a represents the singularity index 

of point t0, i.e. the Lipschitz exponent. 

In fact, if the wavelet basis function 𝛹(𝑡) is the first-order 

derivative of the smoothing function θ(t) (𝛹(𝑡) = 𝑑𝜃(𝑡)/𝑑𝑡), 
then the wavelet transform of function f(t) can be expressed as: 

 

( )( , ) ( ) s
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d
Wf s t f t f s t

dt
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 
 (19) 

 

It can be seen that Wf(s, t) is proportional to the derivative 

function of f(t) after being smoothened by θ(t). On a specific 

scale s, the maximum of Wf(s, t) along the time axis t 

corresponds to the mutation point of 𝑓 × 𝛹𝑠(𝑡). Since θ(t) is 

differentiable, the coordinates of the extreme value of Wf(s, t) 

should appear near the modulus maximum point of f(t), if 

θs(t)has a sufficiently small equivalent width. In other words, 

the mutation point of the original signals can be identified by 

searching for the modulus maximum point of the wavelet 

transform [21-24]. 

On the binary scale, taking the logarithm on both sides of 

formula (16): 

 

( )2 2log 2 , logj jWf t K  +  (20) 

 

Through the above analysis, since the Lipschitz exponent of 

the array signals is greater than zero, the modulus maximum 

value of the wavelet transform of the signals will increase with 

the scale; since the Lipschitz exponent of white noise is 

negative [25-27], the modulus maximum value of the wavelet 

transform of the noise will decrease with the growing scale. 

Therefore, whether the modulus maximum value arises from 

noise or abnormal value can be judged by observing its 

variation between different binary scales 2j. In this way, the 

signals can be differentiated from the noises, achieving the 

denoising effect. 

 

2.4 Synchronous transmission of array signals under 

resonance technology 

 

Before synchronous transmission, the maximum 

transmission cycle should be adopted when the array signal 

transmission changes stably, i.e. the array signals vary very 

slightly, and the minimum cycle should be adopted when the 

array signal transmission changes significantly, aiming to 

enhance the ability to capture array signals with significant 

variations. 

Based on the harmonic vibration and the change of the 

transmission method, this paper puts forward an adaptive 

synchronization transmission method, which firstly linearly 
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fits each sampling point with a unary linear regression 

equation [28], and then adjusts the vibration frequency of the 

array signals by resonance technology. 

Let ys=f(x) be the regression curve of the sampled array 

signals. Then, the sampling set T can be described as: 

 

( ) ( ) ( ) 1 1 2 2, , , , ,n nT x y x x x x=  (21) 

 

The sampling points are sampled at times t1, t2, ⋯ , tn, 

respectively. The correlations between the sampling times can 

be expressed as: t1<t2<⋯<tn. 

Linking up all nodes in set T, a new sampling curve y' can 

be obtained: 

 

( )' '

sy f x=  (22) 

 

Suppose the region between curves ys and ys' represents the 

distortion of the sampled array signals. Then, ξ(x) can be 

described as: 

 

( ) ( ) ( )'x f x f x dx = −  (23) 

 

On this basis, the latest M sampling points were fitted into 

a regression curve. Let yi+1 be the value of the first sampling 

point; ti, ti-1,…ti-M be the sampling times of the M points, 

respectively; yi, yi-1, ⋯ yi-M be the values of the M points, 

respectively. Then, the sampling times of these points satisfy 

ti>ti-1>⋯>ti-M. The unary linear regression equation for the 

signals passing through the M points can be defined as: 

 
'

sy t = +  (24) 

 

Using the unary linear regression equation, the slope 

coefficient ς and the constant τ can be obtained through 

maximum likelihood estimation [29]: 
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Then, the next sampling time can be derived from the slope 

coefficient ς of the unary linear regression equation. If |ς| is 

relatively large, then the sampling time interval will be small; 

the inverse is also true. During the control of the sampling 

points, the harmonic signals of array signal discretization 

should be properly described to improve the transmission 

accuracy of the array signals. The harmonic signal sequence 

obtained from the sampled array signals can be expressed as: 

 

 : 1,2, ,ky k n=  (26) 

  

Then, numerous harmonic signals, which obey Gaussian 

distribution, were superimposed, and normalized into: 
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Solving formula (27) by the minimum mean square error 

(MMSE) method:  
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where, v is the required accuracy of signal transmission. 

Solving formula (28), the echo signal of each sampling point 

can be obtained, thereby improving the sampling accuracy of 

the array signals. 

Through the above process, the array signals of the sensor 

network can be transmitted synchronously and accurately 

under the resonance technology. 

 

 

3. EXPERIMENTS AND RESULT ANALYSIS  

 

To verify the applicability of the proposed synchronous 

transmission method for array signals, the throughput and 

accuracy of the synchronous transmission were analyzed 

through contrastive experiments [30]. The proposed method 

was compared with the carrier-based synchronous 

transmission method for wireless signals (Method 1) [1], and 

the synchronous transmission method for energy and signals 

with a parallel inductive structure of fundamental energy 

channel and harmonic energy channel (Method 2) [2]. 

Figure 3 compares the throughputs of the three methods in 

synchronous transmission. 
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Figure 3. The throughputs of the three methods 

 

As shown in Figure 3, the throughputs of Method 1 and 

Method 2 both decreased first and then increased, while the 

throughput of our method remained above 150MPa and that of 

the two contrastive method. The comparison shows that our 

method achieved the greater throughput in the same period of 

time. 

The superiority of our method comes from the denoising 

operation in our method, which removes the redundant 

information, making the useful signals pass through the sensor 

network more effectively.  

Table 1 compares the transmission accuracies of the three 

methods with the growing number of transmission signals. 

As shown in Table 1, the transmission accuracies of all three 

methods declined, as more and more signals were being 
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transmitted. However, our method had the smallest decrement 

in transmission accuracy, and kept the transmission accuracy 

above 95%. This is because our method timely detects the 

abnormal nodes in the sensor network, reducing the 

probability of transmitting incorrect signals. This fully 

demonstrates the effectiveness of our method.  

 

Table 1. The transmission accuracies of the three methods  

 
Number of 

signals/Mbit 

Transmission accuracy /% 

Our method Method 1 Method 2 

1×105 98.73 94.14 92.26 

1×106 97.55 93.67 90.98 

1×107 97.16 90.87 89.14 

1×108 96.34 89.21 83.24 

1×109 95.77 86.41 80.97 

 

 
4. CONCLUSIONS 

 

The array signals of sensor network carry a huge amount of 

information, and requires a high accuracy in transmission. 

Therefore, this paper designs a synchronous transmission 

method for the array signals under the resonance technology, 

and experimentally proves that the proposed method can 

transmit the array signals accurately at a higher efficiency. The 

future research will further optimize the proposed method 

from the perspective of energy conservation. 
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