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With the continuous development of image processing, pattern recognition, and computer 

vision, the image recognition technology based on deep learning (DL) has gradually entered 

the field of traffic management. In this paper, the DL theory is applied to vehicle recognition, 

and a vehicle recognition algorithm is constructed based on deep convolution neural network 

(DCNN). Specifically, the forward and back propagation algorithms of the DL were adopted 

to minimize the loss function, and the weights were updated via back propagation to obtain 

the recognition algorithm, which classifies and recognizes the input images. Experimental 

results show that the proposed algorithm is more accurate than the traditional CNN in vehicle 

image classification. The research results shed light on the application of the DL in 

intelligent transportation. 
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1. INTRODUCTION

Intelligent transportation [1-3] is a technology that fully 

integrates various technologies into traffic management, 

namely, communication transmission, electronic sensing, 

mechanical control, and computer technology, making traffic 

management fast, efficient, and accurate. The intelligent 

transportation system can minimize manual operations, 

automatically detect and identify vehicles, and respond to 

various traffic situations in a timely manner. 

Vehicle recognition [4, 5] is an important aspect of 

intelligent transportation. At present, vehicle recognition has 

been applied in highway tolling, traffic investigation, traffic 

management, and vehicle management. Relatively mature 

vehicle identification methods include loop-oil detection [6], 

infrared detection [7], ultrasonic detection [8], etc. Despite 

their high accuracy, these methods are easy to damage the road 

surface, adding to the difficulty of road maintenance. Besides, 

the recognition effect is susceptible to weather.  

Recently, image recognition has been introduced to the field 

of vehicle recognition. Based on image recognition, the 

current vehicle recognition technologies can process and 

identify vehicles with the help of the videos and images 

collected by urban traffic monitoring system. However, the 

disadvantages of traditional image recognition technology are 

gradually exposed, with the growing size of datasets and the 

demand of intelligent transportation system for faster speed 

and higher accuracy. 

With the emergence of high-performance graphics 

processors, deep learning (DL) technology has been 

extensively applied in image recognition, speech recognition, 

and the other fields. It is of great theoretical value to 

implement the DL theory in vehicle recognition, and expand 

the scope of vehicle recognition algorithm for intelligent 

transportation system. 

In the context of intelligent transportation, this paper 

designs a novel vehicle recognition algorithm based on deep 

convolutional neural network (DCNN), which is a DL-based 

image recognition technology, and verifies its excellence 

through comparative experiments on real vehicle images. 

2. LITERATURE REVIEW

In recent years, many researchers have applied computer 

vision technologies in vehicle recognition. These technologies 

fully mine the information from vehicle images, and make 

accurate classification of vehicles by various criteria (e.g. 

brand, and color). The popularity of computer vision in vehicle 

recognition comes from the fact that image recognition 

eliminates the need for installing sensors, light transmitters, or 

receivers on the road. 

Based on image recognition, vehicles are mainly classified 

by the appearance of the vehicle, which differs with the brand 

and model of the vehicle. During the classification, the region 

of interest (ROI) is screened out from the vehicle image, and 

the various features of the vehicle are selected and matched, 

including the length, width, height, and image texture. 

The mainstream image recognition technology is grounded 

on the DL. Since the proposal of the DL by Hinton and 

Salakhutdinov, LeCun et al. [9, 10], many DL models have 

been developed, such as convolutional neural network (CNN) 

[11], deep belief network (DBN) [12], restricted Boltzmann 

machine (RBM) [13], deep Boltzmann machine (DBM) [14], 

recursive automatic encoder (RAE) [15], etc. 

So far, many scholars have introduced the DL to vehicle 

recognition. For example, Liu et al. [16] designed a CNN-

based vehicle logo recognition system, which relies on a multi-

layer CNN to automatically and adaptively acquire features 

from the original image, and then recognizes the vehicle logo 

with backpropagation neural network (BPNN). Ye et al. [17] 

proposed a DL-based vehicle logo recognition method, 

capable of learning the features of vehicle logo independently, 

and demonstrated the stability and robustness of the method 

under illumination change and noise pollution.  

Dong et al. [18] developed a CNN-based feature extraction 
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algorithm, and combined the algorithm with support vector 

machine (SVM) classifier into a recognition system for vehicle 

types on expressways. Fu et al. [19] classified vehicles on the 

road by adaptive neural fuzzy inference classifier, and proved 

that the algorithm achieved higher accuracy and lower average 

error rate than Otsu’s method. Based on cascaded lifting 

classifier, Zhuang et al. [20] presented a vehicle detection 

algorithm, which performed well on a test set of 500 vehicle 

images.  

Through deconvolution, Ma et al. [21] enlarged the 

convolutional layer with small features, and fused the features 

of the previous convolutional layer. By clustering the datasets, 

they improved the detection rate of small vehicles, reducing 

the rate of missed detection. Choi et al. [22] put forward a 

fusion vehicle detection method to extract vehicle contours, 

and verified the superiority of the method over other methods. 

Zhang et al. [23] improved the DL model of faster region-CNN 

(R-CNN) to detect vehicles in multiple categories with a high 

accuracy. 

Yu et al. [24] improved the mask R-CNN for vehicle 

detection, tested its effectiveness on the Grand Theft Auto 

(GTA) database, and manifested its advantage over other 

popular algorithms on RGB (red, green, blue) image. Dooley 

et al. [25] optimized the parameter selection of Retinex 

algorithm, established the relationship between the features of 

road traffic scene through measurements and tests, and 

successfully improved the detection rate of the algorithm. 

 

 

3. DCNN-BASED VEHICLE RECOGNITION 

ALGORITHM 

 

3.1 Common DCNN 

 

In the CNN, the input layer receives binary images, and the 

following layers extracts the pixel values and features of the 

input image automatically. Figure 1 shows the basic structure 

of a common DCNN. 

 

 
 

Figure 1. The basic structure of a common DCNN 

 

As shown in Figure 1, a 28*28 image is imported to the 

DCNN through matrix representation. Layer C1 is a 

convolutional layer that extracts the features from the input 

image. The n1 5*5 convolution kernels of layer C1 converts the 

input image into a 24*24 feature map. Layer S2 is a pooling 

layer with a 2*2 window. On this layer, the 24*24 feature map 

is down sampled into n1 12*12 feature maps. Layer C3 is 

another convolutional layer, which convolutes the n1 12*12 

feature maps into n2 8*8 feature maps. Layer S4 is another 

pooling layer, which down samples the 𝑛2 8*8 feature maps to 

the size of 4*4. In the following layers, convolutional and 

pooling layers appear alternatively. On the final pooling layer, 

the activation value 𝛼 is calculated layer by layer according to 

the network structure. This value is arranged in a column as 

per the vector, and the expanded vector serves as the input of 

the fully connected layer FC. 

LeNet-5 model is a commonly used CNN [26]. As shown in 

Figure 2, this lightweight DCNN contains all the basic 

components of the CNN in only eight layers.  

 

 
 

Figure 2. The structure of LeNet-5 

 

In Figure 2, the convolution represents the convolutional 

layer, which extracts features and reduces parameters; the pool 

represents the pooling layer, which samples the convoluted 

image to reduce the amount of data processing, preserving 

only the useful information. 

The last layer of the CNN is often used to solve 

classification problems. Logical regression tools, such as 

softmax regression and SVM, can be used to classify the input 

image into two or more categories. Let {(x(1), y(1)), (x(2), 

y(2)),…,(x(w), y(w))} be the training set of w labeled images, 

where x(i) and y(i)∈{0,1} are the coordinates of image pixels. 

The hypothesis function can be defined as: 

 

ℎ𝜗 = 1 1 + exp⁡(−𝜗𝑇𝑥)⁄  (1) 

By training the model parameter 𝜗, the cost function can be 

minimized as: 

 

𝑓(ϑ) = −1 𝑤⁄ [∑𝑦{𝑖}

𝑤

𝑖=1

𝑙𝑜𝑔ℎ𝜗(𝑥{𝑖})

+ (1 − 𝑦{𝑖})log⁡(1 − ℎ𝜗(𝑥{𝑖}))] 

(2) 

 

Many cases of vehicle recognition are multi-classification 

problems, which are beyond the capability of the traditional 

logical regression. Let {(x(1), y(1)), (x(2)), y(2)),…,(x(w), y(w))} be 

the training set, with y(i)∈{1,2,..,k}, and p(y=j|x) be the 

probability for training image 𝑥 to fall into a class. Then, the 

hypothesis function ℎ𝜗(𝑥(𝑖)) can be defined as: 
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ℎ𝜗(𝑥(𝑖)) =

[
 
 
 
 
𝑝(𝑦(𝑖) = 1|𝑥(𝑖); 𝜗)

𝑝(𝑦(𝑖) = 2|𝑥(𝑖); 𝜗)
…

𝑝(𝑦(𝑖) = 𝑘|𝑥(𝑖); 𝜗)]
 
 
 
 

 (3) 

 

The cost function of softmax classifier can be expressed as: 

 

𝑓(ϑ) = −1 𝑤⁄ [∑∑ 1{𝑦{𝑖}
𝑘

𝑗=1

𝑤

𝑖=1

= 𝑗}𝑙𝑜𝑔 𝑒𝜗𝑗
𝑇𝑥(𝑖)

∑ 𝑒𝜗𝑙
𝑇𝑥(𝑖)

𝑘

𝑠=1
⁄ ] 

(4) 

 

where, 1{∙} is the indicator function. If the value of the 

expression is true, 1{∙} equals 1; otherwise, 1{∙} equals 0. 

During the softmax regression, an attenuation term is often 

added to the cost function, making the latter a strictly convex 

function: 

 

𝑓(ϑ) = −1 𝑤⁄ [∑∑ 1{𝑦{𝑖}
𝑘

𝑗=1

𝑤

𝑖=1

= 𝑗}𝑙𝑜𝑔 𝑒𝜗𝑗
𝑇𝑥(𝑖)

∑ 𝑒𝜗𝑙
𝑇𝑥(𝑖)

𝑘

𝑠=1
⁄ ]

+ 𝛾 2⁄ ∑ ∑ 𝜗𝑖𝑗
2

𝑛

𝑗=0

𝑘

𝑖=1

 

(5) 

 

This prevent local convergence in the optimization process. 

 

3.2 Workflow of vehicle recognition algorithm 

 

The basic flow of the vehicle recognition algorithm is 

shown in Figure 3. 

First, the vehicle image to be recognized is selected from 

the original database, and imported to the vehicle recognition 

algorithm. Then, the target vehicle is detected in the original 

image by vehicle location method. After that, the vehicle type 

is recognized from the vehicle image. 

In this paper, the vehicle dataset is collected from the 

vehicle image library of the HD Mount System in a city. The 

original images are in JPG format. With great differences in 

shooting environment, time, and angle, these images well 

reflect the actual recognition situation, providing good test 

samples for the vehicle recognition algorithm. 

As shown in Figure 4, the original images often contain 

many things other than the target vehicle, such as pedestrians, 

other vehicles, and various other things. To ensure the 

recognition accuracy, the target vehicle should be located in 

each original image, before importing the image to the DCNN.   

Here, the you look only once (YOLO) algorithm [27] is 

employed for target detection, because the algorithm can 

predict the positions of multiple targets and classify them all 

at once. Figure 5 provides an example image with vehicles 

located by YOLO. 

 

 
 

Figure 3. The basic flow of the vehicle recognition algorithm 

 

 
 

Figure 4. The examples of vehicle dataset 

 

 
 

Figure 5. The example of target vehicle location 

 

3.3 DCNN-based vehicle recognition algorithm 

 

In traditional image recognition, the features are generally 

extracted manually. The manual extraction may be effective 

on some objects. But it is far from ideal if there are various 

objects in the original images. Therefore, a vehicle recognition 

algorithm was proposed based on the DL (Figure 6). 

 

 
 

Figure 6. The block diagram of the DCNN-based vehicle recognition algorithm 
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During the design of the DCNN, the following parameters 

were given special consideration: the size of input images, the 

number of output nodes, the number of convolution kernels, 

the kernel size, the activation function, and the network depth 

(i.e. the number of layers in the network). 

The CNN requires the input images to have uniform size. 

However, the images after vehicle location are of different 

sizes. Therefore, these images were normalized into the same 

size of 256×256. 

In this paper, vehicle of more than ten brands are labeled 

manually, and further divided by the model year. In this way, 

a total of 164 sub-models were obtained, creating a training set 

containing 164 types of vehicle images for the input layer of 

the DCNN. Therefore, the number of output nodes of the 

DCNN was set to 164. 

In the output layer, the probability 𝑝𝑗
(𝑖)

 for the vehicle image 

x(i) to fall into class j is calculated by softmax classifier:  

 

𝑝𝑗
(𝑖)

=
exp⁡(𝑊𝑗

𝑇𝑥(𝑖) + 𝑏𝑗)

∑ exp⁡(𝑊𝑗
𝑇𝑥(𝑖) + 𝑏𝑗)

163
𝑗=0

 (6) 

 

Each feature map in the DCNN learns a feature of the input 

image. The number of feature maps equals the number of 

kernels. Therefore, the number of features depends on the 

number of kernels, which should be designed reasonably. If 

there are too few kernels, the extracted features will lack 

diversity; then, the network will learn a limited amount of 

information, and make inaccurate classifications. If there are 

too many kernels, the extracted features will be redundant, 

causing overfitting in network training; then, the training will 

consume too much time. 

Therefore, the DCNNs with different number of kernels 

were trained and tested on the vehicle database. The relevant 

results are recorded in Table 1. 

 

Table 1. The results on DCNNs with different number of 

kernels 

 
Number of kernels Accuracy on test 

set 

Accuracy on 

training set 

32-64-128-128-256 0.95 0.88 

64-128-256-265-384 0.91 0.85 

128-256-384-384-384 0.97 0.91 

 

The kernel size should adapt to the actual samples. In theory, 

the kernel size has a negative impact on the effect of feature 

extraction. Nevertheless, excessively small kernels cannot 

extract valid features, owing to the noise interference in 

images. 

To determine the best kernel size, the DCNNs with kernel 

sizes of 5×5, 7×7, 9×9, and 11×11 were trained and tested on 

the vehicle database. The relevant results are recorded in Table 

2. 

 

Table 2. The results on DCNNs with different kernel sizes 

 
Kernel size Accuracy on test set Accuracy on training set 

5×5 0.969 0.987 

7×7 0.972 0.956 

9×9 0.967 0.980 

11×11 0.966 0.972 

 

As shown in Table 2, the best accuracy was achieved at the 

kernel size of 7×7. With this kernel size, the response of the 

first convolutional layer can be observed through the 

visualization program. The weight diagram of the filter of the 

first convolution layer is shown in Figure 7. 

 

 
 

Figure 7. The weight diagram of the first convolutional layer 

 

The activation function has a great influence on the 

convergence of the CNN. Selecting a befitting activation 

function can speed up the convergence of the network. In our 

DCNN, rectified linear unit (ReLU) is adopted as the 

activation function [28]. As shown in Figure 7, ReLU is a 

nonlinear unsaturated function that only needs a threshold to 

get the activation value: 

 

𝑔(𝑥) = max⁡(0, 𝑥) (7) 

 

 
 

Figure 8. Relu function 

 

As shown in Figure 8, the output value of the function 

equals zero, if the calculated value is smaller than zero; the 

output value remains as it is, if the calculated value is greater 

than zero. This means ReLU as the activation function can 

accelerate the convergence and shorten the training time. 

The network depth (i.e. the number of layers in the network) 

needs to match with the data volume. Considering the 

relatively small data size of the selected dataset, a simple 

DCNN structure was designed by comparing the training and 

testing results of four DCNNs with 9, 10, 11, and 12 layers, 

respectively, on the vehicle dataset. The relevant results are 

recorded in Table 3. 

As shown in Table 3, with the increase of network depth, 

the accuracy on test set continued to improve. Of course, more 

network layers mean more network parameters, and greater 

computational complexity of the network.  

Overall, the designed DCNN consists of 12 layers, 

including 6 convolutional layers, 3 pooling layers, 2 fully 

connected layers, and one softmax layer. On the last layer, 

softmax regression was adopted to classify the vehicles into 

different types. 
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Table 3. The results on DCNNs with different number of 

layers 

 
Network depth Accuracy on test set 

9 0.922 

10 0.956 

11 0.962 

12 0.966 

 

 

4. EXPERIMENTS AND RESULT ANALYSIS 

 

The proposed DCNN was implemented under the DL 

framework of Caffe, using NVIDIA’s GK110 graphics 

processing unit (GPU). Step learning and momentum learning 

were selected for the training process, with the initial learning 

rate of 0.012 and the momentum of 0.85. After adjusting the 

number of iterations and training parameters, the mean test 

accuracy was 96.83% (Figure 9). 

 

 
 

Figure 9. The mean test accuracy 

 

Then, several vehicle sub-models were randomly chosen 

from the test set. 100 images of each sub-model were selected 

to test the accuracy of our algorithm. The results on different 

sub-models are recorded in Table 4. 

 

Table 4. The results on different sub-models 

 
Sub-model Number of 

recognition errors 

Accuracy on test 

set 

Audi A4L 3 0.97 

BMW 5 Series 0 1 

Benz E300 4 0.96 

Peugeot 308 0 1 

VW Polo 3 0.97 

Toyota Camry 2 0.98 

Nissan Teana 2 0.98 

Mazda 6 3 0.97 

Great Wall H6 0 1 

Toyota Corolla 1 0.99 

 

The experimental results show that the DCNN achieved a 

good recognition effect on the selected sub-models. During 

parameter adjustment, the training error rate and test error rate 

exhibited a downward trend, when number of iterations was 

fewer than 2,000, while the test accuracy showed an upward 

trend. This indicates that the network is in the learning state, 

and the iteration times can be increased to stabilize the 

accuracy. Of course, the number of iterations should not be too 

high. Otherwise, the training process will be too long. 

In the training set, the images are distributed unevenly 

across sub-models. Some sub-models have thousands of 

images, while some have fewer than 100 images. Thus, the 

DCNN was tested on sub-models with a few samples, and 

those with many samples. The test results are recorded in 

Tables 5 and 6, respectively. 

 

Table 5. The accuracy on sub-models with a few samples 

 

Sub-

model 

Number 

of 

samples 

Number 

of testing 

samples 

Number of 

recognition 

errors 

Test 

accuracy 

Great 

Wall M4 
96 24 1 0.958 

Chevrolet 

Lova 
88 22 0 1 

Mazda 

CX5 
92 23 0 1 

Peugeot 

508 
87 21 1 0.952 

 

Table 6. The accuracy on sub-models with many samples 

 

Sub-

model 

Number 

of 

samples 

Number 

of testing 

samples 

Number of 

recognition 

errors 

Test 

accuracy 

VW 

Maogtan 
2631 600 5 0.991 

Citroen 

Elysee 
1886 450 3 0.993 

VW Bora 1530 400 10 0.975 

Hyundai 

Elantra 
1436 350 8 0.977 

 

As shown in Tables 5 and 6, the accuracy of each sub-model 

was not directly proportional to the number of training samples 

in that sub-model. That is, the accuracy on sub-models with 

many training samples was not necessarily better, and that on 

sub-models with a few training samples was not necessarily 

worse. Of course, each sub-model must have enough number 

of training samples, allowing the DL to learn the vehicle 

features and continuous optimize network parameters. If there 

are too few images on a sub-model, the DCNN parameters 

cannot be optimized through continuous iteration. 

 

 

5. CONCLUSIONS 

 

The DL theory has been widely implemented in many fields. 

This paper designs a novel vehicle recognition algorithm 

based on the DL technology of DCNN. The proposed 

algorithm can extract vehicle features from the original images, 

continuously optimize the network parameters through feature 

learning, and classify the images with the softmax classifier. 

Experiments show that the proposed algorithm achieved an 

accuracy as high as 96.8%. The future research will further 

improve the training data, accuracy, and speed of the DCNN 

in vehicle recognition. 
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