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 A novel type2-fuzzy adaptive filter is presented, which uses the concepts of type2-fuzzy 

logic, for electrocardiogram signals denoising. Type2-fuzzy adaptive filter is an information 

processor where both numerical and linguistic information are used as input-output pairs 

and fuzzy if-then rules, respectively. The proposed approach is based on an iterative 

procedure to achieve acceptable information extraction in the case where the statistical 

characteristics of the input-output signals are unknown. The proposed filter is presented as 

a dual-layered feedback system. Each layer has different function, the first layer being the 

type2-fuzzy autoregressive filter model. The second layer being responsible for training the 

membership function parameters. The second layer adjusts the type2-fuzzy adaptive filter 

parameters by using a teaching learning-based optimization algorithm (TLBO), which will 

allow the reaching of the required signal reconstruction by decreasing the criterion function. 

The proposed filter is validated and evaluated through some experimentations using the 

MIT-BIH ECGs databases where various artifacts were added to the ECGs signals; these 

included real and artificial noise. For comparison purposes, both model and non-model-

based methods recently published are used. Furthermore, the effect of the proposed filter on 

the malformation of diagnostic features of the ECG was studied and compared with several 

benchmark schemes. The results show that the proposed method performs better denoising 

for all noise power levels and for a different criteria viewpoint. 
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1. INTRODUCTION 

 

The purpose of an electrocardiogram (ECG) is to measure 

electrical potential changes in the heart over a specific time 

period. Particular cells in the heart produce electrical impulses 

that spread through the heart causing it to contract, thereby 

controlling the rate of the heart’s beating and causing these 

changes in the electrical potentials [1-4]. In the ECG, these 

electrical changes are measured through electrodes positioned 

on the chest. The electrical impulses are recorded in millivolts. 

Whilst the idealized heartbeat comprises several complexes, 

three of these complexes are frequently recorded and utilized 

in medical ECGs Terminology. These are the P complex, 

which measures the depolarization of the atrium, the QRS 

complex, which measures the depolarization of the ventricles, 

and the T wave, measuring the repolarization of the ventricles. 

However, the ECG signal frequently becomes contaminated 

by both internal and external noises. Whilst there are 

numerous sources of these noises, the ones of primary interest 

are instrument and Electromyogram (EMG) noises, electrode 

contact noise, motion artifacts and power line interference [5]. 

As such, it is necessary to carry out advanced digital 

processing of the ECG waveforms in order to use the ECG of 

an individual for identification and diagnosis purposes. 

Obviously, any noise that appears on the trace of the ECG can 

complicate diagnosis and identification analysis. Therefore, it 

is necessary to understand and cancel out the effects of noise 

from an ECG trace in order to extract the required identifying 

features of the trace itself. The required identification data can 

be masked by artifacts introduced by noise. Since its 

conception, outnumber of methods have been used to denoise 

ECG signals. The most widely used methods for ECG 

denoising are the non-model-based methods including a 

hybrid denoising scheme to enhance ECG signals by 

combining high-order synchro squeezing transform (FSSTH) 

with non-local means (NLM) [6], dual-threshold filter and 

discrete wavelet transform (ADTF-DWT) [7], the empirical 

mode decomposition and genetic algorithm for adaptive 

denoising [8] and the adaptive Fourier decomposition (AFD) 

[9]. Other contributions in this subject are reported in Wang et 

al. study [10-13] which have been widely used for ECG 

denoising. Alternatively, a model-based method has been 

proposed, McSharry et al. use a three-state non-linear 

dynamical model in Cartesian space for the generation of 

synthetic ECG signals. Indeed, several papers have used this 

model in order to denoise the ECG signal [14]. Hesar and 

Mohebbi [15] used this model with Bayesian filtering 

framework called the marginalized particle-extended Kalman 

filter (MP-EKF) for ECG denoising purposes. This model was 

extensively used by several researchers as reported by Sameni 

et al. [16, 17]. 

It has been proved that Fuzzy systems are universal 

approximators, i.e., that an arbitrary continuous function can 

be approximated within any given precision. To be more 
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precise, it has been proven that a system represented by fuzzy 

rules can approximate any real system given by its input-

output data, with any given accuracy. The construction of the 

fuzzy system encompasses two steps [18]: The first one is 

concerned with the construction of the fuzzy system model’s 

structure. Several contributions in this subject are reported in 

the papers [19-23]. The second step is the identification of the 

constructed fuzzy system model’s parameters using a set of 

input-output data pairs. Many methods have been discussed in 

the literature to identify such parameters including gradient 

descent, nonlinear least squares, and Kalman filter [18-23]. 

Chafaa et al. [18] have proposed an efficient approach to 

construct automatically a Takagi-Sugeno fuzzy models where 

the free parameters were adjusted using the Kalman filter 

algorithm twice. dos Santos Coelho and Herrera [20] 

developed a method for identifying a Takagi-Sugeno fuzzy 

model based on the chaotic particle Swarm optimization 

algorithm combined with an efficient Gustafson-Kessel 

clustering algorithm. Fuzzy Wiener model was proposed by Li 

and Yang [21] to identify chaotic systems, where the model’s 

parameters were tuned using a particle swarm optimization 

algorithm. Abiyev et al. [22] in their work presented a new 

Type2-Fuzzy-neuro system to detect equalizing time-varying 

channels and detect time-varying systems, where the 

identification step was achieved using clustering and gradient 

algorithms. 

Type-2 fuzzy sets are extension of the ordinary type-1 fuzzy 

sets, which are defined by membership functions which are 

themselves fuzzy. The major advantage of type-2 fuzzy 

systems is that they can produce reasonable outputs when 

ambiguity and imprecision occur. Fuzzy logic systems have 

many sources of uncertainty, such as (1) uncertainties of their 

inputs (uncertainties in the premise membership functions); 

(2) uncertainties of their outputs (uncertainties in the 

consequence membership functions) and (3) linguistic 

uncertainties, where the significance of the terms used in the 

antecedent and consequence parts may means different things 

to various people. 

Meta-heuristic algorithms are well suited for solving 

difficult problem of optimization where they are used 

successfully. They are often applied to several fields in 

different areas. In such algorithms, the optimal solution is 

obtained by parallel processing in the population. These 

techniques are frequently inspired by biological or 

biogeographical mechanisms. In this investigation, Teaching 

Learning-Based Optimization (TLBO), is used in order to tune 

the type-2 fuzzy filter free parameters adaptively. The TLBO 

algorithm is inspired by the teaching-learning process and 

based on the effect of the teacher on the students in the 

classroom. 

Efficiency of combining meta-heuristic optimization 

methods and fuzzy logic have been exhaustively analyzed and 

reported by Olivas et al. [24-27]. This investigation proposes 

an effective electrocardiogram signal filtering method based 

on type2-fuzzy logic and Teaching Learning Based-

Optimization algorithm. Four stages are needed to construct 

the proposed TLBO based type-2 fuzzy adaptive filter. (1) In 

the first stage we define the initial membership functions of 

the filter input and output which must cover the entire input 

space. (2) In the second stage we construct a set of tunable 

type2-fuzzy rules based on numerical information extracted 

from training input-output data pairs. (3) In the third stage, the 

rules of the filter are constructed. (4) and last, in the fourth step 

we update the free parameters of the filter using the TLBO 

algorithm.  

The free parameters of type-2 fuzzy filter to be tuned by the 

TLBO algorithm are the Gaussian centres and widths of the 

type-2 fuzzy premise membership functions and the 

consequence intervals. This approach is evaluated through 

intensive computer experimentations using MIT-BIH ECGs 

database. It is envisaged that this method will successfully deal 

with white Gaussian (WG) noises and the real noises (MA and 

EM) that are taken from the MIT-BIH noise stress test 

database [28]. By comparing the results of this method with 

those of other benchmark methods (FSSTH-NLM, ADTF-

DWT, AFD, EEMD, and MP-EKF), it can be seen statistically 

that the proposed technique has a significant performance 

improvement.  

The rest of this paper is structured as follows: after section1; 

section 2 presents an overview of the type-2 fuzzy system and 

TLBO algorithm. Section 3 outlines the proposed technique. 

Simulations and discussions are presented in section 4. Section 

5 concludes the paper. 

 

 

2. PRELIMINARIES 

 

2.1 Type-2 fuzzy adaptive filter 

 

As mentioned previously, the concepts of fuzzy logic [29-

33] was extended to type-2 fuzzy logic. In our work, Type-2 

fuzzy logic will be used to design adaptive filters. The 

proposed filter combines the set of input-output measurement 

pairs with a set of fuzzy If-Then rules. The benefits of using a 

type2-fuzzy adaptive filter are its non-linear nature and simple 

design. This simplicity allows human experts to incorporate 

linguistic information into the filter. When there is no 

linguistic information available, the type-2 fuzzy adaptive 

filters can be re-defined as non-linear adaptive filters. The 

parameters of the membership functions are tuned with an 

adaptive procedure to characterize the If-Then rules through 

the use of some criterion function. 

A dual-layered feed-forward network structure can be used 

to represent the type-2 fuzzy adaptive filter [34-36]. Therefore, 

it will be possible to train the type-2 fuzzy adaptive filter to 

determine the required input-output relationship through the 

use of some learning algorithms, such as the TLBO in this 

investigation. Within this study, the type-2 fuzzy adaptive 

filter’s input ( [𝑥(𝑘), 𝑥(𝑘 − 1), … , 𝑥(𝑘 − 𝑛 + 1)]) is equal to 

the previous output, therefore the new input  𝑥𝑛 

becomes 𝑦𝑛−1. Hence, at the sampling instant k, the role of the 

type-2 fuzzy adaptive filter is to filter the measured signal 

y(𝑘) to obtain a smooth estimate �̂�(𝑘). 

 

2.1.1 Type-2 fuzzy logic system structure 

Type-n fuzzy sets were first proposed by Zadeh in 1975. 

They are characterized by membership functions that range 

over fuzzy type-(n-1) sets. In 1999, Karnik and Mendel have 

introduced some definitions, mechanisms, and algorithms for 

the type-2 fuzzy sets [37]. The membership function of the 

type-2 fuzzy set is itself a type-1 fuzzy set. 

Type-2 fuzzy systems are hyperefficient compared to the 

type-1 fuzzy systems, specifically in the presence of the 

ambiguity, uncertainty, and noisy data [38-43]. Fuzzy systems 

are able to approximate any unknown function or nonlinear 

system using a set of input-output data. Any type-2 fuzzy 

system is composed of five modules: a fuzzifier, a rule base, 

an inference engine, a type reducer, and a deffuzzifier (see 
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Figure 1). Type-reducer block is used to carry out the type-

reduction operation, which is an extension of the type-1 

defuzzification. This block produces type-1 sets from type-2 

output sets. The type-reduced set must be defuzzified to obtain 

crisp outputs. 

The rule base of the type-2 fuzzy system is a set of If-Then 

rules. These rules describe the relationship between the input-

output spaces, and can be expressed as [44]: 

 

𝑅𝑢𝑙𝑒𝑖: 𝑰𝒇 𝑥1 𝒊𝒔 �̃�1
𝑖  𝒂𝒏𝒅, … , 𝒂𝒏𝒅 𝑥𝑛 𝒊𝒔 �̃�𝑛

𝑖 ,  
𝑻𝒉𝒆𝒏 𝑦−𝑖  𝒊𝒔 �̃�𝑖   

(1) 

 

where, 

𝑥𝑗: are premise variables; 

�̃�𝑗
𝑖: are type-2 fuzzy membership functions of the premise 

sets with j= 1, 2, …, n, and n is the number of regressors; 

𝑦𝑖  ∈ 𝑌: is the ith output; 

�̃�𝑖: are type-2 fuzzy sets of the consequences with i=1, 2, …, 

N, where N is the number of If-Thenrules in the rule base. 

The type reduction block is introduced to map the type-2 

fuzzy outputs of the inference engine to type1-fuzzy sets. 

Among the most important methods for type reduction 

operations are Karnik-Mendel algorithm and Wu-Mendel 

uncertainty bounds, which are based on the estimation of the 

centroid. There are other techniques proposed in the literature 

for the purpose of enhancing the robustness, performance, and 

time execution, such as the MEKM algorithm [45], the EKM 

algorithm, the EIASC, and many others reported by Tai et al. 

[46]. In our investigation the conventional Karnik-Mendal 

center of sets is used which is written as [47]: 

 

𝑌 cos(𝑌1, … , 𝑌𝑁𝑅 , 𝑊1, … , 𝑊𝑁𝑅) 

= ∫ … ∫ ∫ ∫

1

∑ 𝑤𝑖𝑦𝑖𝑁𝑅
𝑖=1

∑ 𝑤𝑖𝑁𝑅
𝑖=1

= [𝑦1, 𝑦𝑟]
0

𝑤𝑁𝑅

0

𝑤1

0

𝑌𝑁𝑅

0

𝑦1   
(2) 

 

where, Ycos is the interval set bounded by two points y1and yr, 

𝑦𝑖 ∈ 𝑌𝑖 = [𝑦𝑙
𝑖 , 𝑦𝑟

𝑖] , Yi is the centroid of the type-2 interval 

consequent set Gi and 𝑤𝑖 ∈ 𝑊𝑖 = [𝑤𝑖, 𝑤
𝑖
]  is the firing 

interval. 

 

 
 

Figure 1. Type-2 fuzzy logic system structure 

 

2.1.2 Parameter update rules 

The determination of the unknown parameters of the 

antecedent and the consequent parts of the type2-fuzzy If-Then 

rules is crucial to design the type2–fuzzy adaptative filter. The 

input space in the antecedent parts is decomposed into a set of 

type-2 fuzzy regions, while the consequence parts are 

decomposed into regions which are automatically determined. 

The ambiguity in the Gaussian type-2 membership functions 

can be attributed to the center (mean) and the standard 

deviation. In this investigation, the Gaussian type-2 fuzzy 

membership functions were chosen due to their ability to 

uniformly estimate continuous functions, and to their ability to 

universal approximation [48]. Figure 2 represents the 

Gaussian type-2 fuzzy membership function where the 

uncertainty is associated with the center (mean) and with the 

standard deviation (width). The Gaussian membership 

function can be expressed mathematically as:  

 

�̃�(𝑥) = exp (
1

2

(𝑥−𝑐)2

𝜎2 )  (3) 

 

where, 

c: the center (mean) of the membership function; 

𝜎:  the width (standard deviation) of the membership 

function; 

x: is the data.  

In this paper, uncertainty is considered both on the center 

(mean) 𝑐 = [𝑐1, 𝑐2] and on the standard deviation 𝜎 = [𝜎1, 𝜎2], 
where c1, 𝜎1 and c2, 𝜎2 are the lower and upper bounds of the 

uncertainty interval, respectively. 

 

 
 

Figure 2. Gaussian type-2 fuzzy membership function with: 

(a) uncertain standard deviation; (b) uncertain center (mean) 

 

2.2 Teacher-learning-based optimization algorithm  

 

Rao [49] have proposed a new evolutionary algorithm 

labeled TLBO (Teaching Learning Based Optimization), 

which is inspired by the education process at school. This 

optimization algorithm is based on the impact of the teacher 

on the learners in the classroom. This optimization algorithm 

uses a population of solutions which contains a possible 

solution (feasible solution) of the optimization problem under 

consideration. Basically, this population is a group of learners. 

Several subjects given to the learners can be considered to be 

the design variables which are the parameters associated with 

the objective function of the optimization problem. Learner’s 

result is analogs to the fitness value of the feasible solution of 

the optimization problem.  

TLBO algorithm is divided into two phases: “Teacher phase” 

and “learner phase” which are described below:  

 

2.2.1 Teacher phase 

Learning of the learners form the teacher is considered to be 

the first phase of the TLBO algorithm, where the teacher is 

considered as the highly learned and skilled person in society. 

For simulations, we assume that there are ‘m’ number of 

subjects (design variables, 𝑗 = 1, 2, … , 𝑚 ), ‘n’ number of 

learners (population size, 𝑘 = 1,2, … , 𝑛) and 𝑀𝑗
𝑖 be the mean 

results of the students in a particular subject ‘j’ at any teaching-

learning cycle ( 𝑖 = 0, 1, 2 … . , 𝐼𝑛 ). A Teacher is the most 

experienced, knowledgeable, and highly learned person in 

society. To simulate this concept, the best learner (feasible 

solution) in the entire population is considered as a teacher. 
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Let 𝑋𝑗
𝑖 be the best feasible solution of the population at the 𝑖𝑡ℎ 

teaching-learning cycle and 𝑋𝑇,𝑗
𝑖  denotes the 𝑗𝑡ℎ design 

variable in the best feasible solution of the population at the 

𝑖𝑡ℎ  teaching-learning cycle or the result of the teacher in 

subject ‘j’. The difference between the result of the teacher and 

the mean result of the learners in subject ‘j’ can be expressed 

as:  

 

𝐷𝑗
𝑖 = 𝑟(𝑋𝑇,𝑗

𝑖 − 𝑇𝐹𝑀𝑗
𝑖)  (4) 

 

where, 

𝑋𝑇,𝑗
𝑖  is the result of the best student in subject ‘𝑗’. r is a 

random number in the range [0 1]. TF is the teaching factor 

which decides the value of the mean to be changed, the value 

of 𝑇𝐹  can be either 0 or 1. TF is not a parameter of the TLBO 

algorithm, and is not given as an input to the algorithm and its 

value is randomly decided by the algorithm using the 

following equation: 

 

TF=round [1+ rand (0,1) {2-1}]  (5) 

 

Based on the difference between the result of the teacher 

and the mean result of the learners in subject ‘j’ (𝐷𝑗
𝑖 ), the 

existing solution is updated in the teacher phase according to 

the following expression: 

 

𝑋𝑛𝑒𝑤,𝑘,𝑗
𝑖 = 𝑋𝑜𝑙𝑑,𝑘,𝑗

𝑖 + 𝐷𝑗
𝑖   (6) 

 

𝑋𝑛𝑒𝑤,𝑘
𝑘  is accepted if it gives better function value than 

𝑋𝑜𝑙𝑑,𝑘
𝑘 . All the accepted feasible solutions are maintained and 

these become the input to the student phase. The student phase 

depends upon the teacher phase. 

 

2.2.2 Learner phase 

It is the second part of the TLBO algorithm where learners 

increase their knowledge by interaction among themselves. A 

learner interacts randomly with other students for enhancing 

his or her knowledge. A learner (u) learns new things if the 

other learner (v) has more knowledge than him or her. The 

learning philosophy of this phase is simulated as below: 

Randomly select two students u and v, where their feasible 

solutions are 𝑋𝑢
𝑖  and 𝑋𝑣

𝑖 , respectively and then: 

 

if 𝐹(𝑋𝑢
𝑖 ) > 𝐹(𝑋𝑣

𝑘) 

𝑋𝑛𝑒𝑤𝑆𝑃,𝑢,𝑗
𝑖 =𝑋𝑢,𝑗

𝑖 +𝑟(𝑋𝑢,𝑗
𝑖 − 𝑋𝑣,𝑗

𝑖 ) 

else 

𝑋𝑛𝑒𝑤,𝑢
𝑖 = 𝑋𝑛𝑒𝑤,𝑢

𝑖   

end if 

 

where, 

F(x): is a fitness function that is used to find the fitness value 

of a feasible solution; 

𝑋𝑛𝑒𝑤𝑆𝑃,𝑢,𝑗
𝑖 : is the jth design variable of the modified feasible 

solution in student phase at ith teaching-learning cycle and it is 

accepted if it gives a better function value as follows: 

 

If 𝐹(𝑋𝑛𝑒𝑤 𝑆𝑃,𝑢
𝑖 ) > 𝐹(𝑋𝑛𝑒𝑤,𝑢

𝑖 ) 

𝑋𝑛𝑒𝑤,𝑢
𝑖 =𝑋𝑛𝑒𝑤 𝑆𝑃,𝑢

𝑘  

else  

𝑋𝑛𝑒𝑤,𝑢
𝑖 = 𝑋𝑛𝑒𝑤,𝑢

𝑖   

end if 

3. DESIGN PROCEDURE OF THE TLBO-BASED 

TYPE2-FUZZY ADAPTIVE FILTER  

 

Figure 3 shows the proposed TLBO-based type-2 fuzzy 

adaptive filter framework: 

 

 
 

Figure 3. Proposed framework of the TLBO based type-

2fuzzy adaptive filter 

 

To construct the  TLBO based-type-2 fuzzy adaptive filter, 

the following phases are used: 

Phase 1: Consider N type-2 fuzzy sets 𝐹𝑖
𝑙 for all input space 

intervals [𝐶𝑖− , 𝐶𝑖+] having Gaussian type-2 fuzzy membership 

functions as:  

 

𝜇
𝐹𝑖

𝑙 (𝑥𝑖 , 𝜇
𝑃𝑖

𝑙) = 𝑒𝑥𝑝 (−
1

2
(

𝜇
𝑃𝑖

𝑙−𝑚𝑖
𝑙(𝑥𝑖)

𝜎
𝑚𝑖

𝑙
)

2

)  (7) 

 

where, 𝜇
𝐹𝑖

𝑙  and 𝜇
𝑃𝑖

𝑙  are the upper and the lower bounds of the 

Gaussian membership function, respectively, with 𝜇
𝑃𝑖

𝑙 ∈ [0, 1]; 

𝜎
𝑚𝑖

𝑙  is the standard deviation of the upper membership 

function; 𝑚𝑖
𝑙(𝑥𝑖)  is the mean of the upper membership 

function, which is characterized by Gaussian membership 

function with mean M and standard deviation 𝜎𝑥 as follows: 

 

𝑚𝑖
𝑙(𝑥𝑖) = 𝑒𝑥𝑝 (−

1

2
(

𝑥𝑖−𝑀𝑖
𝑙

𝜎𝑖
𝑙 )

2

)  (8) 

 

where, 𝑙 = 1,2, … , 𝑁, 𝑖 = 1,2, … , 𝑛; the filter’s input is 

represented as 𝑥𝑖 = 𝑥(𝑘 − 𝐼 + 1) , the center of the 𝑖 th 

membership function in the 𝑙th rule is represented as 𝑚𝑖
𝑙, and 

the width of the 𝑖 th membership function in the 𝑙 th rule is 

represented as 𝜎
𝑚𝑖

𝑙. Within this study the free parameters 𝑚𝑖
𝑙 

and 𝜎
𝑚𝑖

𝑙 will be tuned using the evolutionary algorithm TLBO. 

The Gaussian type-2 fuzzy membership function (Eq. (7)) was 

chosen over triangular, trapezoidal or other shapes because it 

is a universal approximator that is able to uniformly estimate 

any continuous function in a compact set [36]. Nevertheless, 

when this type of network employs the other membership 

function types, verification of the universal approximation 

capability is difficult. Additionally, in order to complete 

function approximation, a large number of rules are required.  

Phase 2: Construct a set of adjustable type2-fuzzy rules 

using the numerical information of the training input-output 

data pairs: 

 

𝑅𝑙: 𝑰𝒇 𝑥𝑖  𝒊𝒔 𝐹1
𝑙  𝒂𝒏𝒅, … , 𝒂𝒏𝒅 𝑥𝑛 𝒊𝒔 𝐹𝑛

𝑙  𝑻𝒉𝒆𝒏  

ŷ = �̅�𝑙𝑙 = 1, 2, … , 𝑁  
(9) 
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where, 

�̂�: the desired output; 

𝐹𝑖
𝑙’s: type-2 fuzzy sets of the antecedent; 

�̅�𝑙’s: type-2 fuzzy sets of the consequent having a singleton 

type-2 membership function 𝜇�̅�𝑙; 

There will be a change of the membership function 

parameters of 𝜇
𝐹𝑖

𝑙 and 𝜇�̅�𝑙 during the adaptation process.  

Phase 3: Through the use of the fundamental Karnik-

Mendel center of sets type reduction [47] and the centroid 

defuzzification, the type-2 fuzzy filter is constructed around 

the set of N rules. 

Phase 4: Adjustment of the filter’s parameters by TLBO 

algorithm so that the fitness function error e between the type-

2 fuzzy adaptive filter output �̂� and the noisy ECG signal y 

attains its minimum value (see Figure 3). The filter parameters 

that are trained are the consequence intervals �̅�𝑙  and the 

Gaussian center of the premise membership functions 𝜇
𝐹𝑖

𝑙. 

The objective function that is used throughout the 

investigation (TLBO optimization cost function) is the Mean 

Square Error (MSE) expressed as follows: 

 

𝑀𝑆𝐸 =
∑ (𝒚𝒌−�̂�𝒌)𝑵

𝒌=𝟏

𝑵
=

∑ 𝒆𝒌
𝟐𝑵

𝒌=𝟏

𝑵
  (10) 

 

where, 𝑦𝑘  is the actual measure, �̂�𝑘 is its estimate, and 𝑁 is the 

length of the data. 

 

 

4. RESULTS AND DISCUSSION 

 

In what follows we provide the results gained after using the 

proposed method to filter ECG signals. For this purpose, 200 

signal segments of real ECG signals from different subjects 

are selected from the MIT-BIH database [50, 51]. The 

suggested method was simulated with 𝑁 = 40  rules. 

Therefore, the filter was structured using a set of 40 rules with 

40 × 3 = 120 adjustable parameters. consequently, there was 

two regressors to every rule and one consequence interval 

( 2 × 40  antecedent parameters and 1 × 40  consequence 

parameters). The type-2 fuzzy adaptive filter’s initial input 

vector x is set as 𝑥 = [𝑥1, 𝑥2]𝑇 = [0,0]𝑇. The effectiveness of 

the proposed approach will be fully investigated by assessing 

its performance in some noisy environments. These include 

the typical noises associated with ambulatory ECG recordings, 

which involve MA and EM. These are individually selected 

from the MIT-BIH stress data [28]. In addition, the proposed 

method will be also tested with artificially generated white 

Gaussian noise, which will be added to the original ECG 

segments with a number of input 𝑆𝑁𝑅  levels. In general, 

evaluation of signal denoising methods usually involves a 

measure of similarity between the denoised signal and the 

original signal. In order to assess the obtained type-2 fuzzy 

filter output fit, four of the frequently used criteria from other 

experimental studies have been applied. 

Signal-to noise output ration (𝑆𝑁𝑅𝑜𝑢𝑡): 

 

𝑆𝑁𝑅𝑜𝑢𝑡𝑝𝑢𝑡 = 10 × 𝑙𝑜𝑔 (
∑ (𝑥𝑘)2𝑁

𝑘=1

∑ (�̂�𝑘−𝑥𝑘)2𝑁
𝑘=1

)  (11) 

 

Mean Square Error (𝑀𝑆𝐸): 

 

𝑀𝑆𝐸 =
1

𝑁
∑ (�̂�𝑘 − 𝑥𝑘)2𝑁

𝑘=1   (12) 

 

The SNR improvement (𝑆𝑁𝑅𝑖𝑚𝑝): 

 

𝑆𝑁𝑅𝑖𝑚𝑝 = 𝑆𝑁𝑅𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑆𝑁𝑅𝑖𝑛𝑝𝑢𝑡  (13) 

 

The Root Mean Square Error (RMSE): 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (�̂�𝑘 − 𝑥𝑘)2𝑁

𝑘=1   (14) 

 

where, 𝑥𝑘  is the clean signal, �̂�𝑘  is its estimate and N is the 

length of the data. 

 

4.1 Denoising 

 

To evaluate the outcomes of the proposed technique, three 

types of noise are utilized (real and artificial noises) and added 

to the real ECG referenced 18177.dat, taken from the MIT-

BIH database [51]. The denoising results for different noise 

types are shown in Figures 4-7.  

The results show that with the addition of white Gaussian 

noise at 3dB SNR level, the denoised ECG signal is very close 

to the clean ECG morphology (see Figure 4). Meanwhile, 

Figure 5 shows that the denoised signal does not show any 

EMG artefacts with real MA noises at 3dB SNR level. 

Nevertheless, whilst the most troublesome noise is the EM, 

due to its ability to mimic ectopic beats, a very successful 

outcome is obtained with this experiment. Normally, 

undesired notches and EM noise are seen on the ST segment, 

and it is very difficult to remove them using simple bandpass 

filters; however, the proposed method is able to remove these 

motion artefacts (EM), as shown in Figure 6, whilst also 

preserving the signal’s diagnostic morphology information. In 

order to assess the proposed method’s efficiency to remove 

more complicated noises, all three noises (EM, MA and white 

Gaussian noise) are added to the same signal (18177.dat). 

Comparing the noised ECG with the denoised one, it can be 

seen that the proposed method produces a very smooth signal 

(see Figure 7). 

In what follows, the recording 18177.dat is used to evaluate 

the effectiveness of the proposed technique under different 

𝑆𝑁𝑅  input levels of real EM and MA, and artificial WGN 

noises where severe distortion occurs. Fuzzy filter output is 

assessed for each noise power case by using the criteria 

formulas (11)-(14). The SNRoutput, SNRimp, MSE and RMSE 

generated by the proposed framework for WGN, MA and EM 

versus different SNRinput(0dB to 10dB) are shown in Figure 8. 

These results show that the method achieves positive results in 

all different noise environments for a number of SNRinput levels. 

This can be seen in Figure 8 where the slope of the different 

criteria, particularly the SNRoutput, are not flat and there is an 

obvious increase of the SNRoutput with a corresponding 

decrease in SNRinput. So, this confirms that the framework is 

capable of optimally filter the ECG signal even in the presence 

of artefacts such as WGN, MA, and EM and with severe 

distortions. 

Next, the proposed type-2 fuzzy adaptive filter is applied to 

a series of real ECG signals to further test the validity of the 

approach. The considered records are 100.dat, 103.dat, 

200.dat and 208.dat taken from the MIT-BIH arrhythmia 

database. The noisy ECG signal is constructed by adding 5dB 

Gaussian white noise (taking into account the real existing 

noise in the records). Visual inspections of Figures 9, 10, 11 

and 12 show the filtering efficiency. 
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4.2 Comparison 

 

The performances of the introduced filter will be compared 

to the results obtained by recently published methods in ECG 

signal denoising. Tables 1-4 give detailed results obtained by 

comparing the proposed method with the adaptive dual 

threshold filter and discrete wavelet transform (ADTF-DWT) 

method [7]. The results given by Jenkal et al. [7] were 

validated by the works of several authors who compared the 

ADTF-DWT with the parallel-type fractional zero-phase 

filtering (FZP) [10], the Reimann- Liouville (RL) integrator 

[11], and the zero-phase average window filter (AZP) [10]. 

The EMG artefact comparison results are shown in Table 1. 

The noises are simulated in the same manner as the experiment 

described in the study [7]. Denoising comparison of 5dB white 

Gaussian noise from the selected entries of the MIT-BIH 

arrhythmia database [41] is shown in Table 2. The original 

paper [7] compares its results with a number of different 

methods, including the adaptive dependent wavelet 

thresholding technique (ADWT) and the multi-adaptive 

bionic-wavelet transform (MABWT) [12]. Tables 3 and 4 

show the results of the comparison between the proposed 

method and some benchmark methods at the same levels of 

WGN. 

This survey comparison shows that the results obtained 

from the proposed filter are much better than those obtained 

from the other benchmark methods, namely the ADTF-DWT, 

RL, AZP, FZP, ADWT, MABWT methods as detailed by 

Jenkal et al. [7]. Indeed, the results show that the proposed 

method shows an increased SNR improvement and a reduced 

mean square error (MSE). In order to generate further validity 

in our results, we also compared the proposed approach 

performance against another recently published method [9] 

that is based on the adaptive Fourier decomposition (AFD). In 

[9], the authors made comparisons of the AFD based method 

with a number of other EMD and EEMD based methods 

described by Chang et al. [13]. The results of the comparison 

between the AFD method and the proposed method are 

presented in Table 5. They show that again, the introduced 

method performs better in terms of MSE criterion (These 

results that are presented in Table 5 are calculated with signal 

magnitude that has been increased by 200 times from its 

original value). 

 

 
 

Figure 4. (a) Typical filtering of the proposed method for the record 18177.dat; with an added WGN at 3dB SNR level (b) 

Zoomed segment of denoised ECG signal 
 

 
 

Figure 5. (a) Typical filtering of the proposed for the Record 18177.dat; with muscle artifact (MA) at 3dB SNR level (b) Zoomed 

segment of denoised ECG signal 
 

 
 

Figure 6. (a) Typical filtering of the proposed method for the Record 18177.dat; with electrode motion artifact (EM) at 3dB SNR 

level (b) Zoomed segment of denoised ECG signal 
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Figure 7. Typical filtering of the proposed method for the record 18177.dat with the three noises (WGN+MA+EM) 

 

 
 

Figure 8. Measures performances of the proposed method versus different input SNRs for WGN, EM and AM noise: (a) 

SNRoutput (b) SNR improvement (c) MSE (d) RMSE 

 

 
 

Figure 9. (a) Typical filtering of the proposed method for the Record 100.dat with WGN at 5dB SNR level (b) Zoomed 

segment of denoised ECG signal 

 

 
 

Figure 10. (a) Typical filtering of the proposed method for the Record 103.dat with WGN at 5dB SNR level (b) Zoomed 

segment of denoised ECG signal 
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Figure 11. (a) Typical filtering of the proposed method for the Record 200.dat with WGN at 5dB SNR level (b) Zoomed 

segment of denoised ECG signal 

 

 
 

Figure 12. (a) Typical filtering of the proposed method for the Record 208.dat with WGN at 5dB SNR level (b) Zoomed segment 

of denoised ECG signal 

 

Table 1. Comparison of the denoising results of the EMG artefact in the record 115.dat 

 
Criteria  RL [11] AZP [10] FZP [10] ADTF-DWT [7]  Proposed Method 

SNRoutput 6.830 11.820 13.680 15.590 29.220 

MSE 0.07050 0.02230 0.01460 0.01460 0.00810 

 

Table 2. Comparison of the denoising results of the WGN noise at 5dB in some record taken from the MIT-BIH arrhythmia 

database 

 
Record N° Criteria ADTF-DWT [7] Proposed Method 

100.dat 

MSE 0.0044 0.00310 

RMSE 0.0660 0.05560 

SNRimp 9.7000 19.2200 

101.dat 

MSE 0.0042 0.00230 

RMSE 0.0400 0.04790 

SNRimp 10.230 19.6100 

103.dat 

MSE 0.0058 0.00280 

RMSE 0.0760 0.05290 

SNRimp 9.1000 19.6800 

113.dat 

MSE 0.0088 0.00190 

RMSE 0.0930 0.04350 

SNRimp 9.3300 21.0500 

115.dat 

MSE 0.0122 0.00730 

RMSE 0.1100 0.08540 

SNRimp 9.4500 15.4300 

117.dat 

MSE 0.0283 0.00890 

RMSE 0.1680 0.09430 

SNRimp 9.3400 13.0100 

119.dat 

MSE 0.0459 0.00880 

RMSE 0.2140 0.09380 

SNRimp 8.1300 13.9500 

122.dat 

MSE 0.0411 0.00630 

RMSE 0.2020 0.07930 

SNRimp 8.0700 16.7400 
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Table 3. Comparison of the denoising results of the WGN (5dB) in the record 101.dat 

 
Criteria ADWT [12] ADTF-DWT [7] Proposed Method 

MSE 0.0050 0.0042 0.0023 

RMSE 0.0720 0.0640 0.0479 

SNRimp 9.0980 10.2300 19.6100 

 

Table 4. SNRimp comparison of denoising results of the WGN (5dB) in some record taken from MIT-BIH database 

 
Record N° ADWT [12] MABWT [12] ADTF-DWT [7] Proposed Method 

100.dat 9.90 7.80 9.70 19.22 

101.dat 9.09 6.90 10.23 19.61 

103.dat 7.13 7.70 9.10 19.68 

113.dat 7.82 7.90 9.33 21.05 

115.dat 7.19 7.80 9.45 15.43 

117.dat 8.62 7.90 9.34 13.01 

119.dat 7.27 7.60 8.13 13.95 

122.dat 7.86 6.90 8.07 16.74 

 

Table 5. Comparison between filtered results using the AFD, EEMD, EMD and the proposed method with noisy signals at 10dB 

SNR level in terms of MSE criterion 

 
MIT-BIH Record N° EMD [12] EEMD [12] AFD [8] Proposed Method 

101.dat 126.9 97.4 36.0 24.55 

102.dat 83.3 60.0 32.6 19.32 

103.dat 189.4 147.0 76.0 44.93 

104.dat 151.6 109.5 55.7 28.22 

105.dat 180.6 128.1 73.6 48.52 

106.dat 245.6 192.5 98.9 57.82 

107.dat 771.6 574.9 572.6 88.98 

108.dat 103.2 76.9 24.0 14.45 

109.dat 237.2 179.7 112.1 98.20 

201.dat 67.1 38.6 38.3 26.82 

202.dat 131.0 76.3 28.4 25.32 

203.dat 279.7 206.5 321.3 45.70 

205.dat 72.5 55.0 29.5 19.22 

207.dat 129.7 99.9 93.9 53.32 

208.dat 361.2 232.0 199.2 67.32 

209.da 140.3 103.3 60.8 45.22 

 

Table 6. Comparison between the filtered results of MP-EKF, EKS, EKF and the proposed method in the presence of artificial 

and real noises in terms of MSEPWRD index 

 
  MSEPWRD (𝑚𝑒𝑎𝑛 ∓ 𝑆𝐷) (𝑚𝑣) 

Noise type Method 0 dB -1dB -3 dB -5 dB 

Gaussian White Noise 

MP-EKF 1.2840±0.2250 1.3290±0.2240 1.4340±0.2310 1.5520±0.2420 

EKS 1.3580±0.1800 1.4580±0.1960 1.6780±0.2370 1.9239±0.2880 

EKF 1.6770±0.1830 1.8240±0.2000 2.1580±0.2420 2.5520±0.2970 

Proposed Method 0.3860±0.0470 0.4584±0.0780 0.5176±0.0597 0.5547±0.3210 

Real Muscle Artifact 

MP-EKF 1.4680±0.1990 1.5520±0.2000 1.7470±0.2230 1.9870±0.2550 

EKS 2.9330±0.4550 3.2470±0.5140 3.9920±0.6560 4.9180±0.8360 

EKF 3.0570±0.4730 3.3930±05340 4.1880±0.6810 5.1790±0.8660 

Proposed Method 0.3932±0.0599 0.4530±0.0499 0.5877±0.0546 0.6932±0.0385 

 

 
 

Figure 13. Comparative results in the terms of SNRoutput 

 
 

Figure 14. Comparative results in the terms of RMSE 
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In order to further assess the efficiency of the proposed 

technique, Figures 13 and 14 show the comparisons based on 

SNRoutput and RMSE, for the proposed method and the new 

approaches labeled (FSSTH-NLM and NLM) [6] applied on a 

synthetic ECG signal simulated using Open-source 

electrophysiological Toolbox (OSET) [52], distorted by many 

noises of various SNRinput levels. By a visual inspection of 

Figures 13 and 14 we can see that the proposed approach 

outperforms the other three techniques by achieving higher 

SNRoutput and lower RMSE. 

Following this analysis, the proposed method will be further 

tested against a model-based method described by Hesar and 

Mohebbi [15], which presents an ECG signal denoising 

method labelled MPEKF. This method uses an automatic 

particle weighting strategy and an extended Kalman filter. The 

proposed method is compared to our method in terms of an 

ECG diagnostic distortion measure called the Multi-Scale 

Entropy based Weighted Distortion Measure [15, 53]. We use 

a similar method as that utilized by Hesar and Mohebbi [15] 

to calculate this measure. A weighted percentage root square 

difference (WPRD) is used as a metric, which is generated by 

comparing the original sub-band wavelet coefficient with the 

filtered signals. It uses weights that are the same as the 

corresponding sub-band’s multi-scale entropies. Using this 

measure allows to achieve an accurate representation of the 

distortion of the filtered signal at all sub-bands [15, 53]. It was 

necessary to decompose both signals using wavelet filters up 

to 𝐿 levels in order to calculate this metric. Both the sampling 

frequency and the nature of the signal dictate the number of 

levels. An accurate ECG trace will include a sharp QRS 

complex segment and the slow P and T waves, therefore, 

effective decomposition of an ECG should display an effective 

representation of the detail coefficients of the QRS complexes 

and the approximation coefficients of the P and T waves. As 

such, Daubechies 9/7 bi-orthogonal wavelet filter [54] was 

used for decomposition purposes. This led us to choose L=4 

for sampling frequency of 128Hz [55].  

The multiscale entropy-based weighted PRD measure is 

defined as: 

 

𝑀𝑆𝐸𝑊𝑃𝑅𝐷 = 𝑤𝐴𝐿 × (√
∑ [𝐴𝐿(𝑘)−𝐴𝐿]2

𝑁𝐴𝐿
𝑘=1

∑ [𝐴𝐿(𝑘)]2
𝑁𝐴𝐿
𝑘=1

× 100)  

+ ∑ 𝑤𝐷𝑗
× (√

∑ [𝐷𝑗(𝑘)−�̃�𝑗(𝑘)]
2𝑁𝐷𝑗

𝑘=1

∑ [𝐷𝑗(𝑘)]
2𝑁𝐷𝑗

𝑘=1

× 100)𝐿
𝑗=1   

(15) 

 

where: 𝑤𝐴𝐿  denotes the weight of the Lth approximation band; 

𝑤𝐷𝑗
 denotes the weight of the jth level details sub band; AL and 

�̃�𝐿  denote the Lth approximation band coefficients of the 

original and the denoised signals, respectively; and 𝐷𝑗  and �̃�𝑗 

denote the jth details band coefficients of the original and the 

denoised signals, respectively. The weights are: 𝑤𝐴𝐿
 and 𝑤𝐷𝑗

. 

The results of the comparison between our method and that 

of MP-EKF, EKF and EKS, as detailed in Hesar and Mohebbi 

study [15], using a MSEWPRD with various input SNR levels, 

are shown in Table 6. These results were generated by 

determining the MSEWPRDs of 200 filtered ECG segments 

that were selected from the MIT-BIH database. However, the 

chosen segments used in our algorithm can be not the same as 

those segments used by Hesar and Mohebbi [15]. 

 

 

4.3 Discussion 

 

Using a set of type2-fuzzy If-Then rules, we constructed a 

type-2 fuzzy adaptive filter that was able to adaptively change 

in order to reduce the criterion functions to their minimum 

values. The obtained results show that the proposed filter is 

highly effective in denoising the ECG signal; however, the 

efficiency of the method’s performance is determined by the 

number of fuzzy adaptive filter rules and the parameters of the 

optimization algorithm. The effectiveness of the investigated 

technique was compared to simulation results from both model 

and non-model-based methods using SNR, MSE and RMSE 

criteria, with the SNR being the power ratio between signal and 

noise. As such, a larger SNR indicates reduced background 

noise and, therefore, an increase signal denoising performance. 

Conversely, the MSE is a tracking accuracy measurement of 

the filtered signal compared to the original signal, therefore, 

the performance of the signal information retention is better 

when the MSE is smaller and the RMSE is used to calculate the 

variance between the real signal and its estimate. A smaller 

RMSE leads to a smaller difference. Figures 4-14 show that the 

proposed method is very effective when we are dealing with 

real noises, white Gaussian noise and their combination with 

different SNRinput levels. As such, it can be deduced that this 

method is both accurate and robust. Furthermore, by filtering 

the EMG artefact and comparing the outcomes with those of 

other benchmark methods, it can be seen that the proposed 

filter is statistically more effective than FSSTH-NL, ADTF-

DWT and other methods described by Bing et al. [6-11]. 

Comparison results between the proposed method’s denoising 

performance using white Gaussian noise of 5dB SNR level 

with the ADTF-DWT and other methods [7-12] are shown in 

Tables 2-4. These results show that the proposed method has 

improved results in terms of MSE, RMSE and SNRimp when 

compared to ADTF-DWT, ADWT and MABWT methods. 

Furthermore, the proposed approach provides an important 

solution for the problem of high-density noise as shown with 

the results of the 5dB white Gaussian noise. Table 5 displays a 

deeper comparison of the filtered results under MSE 

performance using the proposed approach and the AFD, 

EEMD and EMD methods detail [9-13]. These results also 

show that the proposed approach is again, more effective. 

Moreover, the results displayed in Table 6 shows the 

comparison between the proposed method and MP-EKF and 

EKF/EKS [15] using the MSEWPRD on two types of noise 

with four different input SNRs (0dB, -1dB, -3dB and -5dB). 

Notice that the MP-EKF and EKF/EKS have higher 

MSEWPRDs for each noise type at all SNRinput levels compared 

to the proposed method indicating that our method is more 

effective than the MP-EKF and EKF/EKS in preserving the 

diagnostic information and morphology of the ECG signals. 

 

 

5. CONCLUSION 
 

In this paper, a novel adaptive type-2 fuzzy filter for ECG 

signal denoising was presented. The main blocks used in the 

filter were a type2-fuzzy system and a TLBO optimization. 

TLBO algorithm was designed to updating a type-2 fuzzy 

system parameters. The proposed filter was utilized to denoise 

ECG signals and was found to be highly effective at removing 

electrode motion noise, EMG noise and white Gaussian noise. 

In addition, a number of comparisons were made between the 

performances of the proposed approach with a number of other 
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methods that have been presented in previously published 

studies. The results of these comparisons show that our 

filtering technique has better outcomes with a higher SNRoutput 

and an improved SNRimp, MSE, RMSE and MSEPWRD than 

the other model based and non-model-based methods detailed 

in the researches [6, 7, 9, 13, 15]. additionally, the proposed 

filter was able to preserve the morphology of the ECG signal 

and maintain the diagnostic performance.  

The type2 fuzzy adaptive filter proposed in this paper may 

open up new horizons for efficient denoising of ECG signals. 

Therefore, as future work, we suggest further development of 

the proposed filter to (1) Minimize the processing time and (2) 

Increase the robustness: 

(1) For the first point, it is known that the main problem 

with the type-2 fuzzy systems is the type reduction process 

which is computationally complicated, especially when there 

are many MFs and the rule base is large, therefore as a 

perspective of this work we propose to reduce the 

computational burden, using a faster type-reduction method. 

Several algorithms are being developed for this purpose, 

including the modified enhanced Karnik-Mendel (MEKM) 

method, enhanced Karnik-Mendel (EKM) method, the 

enhanced iterative algorithm with stop condition (EIASC) 

method and many other methods reported by Tai et al. [46]. 

(2) For the second point, we propose to use other 

optimization algorithms such as BBO, IWO, CMA. ES, SCE. 

UA, SFLA, PSO and even combine them in one algorithm in 

order to consider the advantage of every one and create a more 

robust optimization. 
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