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 This study numerically investigates Magnetohydrodynamic (MHD) convective and chemically 

reactive unsteady micropolar fluid flow with nanoparticles through the vertical porous plate 

with mass diffusion, thermal radiation, radiation absorption and heat source. A flow model is 

established by employing the well-known boundary layer approximations. To obtain the non-

similar equation, the boundary layer governing equations including continuity, momentum, 

energy and concentration balance were nondimensionalised by usual transformation. A non-

similar approach is applied to the flow model. To optimize the parametric values, the stability 

and convergence analysis (SCA) have been analysed for the Prandtl number (Pr) and Lewis 

number (Le). It is observed that with initial boundary conditions, U =V =T = C= 0 and for Δτ 

= 0.005, ΔX = 0.20 and ΔY = 0.25, the system converged at Prandtl number, Pr ≥ 0.356 and 

Lewis number, Le ≥ 0.16. The coupled non-linear partial differential equations are solved by 

explicit finite difference method (EFDM) and the numerical results have been calculated by 

Compaq Visual FORTRAN 6.6a. Evaluation of the thermal and momentum boundary layer 

thickness with isotherms and streamlines analysis of boundary layer flows have been shown 

for the thermal radiation parameter (R). The effects of various parameters entering the problem 

on velocity, angular velocity, temperature and concentration are shown graphically.  
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1. INTRODUCTION 

 

Micropolar fluids are well known as the fluids with 

microstructure. The theory of micropolar fluids introduced by 

Eringen [1] is one of the best theories of fluids to describe the 

structured fluids and these fluids consist of rigid particles 

which can rotate with their own spins and microrotations. The 

concentration laws of mass, momentum and fundamental 

relationships distinguish the fluid motion of the micropolar 

fluid and it's describing the effect of couple stress, spin-inertia 

and micromotion which are very important in micropolar 

fluids. After the investigation of micropolar theory, there are 

many researchers especially focus on industrial applications 

and extend the study in many ways to include various physical 

effects.  

The summary of the theory of micropolar fluid lies in 

particle suspension [2], liquid crystals [3]; animal blood [4], 

exotic lubricants [5], etc. Recently, lots of researcher focus on 

physical and engineering problems which involves of 

micropolar fluid and mainly they concern on suction or 

injection in boundary conditions, heat transfer by free or 

mixed convection, stagnation point flow, the stretching / 

shrinking sheet problems, magnetohydrodynamics, velocity 

slip and even also the flow and heat transfer of micropolar 

fluid through a horizontal or vertical channel. Micropolar fluid 

plays a practical role in the biological science and in 

manufacturing, chemical and food industry, bio-medical 

science etc. An excellent review of the different applications 

of micropolar fluid mechanics was presented by Ariman et al. 

[6]. 

The importance of Boundary layer flow over a stretching in 

various engineering processes, as an example, materials 

manufactured by extrusion. a stretching sheet interacts with 

the ambient fluid both thermally and mechanically during this 

process. Crane [7] was initiated the study of boundary layer 

flow caused by a stretching surface. By a porous stretching 

sheet, the effect of surface conditions on the micropolar flow 

was studied by Kelson et al. [8]. Mohammadein et al. [9] 

examined the flow of micropolar fluid over a stretching sheet 

with prescribed wall heat flux, viscous dissipation and internal 

heat generation. Hussain et al. [10] presented a model-based 

analysis of micropolar nanofluid flow over a stretching 

surface. Nazar et al. [11-12] investigated the stagnation point 

and unsteady boundary layer flow over a stretching sheet in a 

micropolar fluid. Bhargava et al. [13] examined the flow of a 

mixed convection micropolar fluid driven by a porous 

stretching sheet with uniform section and later, Bhargava et al. 

[14] investigated the same flow of a micropolar flow over a 

nonlinearly stretching sheet. In many engineering activities, 

the process of suction is used such as thermal oil recovery, 

removal of reactants etc. Erickson et al. [15] and Fox et al. [16] 

was studied the effect of suction or injection at a stretching 
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surface. In recent time, several works on the dynamic of the 

boundary layer flow over a stretching surface have appeared 

in the literature [17-19]. Unsteady forced bioconvection slip 

flow of a micropolar nanofluid from a stretching/shrinking 

sheet was studied by Latiff [20]. In the industrial process, the 

heat generation and absorption are an enormous phenomenon. 

Recently, Abel et al. [21] numerical analysed the 

hydromagnetic micropolar fluid flow due to 

horizontal/vertical stretching sheet using a shooting method. 

They highlighted a scientific approach for the choice of the 

missing initial values on which the convergence of the 

shooting method highly depends. Afterwards, Abbas et al. [22] 

analysed the heat transfer for stretching flow over a curved 

surface with a magnetic field. Naveed et al. [23] investigated 

hydromagnetic flow over an unsteady but it was curved 

stretching surface. Later, Naveed et al. [24] studied the 

magnetohydrodynamic flow of a micropolar fluid in the 

presence of thermal radiation over a curved stretching sheet. 

Boundary layer flow of magneto-micropolar nanofluid flow 

with Hall and ion-slip effects using variable thermal 

diffusivity was examined by Bilal [25]. 

In recent time, Arifuzzaman et al. [26] analyzed unsteady 

chemically reactive micropolar fluid through an infinite 

vertical plate with the influence of thermal radiation, porous 

medium, thermal and mass diffusion with heat and mass 

transfer and showed the velocity, angular velocity, 

temperature and concentration across the boundary layer. 

Afterwards, in presence of nanoparticle, Arifuzzaman et al. 

[27] studied chemically reactive viscoelastic fluid flow 

through the porous stretching sheet.  Khan et al. [28], Biswas 

et al. [29] and Arifuzzaman et al. [30] investigated impacts of 

magnetic field and radiation absorption on mixed convective 

and radiative of Williamson fluid, Jeffery nanofluid and 

Maxwell fluid flow over a linear or vertical stretching sheet 

with stability and convergence analysis (SCA). Arifuzzaman 

et al. [31] investigated the momentum boundary layer and 

thermal boundary layer thickness with streamlines and 

isotherms variation of transient MHD natural convective and 

chemically reactive high-speed fluid flow through an 

oscillatory vertical porous plate in presence of heat and 

radiation absorption. The heat exchange in conditions of free 

convection for the heat radiator, Wernik et al. [33] validated 

the results of numerical simulations using thermovision for 

three heat flux values. Oravec et al. [34] have investigated the 

improvement of control performance and increase of energy 

savings using the soft-constrained robust MPC with integral 

action for a laboratory plate heat exchanger. 
In this paper, our prime objective is to investigate naturally 

convective and chemically reactive unsteady micropolar fluid 

flow with nanoparticles through a vertical porous plate with 

mass diffusion, MHD, thermal radiation, radiation absorption 

and heat source. By using the well-known boundary layer 

approximations, a flow model is established.  

• The governing systems of partial equations have been 

transformed to set of coupled ordinary differential equations 

with the help of suitable non-similar transformations.  

• Coupled non-linear dimensionless flow equations have been 

solved numerically by EFDM. 

• The accuracy of our method to study, the stability and 

convergence analysis for the Prandtl number (Pr) and Lewis 

number (Le) have been analyzed to determine the parametric 

values. 

• The results have been discussed in detail to study and shown 

graphically with the influence of various non-dimensional 

governing parameters on velocity, temperature and 

concentration.  

• Evaluation of the thermal and momentum boundary layer 

thickness with isotherms and streamlines analysis of boundary 

layer flows have been shown for the thermal radiation 

parameter (R). 

 

 

2. MATHEMATICAL FLOW MODEL 
 

The fluid with both micro-rotation and micro-inertia 

properties is known as micropolar fluid. Unsteady heat and 

mass transfer flow of viscoelastic fluid along a semi-infinite 

vertical porous plate are considered in the presence of a 

uniform thermal radiation and magnetic field. The flow is in 

the x -direction which is taken along the plate in the upward x-

direction and y-axis is normal to it. When the plate velocity 

U(t) is given as u=0. In an initial step, it is considered that the 

plate, as well as the fluid particle, is at rest at the same 

temperature 𝑇(= 𝑇∞) and the same concentration level C(=
𝐶∞) at all points. It is also assumed that a magnetic field 𝐵𝑦 =

𝐵0 of uniform strength is applied normal to the flow region 

along the y-axis. When 0S = , then 0N =  which represents 

no-spin condition i.e., the microelements in a concentrated 

particle flow close to the wall are not able to rotate. The case 

1/ 2S = represents vanishing of the anti-symmetric part of the 

stress tensor and represents weak concentration. In a fine 

particle suspension of the particle, spin is equal to the fluid 

velocity at the wall. The case 1S =  represents turbulent 

boundary layer flow. 
Continuity Equation:  
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Angular Momentum Equation, 
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Energy Equation,     
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Concentration Equation, 
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With boundary condition, 
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where, u and v  denotes the velocity component, 𝐵0  
is the 

magnetic field component, 𝛽
 
is thermal expansion coefficient, 

𝛽∗  is concentration expansion coefficient, 𝜎′ electric 

conductivity 𝑇𝑤  
is the wall temperature, 𝐶𝑤 is the species 

concentration at the wall,   is the kinematic viscosity,   is 

density, 𝜅 is thermal conductivity,  𝑐𝑝
 
is specific heat at 

constant pressure, 𝑄0 
denotes the heat source,

 
*
1Q denotes the 

radiation absorption , rq
 
denotes the unidirectional radiative 

heat flux,
 
 𝐾𝑐 is the chemical reaction, 𝐷𝐵 denotes Brownian 

diffusion coefficient, 𝐷𝑇  
thermophoresis diffusion coefficient. 

The radiative heat flux term by using the Rosseland 

approximation is given by, 
44
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where, s denotes Stefan-Boltzmann constant and 𝑘𝑒  mean 

absorption coefficient, respectively. If temperature differences 

within the flow are sufficiently small and after neglecting 

higher order terms takes the form by, then the rq  can be 

linearized by expanding 𝑇4 into the Taylor series about T

.Then the equation (3) becomes the following form, 
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From the governing equations (1) - (5) under the initial 

conditions and the boundary conditions are transformed into 

dimensionless form and the dimensionless quantities are, 
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The dimensionless equations are obtained as follows: 

Dimensionless Continuity Equation, 
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Dimensionless Momentum Equation, 
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Dimensionless Angular Momentum Equation, 

 
2

2
2

N N N N U
U V N

X Y YY




     
+ + =  − + 

     
                              (9) 

 

Dimensionless Energy Equation, 
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Dimensionless Concentration Equation, 
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Boundary conditions, 
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where the obtained physical parameters are given below:  
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3. SHEAR STRESS, NUSSELT NUMBER AND 

SHERWOOD NUMBER 
 

The effects of various parameters on the local and average 

shear stress have been calculated. The following equations 

represent the local and average shear stress at the plate. Local 

shear stress 
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 respectively. From the temperature field, 

the effects of various parameters on the local and average heat 

transfer coefficients have been investigated. The following 

equations represent the local and average heat transfer rate, 

which is well known Nusselt number. Local Nusselt number, 
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concentration field, the effects of various parameters on the 

local and average mass transfer coefficients have been 

analysed. The following equations represent the local and 

average mass transfer rate that is well known Sherwood 

number. Local Sherwood number, 𝑆ℎ𝐿 = 𝜇(−
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4. NUMERICAL SOLUTION 

 

To solve the governing coupled non-dimensional partial 

differential equations with the associated initial and boundary 

conditions EFDM has been applied. The explicit finite 

difference method has been used to solve (6) - (9) subject to 

the initial and boundary conditions. For this reason, the area 

within the boundary layer is divided by some perpendicular 

lines of Y -axis, where the normal of the medium is Y - axis 

as shown in Figure A2. It is assumed that the maximum length 

of the boundary layer max 20Y = as corresponds to Y → . 

i.e. Y  vary from 0 to 20 and the number of grid spacing in Y  

directions are ( 100)m = and ( 100)n = , with the smaller time 

step 0.005 = . Using the explicit finite difference 

approximation, we have, 

Continuity Equation 
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Momentum Equation, 
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Angular Momentum Equation, 
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Energy Equation, 
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Figure A2. The finite difference space grid 

 

Concentration Equation, 
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The initial and boundary condition with finite difference 

scheme as 
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where, the subscripts i  and j  designate the grid points with 

X and Y  coordinates respectively and a value of time, 

n =   , where 1,2,3,4.....n = ..  

 

4.1 Stability and convergence test 

 

The analysis remains incomplete unless the stability and 

convergence of the finite difference scheme are discussed. For 

the constant mesh size, the stability criteria of the scheme may 

be established as follows. The general terms of the Fourier 

expansion for , ,U W T  and C at a time arbitrarily called 0t =

are all 
i X i Ye e 

apart from a constant, where 1i = − . A time

t = , these terms become, 
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and after a time step, these terms convert to  
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Substituting (17) and (18) to the main equations (13) -(16) 

we get, 

Then 
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where, 
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For the angular velocity, 
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5 2

2 (cos 1)
1

( )

(1 ) ( 1)
2

i X i Y

Y
A

Y

e e
U V

X Y

 

 


−  

  −
= + 



− −
− − − 

 

 

6

( 1)i Ye
A

Y

  −
=


 

 

For temperature equation, 
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For concentration equation, 
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Equation (18) -(21) can be expressed in the Matrix form, 
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For obtaining the stability condition, Eigenvalues of the 

amplification matrix 'T must be finding out. It is a fourth order 

square matrix. For this explicit finite difference solution, the 
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After simplification of the matrix, the Eigenvalues are 

followed, The Eigenvalues of the amplification matrix Tare 

obtained, 
1 1 5 2 7 3 10 4, , andA A A A   = = = = . For stability 

test, each of the Eigenvalues must not exceed unity in 

modulus. Under this consideration, the stability conditions are 

as follows 
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Hence the stability conditions of the methods are, 
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When,  and Y approach to zero then the problem will 

be converged. With initial boundary conditions and for the 

values of 0.005 = , 0.20X = and 0.20Y =  then the 

problem will be converged at 0.356rP 
 
and 0.16eL  .These 

converge solutions are shown graphically in Figs.1-24. 

 

 

5. RESULTS AND DISCUSSIONS 

 

The MHD naturally convective heat and mass transfer 

laminar flow of micropolar fluid in presence of nanofluids 
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flow over a vertical porous plate with the effect in presence of 

magnetic field, thermal radiation, heat source, micro-

rotational, a chemical reaction have been studied numerically. 

In order to investigate the physical representation of the 

problem, the numerical values of velocity (U), angular 

velocity (N), temperature (θ) and species concentration (φ) 

with the boundary layer have been computed for different 

parameters. The graphs are illustrated with some fix 

parameters Gr = 5.0, Gm = 5.0, Da = 1.0, Fs = 1.0, M = 1.20, 

  =2 .00,  =1.50, Pr = 1.38, R=0.70, EC = 0.00001, 

SC=16.00, Kr = 0.50, S = 0.50, Nb = 0.10 and Nt = 0.10.  

Figure 1 is sketched for the effect of Darcy number (Da). From 

this figure, it can be noticed that the velocity increase with 

increasing Da. This is because velocity profile near the wall 

flattens. The influence of similar parameter on angular 

velocity is illustrated in Figure 2.  At first the angular velocity 

increase with the increment of Da (1.0 4.0M  ) than at an 

increase of Da influenced of angular velocity diminish at

X  0.1= . Then it has been showing an increasing pattern. 

 

 
 

Figure 1. Impact of Da on velocity 

 

 
 

Figure 2. Impact of Da on the angular velocity 

 

Figure 3 and Figure 4 describe that, the increase of magnetic 

parameter (M) (1.20 10.50M  ) with respect to decreasing 

pattern of velocity and angular velocity except initially in case 

of angular velocity. The fact behind this, the presence of a 

magnetic field in an electrically conducting fluid influenced 

by Lorentz force, which retracts the flow.  

 
 

Figure 3. Impact of M on velocity 

 

 
 

Figure 4. Impact of M on the angular velocity 

 

 
 

Figure 5. Impact of R on temperature 

 

The effect of radiation parameter (R) on temperature is 

illustrated in Figure 5 It is seen that temperature profile 

increase due to rising of R ( ). Increasing 

estimation of R provides more heat to the fluid which raises 

the temperature and thermal boundary layer. Figure 6 and 

Figure 7 are plotted for the impact of velocity and angular 

velocity on R. The opposite behaviours have been shown as 

increase and decrement of velocity and angular velocity due to 

elevate of R are found in here. Figure 8 depicts the temperature 

0.50 1.40R 
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profiles for different values ( ) of Brownian 

motion (Nb). It is observed that temperature increase with 

increasing Nb, which indicates enhances the nanoparticles 

concentration. Through Figure 9 and Figure10, we elucidated 

the domination of thermophoresis parameter (Nt) on 

concentration and angular velocity. Here we detect a rise in the 

Nt ( ) with enhance of concentration and 

angular velocity. In Figure 10, near the plate, the angular 

velocity diminishes with the soar of Nt and after few time near 

at the profiles increase. 

 

 
 

Figure 6. Impact of R on velocity 

 

 
 

Figure 7. Impact of R on the angular velocity 

 

The graph of Lewis number (Le) is depicted in Figure 11. 

We eye that an enrichment of Le (10 17Le  ) depreciates 

the concentration distribution. The reason behind this Le 

expresses the relative contribution of thermal diffusion to mass 

diffusion in the boundary region. Impact of increasing value 

of Le will reduce thermal boundary layer thickness as well as 

concentration. Figure 12 elucidates the nature of concentration 

for ascending values of destructive chemical reaction (Kr). It 

is seen that decline of concentration with Kr. Physically, 

chemical reaction parameter expresses consumption of 

chemical therefore results shows the decreasing the 

concentration.  

 
 

Figure 8. Impact of Nb on temperature 

 

 
 

Figure 9. Impact of Nt on the concentration 

 

 
 

Figure 10. Impact of Nt on the angular velocity 

 

The angular velocity versus vortex viscosity is 

demonstrated through Figure 13 Near the plate for an increase 

of vortex viscosity ( ), the angular profile 

decreases and after a time at the profiles 

increase. Here, the angular velocity distribution decreasing for 

0.10 1.30Nb 

0.10 1.30Nt 

Y  2.0,  X 0.0= =

1.50 7.0 

Y 2.0 and X 0.00= =

943



 

increasing value of vortex viscosity. 

 

 
 

Figure 11. Impact of Nt on the concentration 

 

 
 

Figure 12. Impact of Kr on the concentration 

 

 
 

Figure 13. Impact of λ on angular velocity 

 

 
 

Figure 14. Impact of   on velocity 

 

Further, Figure 14 and Figure 15 respectively show the 

ascending profile of micro-rotational number ( ). It is seen 

that  ascents, velocity and angular velocity descent.  

 

 
 

Figure 15. Impact of Г on angular velocity 

 
 

Figure 16. Isotherm lines for R = 0.20 with 1 10 = −  
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Figure 17. Isotherm lines for R = 0.40 with 1 10 = −  

 

Figure 16 and Figure 17 illustrate the thermal boundary 

thickness for the difference values of R (0.20 and 0.40). For 

the increase of thermal radiation (R), the thermal boundary 

layer thicknesses of fluid have been expanded for an increase 

of temperature. Figure 18 and Figure 19 illustrate the 

momentum boundary thickness for the difference values of R 

(0.20 and 0.40). For the increase of thermal radiation (R), the 

momentum boundary layer thicknesses of fluid have been 

expanded for an increase of temperature.   

 
 

Figure 18. Stem lines for R = 0.20 with 1 10 = −  

 
 

Figure 19. Isotherm lines for R = 0.40 with 1 10 = −  

 
 

Figure 20. Impact of Du on Nusselt number 

 

From Figure 20, it is noticed an increase in the values of 

Dufour number created in the reduction of the Nusselt number. 

The influence of Dufour number (Du) on Sherwood number 

(Sh) is given in Figure 21. It is evident from this figure Du 

enhances by the increasing Sherwood number. Figure 22 

Indicates the impact Lewis number on Sherwood number 

profiles with a rising pattern of Sh with respect to Lewis 

number. Skin friction increased with increasing of Darcy 

number is shown in Figure. 23 Magnetic parameter is 

addressed opposite pattern with respect to skin friction in 

Figure 24. 

 

Table 1. Computations are showing the increase of Nusselt 

number ( )uN for the increase of
tN  for 0.71, 10.00r eP L= =

and =10.00  

 

tN  

uN  

0.10bN =  

uN  

0.20bN =  

uN  

0.30bN =  

uN  

0.40bN =  

uN  

0.50bN =  

0.10 0.05976 0.00297 -0.01678 -0.02674 -0.02267 

0.20 0.13674 0.04906 -0.01147 -0.03257 -0.02035 

0.30 0.20364 0.11765 0.03034 -0.01897 -0.01687 

0.40 0.27813 0.11862 0.09882 0.02213 -0.01364 

0.50 0.31364 0.25804 0.16998 0.08893 0.08034 

 

 
 

Figure 21. Impact of Du on Sherwood number 
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Figure 22. Impact of Le on Sherwood number 

 

Table 2. Computations are showing the decreased of 

Sherwood number (
hS ) for the increase of tN  for

0.71, 10.00r eP L= = and =10.00  

 

tN  

hS  

0.1bN =  

hS  

0.2bN =  

hS  

0.3bN =  

hS  

0.4bN =  

hS  

0.5bN =  

0.10 0.20348 0.22648 0.25974 0.26998 0.30145 

0.20 0.07954 0.18946 0.20365 0.21445 0.26587 

0.30 -0.13578 0.14668 0.19756 0.2103 0.23587 

0.40 -0.40578 -0.02354 0.11645 0.17235 0.21242 

0.50 -0.75893 -0.15879 0.05445 0.12445 0.19864 

 

 
Figure 23. Impact of Da on Skin Friction 

 

 
Figure 24. Impact of M on Skin Friction 

6. CONCLUSIONS 

 

The numerical solution of micropolar fluid with nano-

particle towards a moving semi-infinite vertical porous plate 

with thermal radiation, heat source, MHD is analysed. The 

results are presented graphically with various system 

parameters. Form the graphical representation, the following 

result deduced from our study: 

• The behaviour of velocity distribution decrease for 

the raising value of magnetic parameter, radiation 

parameter, micro-rotational number and increase for 

Darcy number. 

• The concentration parameter enhances for the 

improving values of thermophoresis parameter and it 

shows decreasing behaviour for Lewis number and 

chemical reaction. 

• Angular velocity profile ascents for escalating Darcy 

number and thermophoresis parameter while it 

diminishes for enhancing magnetic parameter, 

radiation parameter and micro-rotational number. 

• Nusselt number decrease for increasing Dufour 

number. 

• Sherwood number is an increasing function of 

Dufour number and Lewis number. 

• The Skin friction distribution increases for aiding 

Darcy number and decrease for opposing value of the 

magnetic parameter 
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NOMENCLATURE 

 

B○ magnetic component, (Wb m-2) 

Cf skin-friction, (-) 

Cp specific heat at constant pressure, (J kg-1K-1) 

Da Darcy number, (-) 

D
B
 The Brownian diffusion coefficient, (-) 

Du Dufour number, (-) 

Ec Eckert number, (-) 

Gr Grashof number, (-) 

G
c
 modified Grashof number, (-) 

j Micro-inertia density 

K/ the permeability of the porous medium, (-) 

Kr
 

chemical reaction parameter, (-) 

ke
 

mean absorption coefficient 

Le Lewis number, (-) 

Nb 
The Brownian parameter, (-) 

Nt thermophoresis parameter, (-) 

Nu local Nusselt number, (-) 

N  Angular velocity 

Pr Prandtl number, (-) 

qr
 

unidirectional radiative heat flux, (kg m-2) 

Q1
* radiation absorption, (-) 

Q○ heat absorption quantity, (-) 

Sh Sherwood number, (-) 

T Fluid temperature, (K) 

Tw The temperature at the plate surface, (K) 

T


 ambient temperature as y tends to infinity, 

(K) 

U○ uniform velocity 

u, v velocity components 

x, y Cartesian coordinates 

 

Greek symbols 

 

β thermal expansion coefficient 

β* concentration expansion co-efficient 
  spin gradient viscosity 

κ thermal conductivity, (Wm-1 K-1) 

μ dynamic viscosities 

ν kinematic viscosity, (m2 s-1) 

ρ the density of the fluid, (kg m-3) 

σs
 

Stefan-Boltzmann constant, 5.6697 × 

10-8 (W/m2K4) 
'
 

electric conductivity 

   vortex viscosity 
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