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Considering the rapid development, uncertain situations and prediction difficulty of mine 

thermal dynamic disasters (MTDDs), this paper combines the fuzzy analytical hierarchy 

process (FAHP) and extreme learning machine (ELM) into a prediction model to quantify the 

degree of MTDD rescue safety in a fast and accurate manner. Firstly, a static FAHP model 

was constructed by the Delphi, AHP, and fuzzy comprehensive evaluation (FCE) to assess 

various MTDD rescue cases, quantify the exact degree of rescue safety and provide sample 

data for real-time prediction based on artificial intelligence. Then, the improved ELM 

algorithm was introduced to design a dynamic prediction model for the safety of various 

MTDD rescue cases. Through case study, it is confirmed that the prior knowledge of experts 

was fully utilized by the model, outputting accurate, rational and reliable sample data. 

Moreover, the ELM algorithm enabled the intelligent extraction and rapid inference of sample 

data features. The prediction results are accurate, stable, and highly reliable, revealing that our 

model is a desirable tool for the real-time prediction of safety in mine rescue operations. The 

research findings provide new insights into the prediction of mine rescue safety. 
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1. INTRODUCTION

Mine thermal dynamic disaster (MTDD) refers to a dynamic 

disaster related to heat, such as fire and gas explosion in 

coalmine production [1]. As a typical coalmine disaster, the 

MTDD can easily develop into a serious, fuzzy and complex 

situation, leading to secondary disasters and rescue difficulties. 

If conditions are severe, the MTDD may cause casualties to 

the rescuers [2-4]. Therefore, the degree of rescue safety must 

be evaluated in the event of an MTDD, to protect rescuers from 

danger and prevent the disaster from expanding.  

By the weight of the evaluation index, the existing 

evaluation methods for safety degree can be divided into static 

evaluation and dynamic evaluation (a.k.a. variable weight 

assignment methods). The static evaluation is mainly achieved 

through subjective weight determination and objective weight 

determination [5-6]. The former can be realized by the 

following methods: the Delphi, analytic hierarchy process 

(AHP), finite state machine (FSM), capability maturity model 

(CMM), least-squares (LS) and chain-scoring methods [7-10], 

while the latter can be done through the entropy viscosity 

method (EVM), principal component analysis (PCA), gray 

correlation analysis, deviation and homogeneity method, 

vector similarity degree method and rough set theory [11-17].  

The traditional static evaluation methods are featured by the 

constancy of the weight of the evaluation index, that is, the 

weight of the pre-set evaluation factor does not change with 

the actual safety of the situation in the next iteration. Hence, 

the evaluation result may deviate from the actual situation [18]. 

Compared with static evaluation methods, the dynamic 

evaluation methods are developed recently to assign index 

weights. The index weights are obtained through network 

training by neural networks, wavelet analysis, limit learning 

machines, etc. These methods output fair and objective results 

that adapt to the dynamic and nonlinear features of the system, 

because variable weight assignment can overcome the limits 

of the traditional static evaluation methods, mitigate the 

subjectivity of expert evaluations, prevent the singularity 

effect of the data source (i.e. the subjective simplification of 

the model with respect to the entity). Thanks to the advantages 

of variable weight assignment, the dynamic evaluation 

methods offer a desirable solution to the evaluation of the 

degree of MTDD rescue safety, in which the situation does not 

follow a specific law or function, the boundaries are complex 

and unclear, and the risks are random, fuzzy and dynamically 

changing [18-19]. As a result, this paper introduces the 

variable weight assignment to develop a dynamic evaluation 

model for the degree of MTDD rescue safety. To ensure 

reliable and fast operation, the model was further optimized by 

neural network methods like the fuzzy AHP (FAHP) and the 

extreme learning machine (ELM). 

Neural networks are dynamic evaluation methods based on 

artificial intelligence. Despite the fruitful theoretical results 

and wide application, the traditional neural networks, such as 

back-propagation neural network (BPNN), radial basis 

function (RBF) neural network and support vector machine 

(SVM) can no longer satisfy the demand for fast recognition, 

owing to the growing scale, amount, uncertainty and 

dimensionality of the data for analysis [20]. Relying on the 

feedforward mechanism, the traditional neural networks 

consumes lots of time to adjust all parameters in training and 

requires repeated iterations to obtain the optimal solution. In 
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addition, the weights of network neurons in different layers 

interact with and depend on each other [21]. Facing large and 

medium scale datasets, the traditional neural network 

algorithms are supersaturated, not to mention the difficulty in 

determining the optimal number of hidden layer neurons. To 

solve the problem, Huang et al. [22] proposed a simple, 

reliable and fast algorithm called the ELM, which needs only 

one iteration, the input weights and hidden layer offsets of 

random neurons to obtain the output weight and complete the 

network training. This algorithm has been widely adopted for 

data classification, pattern recognition and function 

approximation [23]. 

In view of the above, this paper combines the FAHP and an 

improved ELM algorithm into an integrated prediction model 

to quantify the degree of MTDD rescue safety in a fast and 

accurate manner. Firstly, a static FAHP model was constructed 

by the Delphi, AHP, and fuzzy comprehensive evaluation 

(FCE). Based on expert knowledge and experience, this static 

model was used to assess various MTDD rescue cases, 

quantify the exact degree of rescue safety and provide sample 

data for real-time prediction based on artificial intelligence. 

Then, the improved ELM algorithm was introduced to design 

a dynamic prediction model for the safety of various MTDD 

rescue cases. The research findings shed new light on the 

prediction of the degree of mine rescue operations. 

 

 

2. THEORETICAL FRAMEWORK 

 

2.1 The FAHP model 

 

The development of the MTDD is highly nonlinear and 

fuzzy, forming a man-machine-environment management 

system of multiple factors and layers. The rescue safety of 

such a disaster should be evaluated comprehensively against 

multiple attributes, which cannot be realized by a single 

mathematical model. Hence, this paper creates the FAHP 

evaluation model based on the AHP and the FCE, aiming to 

produce a scientific and reliable sample data of the MTDD. 

The workflow of the FAHP model is illustrated in Figure 1 

below. 
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Figure 1. The workflow of the FAHP model 

 

The FAHP model can be implemented in the following steps. 

Step 1: Determining evaluation indices by the Delphi 

method 

The evaluation indices of MTDD rescue safety were 

determined by the Delphi method, which fully utilizes the 

knowledge and experience of experts. 

Step 2: Determining the index weight by the AHP 

The evaluation indices were allocated into a hierarchical 

structure by the AHP. Then, the indices on the same layer were 

subjected to pairwise comparisons, and their relative 

importance was determined against a 9-point scale. After that, 

the final weight of each index was calculated. 

Step 3: Determining the safety degree membership of the 

indices 

The evaluation indices for MTDD rescue safety are partially 

quantitative, and thus have a certain degree of fuzziness. 

Therefore, the Delphi method was introduced to set up a 

quantitative grading standard for each index, and determine 

the safety degree membership of each index [24]. The safety 

degree was divided into five levels, namely, strongly safe, 

moderately safe, generally safe, moderately dangerous and 

strongly dangerous. 

Step 4: Fuzzy comprehensive evaluation 

The index set U was split into S discontinuous subsets, 

denoted as U = {𝑈1, 𝑈2,∙∙∙, 𝑈𝑠} , by the importance of each 

index in 𝑈𝑘(𝑘 = 1,2,∙∙∙, 𝑠) , to identify the fuzzy vector of 

indices 𝐴𝑘(𝑎𝑘1, 𝑎𝑘2,∙∙∙, 𝑎𝑘𝑚) . For each 𝑈𝑘𝑖 , the membership 

degree 𝑟𝑖𝑗(𝑖 = 1,2,⋯ ,𝑚; 𝑗 = 1,2,⋯ , 𝑛)  of 𝑈𝑘𝑖  to 𝑉𝑖  was 

judged according to the comment set V = {𝑉1, 𝑉2,∙∙∙, 𝑉𝑚} , 

forming a single index evaluation matrix 𝑅�̃�. Then, we have 

 𝐵�̃� = 𝐴�̃�°𝑅�̃� = (𝑏𝑘1, 𝑏𝑘2, ⋯ , 𝑏𝑘𝑛)   (𝑘 = 1,2,⋯ , 𝑠). 

Considering the S subsets on U as S singletons on U, the 

weights that make up fuzzy vector  �̃� = (𝑎1, 𝑎2, ⋯ , 𝑎𝑠) was 

determined by the importance of each Uk in U. 

The result 𝐵�̃� = (𝑏𝑘1, 𝑏𝑘2,∙∙∙, 𝑏𝑘𝑚)(𝑘 = 1,2,⋯ , 𝑠) 

evaluated from Uk can be used to form a comprehensive single 

index evaluation matrix: 

 

�̃� =

[
 
 
 
�̃�1

�̃�2

⋮
�̃�𝑠 ]

 
 
 

= [

𝑏11 𝑏12 ⋯ 𝑏1𝑛

𝑏21 𝑏22 ⋯ 𝑏2𝑛

⋮    ⋮   ⋮   ⋮
𝑏𝑠1 𝑏𝑠2 ⋯ 𝑏𝑠𝑛

] 

where �̃� = �̃��̃� = �̃�

[
 
 
 
�̃�1

�̃�2

⋮
�̃�𝑠]

 
 
 

= �̃�

[
 
 
 
�̃�1�̃�1

�̃�2�̃�2

⋮
�̃�𝑠�̃�𝑠 ]

 
 
 

. The multi-layer 

comprehensive results can be obtained by the above method. 

 

2.2 ELM-based model 

 

(1) ELM algorithm 

The ELM is a neural network algorithm with a single hidden 

layer. The principle of the algorithm can be explained as (Yang, 

2013): For N distinct training samples (xi, ti), with 𝑥𝑖 =
[𝑥𝑖1, 𝑥𝑖2 , ⋯ , 𝑥𝑖𝑛]𝑇 ∈ 𝑅𝑛 , 𝑡𝑖 = [𝑡𝑖1, 𝑡𝑖2, ⋯ , 𝑡𝑖𝑚] ∈ 𝑅𝑚 and 
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i=1…N, there exists a random small positive number ε and an 

activation function g: R→R that is infinitely differentiable 

over any interval. Then, for any ai and bi randomly chosen 

from any interval of Rn and R, there exists a neural network 

with a single hidden layer of l hidden neurons and with a 

hidden layer output matrix H, which guarantees the validity of 

||Hβ-T||<ε (T=[t1,t2,…,tN]T). 

In the ELM algorithm, if g: R→R is infinitely differentiable, 

then ai and bi can take any value. In other words, aRn and 

bR can be fixed throughout the training without any 

adjustment. The value of β can be obtained by solving equation 

||Hβ-T||=0. In practice, however, distinct training samples 

often outnumber hidden neurons. In this case, the non-square 

matrix H may falsify Hβ=T. The smallest norm LS solution of 

β can obtained as: 

 

�̂� = 𝐻†𝑇𝑇 , 𝐻† = (𝐻𝑇𝐻)(−1)𝐻𝑇                                            (1) 

 

where H+ is the generalized Moore-Penrose inverse of matrix 

H [25]. Considering the requirements on MTDD rescue safety 

prediction, this paper adopts improved algorithm based on the 

incremental ELM to determine the optimal parameter values 

of hidden neurons. The structure and workflow of the 

improved ELM algorithm are presented in Figure 2 below. 
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Figure 2. The structure and workflow of the improved ELM algorithm 

 

The improved ELM calculates the parameter values of 

hidden neurons through the reverse transmission of the 

network residual, eliminating the need to search for relevant 

optimal parameters. In theory, the improved ELM requires two 

hidden neurons at most, that is, the network input error can be 

reduced to zero in two iterations. The simplified search 

process, coupled with the few number of iterations, greatly 

speed up the network training and save the training time [26]. 
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(2) ELM prediction model and workflow 
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Figure 3. The workflow of the ELM prediction model 

The ELM prediction model was set up as follows: the 

number input neurons is equal to the number of evaluation 

indices for MTDD safety; the inputs are the measured values 

corresponding to the indices; the output layer has only one 

neuron, which represents the safety degree; the remaining 

parameters were randomly assigned by the improved ELM. 

The workflow of the prediction model is described in Figure 3 

below. 

 

 

3. FAHP-BASED SAMPLE DATA ACQUISITION 

 

3.1 Evaluation index system 

 

In light of the features of MTDD rescue, an index system 

was created for evaluation of rescue safety according to the 

modern theories on accident cause, the Delphi and the AHP. 

The system consists of six primary indices and twenty 

secondary indices. The index system and quantification 

standard are shown in Table 1. The indices were quantified and 

ranked by the 5-segment method, and rated by industrial 

experts using the Delphi method [27]. 

 

Table 1. Index system and quantification standard 

 

First index Secondary index 
Quantitative assignment 

1 2 3 4 5 

Disaster 

location 

Disaster area 
Into the air 

Lane 
Return air lane 

Gob area 

/sealed fire 

zone 

Working 

surface 
Alleyway 

Angle of slope of roadway 

approach to disasters area /° 
[0,8) [8,25) [25,35) [35,45) ≧45 

Disasters may affect the 

probability of high-risk areas 
Smallest Smaller General Bigger Biggest 

Roadway near 

the disaster 

areas 

Roadway support mode Masonry Anchor spray 
Hydraulic 

monomer 

Steel 

support 
Wood support 

Support equipment integrity rate 

(reliability) /% 
[90,100) [80,90) [70,80) [60,70) [0,60) 

Surrounding rock properties 

stability 
Most stable More stable General Less stable Most unstable 

Difficulty degree of personnel 

accessibility approach to disaster 

area 

Easiest Easier General 
More 

difficult 
Hardest 

Retreat route exit number 3 1 1 0 3 

Roof fall cases 
Nothing 

serious 
Less serious General 

More 

serious 
The worst 

Roadway visibility Clearest Clearer General Less clear Most unclear 

Roadway 

temperature 

Affected area temperature /℃ [20,30) [30,40) [40,50) [50,55) ≥55 

Heating rate /(℃﹒min-1) [0,0.25) [0.25,0.5) [0.5,0.75) [0.75,1) ≥1 

Disaster area 

gas situation 

Gas concentration of 

disaster area /vol% 

Methane <5 <5 >16 [5~16] [5~16] 

Oxygen <12 >12 
arbitrary 

value 
<12 >12 

Mine gas classification Low gas -- High gas -- 
Gas-outburst 

mine 

Ventilation 

system 

conditions 

Structure intact ratio Best Good General Weak Worst 

Fan operation Best Good General Weak Worst 

Ventilation ratio of supply and 

demand / % 
≧95 [0.8,0.95) [0.65,0.8) [0.5,0.6) [0,0.6) 

Fire situation 

Fire source characteristics -- 
Instantaneous 

fire source 
-- -- 

Continuous 

fire source 

Possibility of electronic equipment 

explosion 
Impossible Less likely General 

More 

likely 
Possibly great 

Fire size and feature 
No smoke, no 

open flame 

Smoke, no open 

flame 
Open flame 

Larger 

open 

flame 

Uncontrolled 
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3.2 Safety classification 

 

As shown in Table 2, the safety degree was divided into five 

levels, namely, strongly safe, moderately safe, generally safe, 

moderately dangerous and strongly dangerous. Table 2 shows 

the classification standard.  

 

Table 2. Classification standard of safety degree 

 
Level 1 2 3 4 5 

Criteri

a range 
[1,1.8] (1.8,2.6] (2.6,3.4] (3.4,4.2] (4.2,5] 

Safety 
level 

Strongl
y safe 

Moderatel
y safe 

Generall
y safe 

Moderatel

y 

dangerous 

Strongly 

dangerou

s 

 

3.3 Sample data acquisition 

 

To verify the accuracy of our model, sixty sets of data on 

over twenty coal mine MTDD rescue cases were collected, 

including fires, gas explosions and thermal dynamic plant 

failures. The collected data can demonstrate disaster relief 

situation in a comprehensive manner, because the MTDDs 

differ greatly in gas content and outburst condition, and 

involve various areas (e.g. workface, driving head and closed 

fire zone). 

The case samples were processed under the established 

index system and the quantification standard, and the safety 

degrees of 60 samples were obtained through static FAHP 

evaluation. Since the sample data reflect the actual rescue 

situation in each case, the evaluation results were sufficiently 

reliable to serve as the ELM sample data for dynamic 

prediction. The prediction model was trained by 50 sets of data 

and tested by 10 sets, which were created by Guo (2016). 

 

 

4. SIMULATION OF ELM-BASED DYNAMIC 

PREDICTION 

 

4.1 MATLAB simulation 

 

The ELM-based dynamic prediction model has three layers, 

an input layer, a hidden layer and an output layer (Figure 4). 

 

 
 

Figure 4. Network structure of improved ELM 

 

The MTDD rescue safety evaluation system determines the 

safety degrees through comprehensive consideration of 21 

factors, yielding one final safety degree. To make the samples 

more realistic, methane and oxygen levels were regarded as 

two independent indices during the network training. 

Therefore, in the ELM dynamic prediction model, the number 

of input neurons n equals that of indices for rescue safety 

evaluation (i.e. n=21), the number of hidden neurons needs no 

pre-setting, while the number of output neurons was set to 1. 

The output of the neuron is the safety degree of the rescue 

operation. Taking the sigmoid function as the transfer 

activation function, the other parameters in the network need 

no pre-setting, as they can be automatically calculated by the 

function. 

The proposed model was trained and simulated on Matlab 

R2015a. The prediction accuracy and generalization ability 

were measured by the test accuracy (TA) and the root mean 

square root (RMSE) below: 

 

𝑇𝐴 =
∑ 𝑥𝑖

𝑚
𝑖=1

𝑁×𝑚
                      (2) 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−𝑡𝑖)

2𝑁
𝑖=1

𝑁
                 (3) 

 

where 𝑥𝑖 is the number of samples correctly predicted in the i-

th test (i = 1, 2, 3, ..., mR; m is the total number of tests); N 

is the number of test samples; 𝑦𝑖  is the i-th sample (i = 1, 2, 

3, ... NR); 𝑡𝑖  is the expected output of the i-th sample 

network (i = 1, 2, 3, ... NR). 

 

4.2 Analysis of simulation results 

 

The number of hidden neurons changed throughout the 

network training, for their parameters are randomly assigned. 

To verify the reliability of the prediction results, the evaluation 

tests were divided into 10 groups, each of which has 10 

consecutive tests. The mean value of each group was taken as 

the final output. The test results are presented in Figures 5~7 

below. Among them, Figure 5 compares the mean values of 

the ten groups with the real values, Figure 6 provides the 

RMSE of each test group, and Figure 7 compares the predicted 

values of the ten groups with the real values. 

The simulation results show that only 3 out of the 100 tests 

failed to yield a safety degree consistent with the true value, 

putting the prediction accuracy at 97%. The safety degree of 

individual samples was not predicted correctly in network 

training evaluation, but the mean value was very close to the 

true value. Hence, several sets of network trainings should be 

combined and their results be averaged as the result in actual 

prediction tasks. The simulation proves the good stability and 

generalization ability of the proposed model in the prediction 

of MTDD rescue safety. 
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Figure 5. Comparison between the mean values of the ten 

groups and the real values 
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Figure 6. The RMSE of each test group 
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Figure 7. Comparison between the predicted values of the ten groups and the real values 

 

 

5. CONCLUSION AND DISCUSSIONS 

 

For accurate evaluation of the degree of MTDD rescue, this 

paper establishes a static FAHP comprehensive evaluation 

model based on the AHP and the FCE, and employs it to 

provide quantitative and reliable rescue sample data for the 

ELM-based prediction. After that, the improved ELM 

algorithm was introduced to set up a dynamic ELM-based 

prediction model. The simulation results show that the 

prediction model can predict the MTDD rescue safety in an 

accuracy and stable manner.  

The ELM algorithm, a neural network with a single hidden 

layer, overcomes the supersaturation and the difficulty in 

determining the optimal number of hidden neurons, which are 

common problems of traditional feedforward neural network 

algorithms. This algorithm can change the neural network 

parameters dynamically, extract the intrinsic relationships and 

regularity of sample data rapidly and effectively, and adapt to 

the dynamic changes in the features of MTDDs. These unique 

attributes guarantee the prediction accuracy, reliability and 

applicability of our model. 

 

Of course, our model still has some limitations. For example, 

the model can characterize the changes in MTDDs excellently 

and capture the variation in the importance of all indices, but 

cannot track the dynamic changes in a disaster over time. Thus, 

the accuracy and applicability of our dynamic prediction 

model will be further improved in future research. 
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