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In this evaluation, a numerical exploration is inscribed on MHD unsteady heat and mass 

transfer of Casson nanofluid flow where variable thermal conductivity, radiation and heat 

absorption are counterfeited. The model is implemented for the nanofluid which annexes the 

impression of thermophoresis and Brownian motion. The governing models are 

metamorphosed as a dimensionless silhouette by the renovation rule of mathematics and the 

procured dimensionless couple of partial differential equations (PDEs) are elucidated by 

utilizing explicit finite difference method (EFDM). The numerical aggregates are enumerated 

for the miscellaneous dimensionless parameters on velocity, temperature and concentration 

profiles along with the skin friction, Nusselt number and Sherwood number with distinct time 

interims. ForTran programing language is manipulated as the predominated software for 

executing the numerical values. Also, by wielding the initial boundary conditions U=T=C=0, 

X=0.83 and Y=0.50 for =0.0005, convergence criteria are exhibited with Sc 0.18 and 

Le0.20. At the end, the prevailed culminations are illustrated and perused after the stability 

convergence test (SCT) by manoeuvring graphics software tecplot-9 and streamlines and 

isotherms are delineated.  

Keywords: 

Casson nanofluid, EFDM, radiation, 

chemical reaction, MHD, porous medium 

1. INTRODUCTION

Casson fluid is a non-Newtonian shear thinning fluid 

appending with infinite viscosity at zero shear rates. Pragmatic 

implementations of Casson fluid comprise in the sector of 

petroleum drilling, polymer engineering, certain separation 

processes, manufacturing of foods and paper. In addition, 

biological, chemical, medical and engineering applications are 

vitally pivotal affiliated to the Casson fluid. Distinct 

inquisitors have implemented their fact-finding pursuit in this 

direction enlightening the consequences of numerous 

parameters on the flow of the Casson fluid. Unsteady Casson 

nanofluid flow over a stretching sheet have been appraised by 

Oyelakin et al. [1]. Kataria and Patel [2] have scrutinized the 

Soret and heat generation sequels on MHD Casson fluid flow. 

The repercussions on magnetic field in squeezing flow of a 

Casson fluid have been probed by Ahmed et al. [3]. 

Furthermore, Mahanta et al. [4] perused the 3D Casson fluid 

flow. In very recent time, Afikuzzaman et al. [5]; Biswas et al. 

[6]; Afikuzzaman et al. [7] and Wahiduzzaman et al. [8] have 

numerically evaluated unsteady MHD Casson fluid flow. Also, 

Casson nanofluid has been contemplated by abundant 

scrutinisers such as: Biswas et al. [9]; Khalid et al. [10]; Ali et 

al. [11] and Ghadikolaei et al. [12]. 

A nanofluid is a fluid, mingle with nanometer-sized 

particles typically made of metals, oxides and carbides. In 

1995, the abstraction of nanofluids has been initiated by Chai 

et al. [13], where the breach of nanaparticles in a common base 

fluids include water, ethylene glycol and oil has proffered. 

Nanofluids have some substantial properties that assemble 

them potentially convenient in many exertions in heat transfer, 

including microelectronics, fuel cells, and pharmaceutical 

processes. Ganga et al. [14] delineated the MHD flow of 

Boungiorno model nanofluid over a vertical plate. In addition, 

optimal interpretation of nonlinear heat and mass transfer in a 

two-layer flow with nano-Eyring–Powell fluid was assembled 

by Khan et al. [15]. Denouements of magnetic field and 

radiation absorption on mixed convective Jeffrey nanofluid 

flow have been dispatched by Biswas et al. [16]. Explicit 

numerical study of unsteady hydromagnetic mixed convective 

nanofluid flow elaborated by Beg et al. [17]. Heat transfer of 

MHD nanofluid in disparate view have been propounded by 

multifarious assessors analogous as Dogonchi et al. [18]; 

Dogonchi et al. [19]; Ahmmed et al. [20]; Leekea et al. [21]; 

Uddin et al. [22]; Bilal et al. [23] and Arani et al. [24].  

In the past several decades, the evaluation of magneto-

hydrodynamic (MHD) mass transfer flow has procured 

apocalyptic to profuse scholar’s due to its diverse industrial 

applications such as the cooling of reactors, power generators, 

electrostatic precipitation, polymer technology petroleum 

industry, aerodynamics heating, petroleum industry, the 

operations of MHD accelerators, fluid droplets sprays, 

agriculture, geophysics, metrology, petro-chemical industry 

and so on.   Heat and mass transfer sequels on MHD natural 

convective flow was implemented by Murthy et al. [25]. Das 

et al. [26] have instigated magnetohydrodynamic mixed 

convective slip flow. Convective heat transfer and MHD 

viscoelastic nanofluid flow has been actuated by Shit et al. [27]. 

In contemporary epoch, MHD has become a great fact-finding 

argument of computational fluid dynamics (CFD) which 

contrived by multitudinous scientists commensurate as 

Ibrahim [28]; Rani and Kim [29]; Animasaun and Oyem [30] 
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and Lavanya and Ratnam [31].  

Homogeneous to MHD deportment, chemical reaction is a 

stratagem that assists to the transformation of one set of 

chemical substances to another at a fixed temperature and 

concentration. Heat and mass transfer on MHD mixed 

convection axisymmetric chemically reactive flow of Maxwell 

fluid flow was evoked by Khan et al. [32]. Also, Tripathy et al. 

[33] have illustrated the chemical reaction effect. Here, 

authors have renovated their governing equations into a two-

point boundary value predicament manipulating similarity 

variables and then elucidated numerically by forth order 

Runge-Kutta method with shooting modus operandi.   

Electromagnetic radiation has anonymous conventional 

characteristics depending on the frequency and wavelengths of 

the radiation simulates a vital role in industrial and 

technological areas such as various space vehicles, satellites, 

missiles, aircraft, gas turbines and nuclear reactors. Das et al. 

[34] perused Hall denouements with radiative heat transfer 

past a porous plate. They disentangled their governing 

equations by wielding fourth order Runge-Kutta- Fehlberg 

method with the shooting technique. Thermal radiation 

culmination was elaborated by Dogonchi by et al. [35]. In 

addition, combined electrical MHD heat transfer with 

radiative and viscous dissipation out-turns have been unveiled 

by Hsiao [36]; Biswas et al. [37]; Ahmmed et al. [38] and 

Biswas et al. [39].   

The intention of the contemporaneous interpretation is to 

evaluate the sequels of MHD unsteady heat and mass transfer 

of Casson nanofluid flow past an exponentially accelerated 

plate. The consecutive Casson nanofluid model is reassessed 

to affix the consequence of thermophoresis and Brownian 

motion. We have pivoted the culminations of heterogeneous 

parameters such as of Casson parameter, permeability of 

porous medium, radiation parameter, Lewis number, 

thermophoresis parameter, Brownian motion parameter, Soret 

number, magnetic parameter, Schmidt number, Prandtl 

number, Heat source parameter, chemical reaction parameter, 

Grashof number and modified Grashof number. Furthermore, 

we have evaluated the thermal and momentum boundary layer 

thickness with isotherms and streamlines analysis. Finally, the 

present outcomes have been analogized with the foregoing 

ramifications. 

 

 

2. MATHEMATICAL ANALYSIS 

 

The unsteady two dimensional free convection Casson 

nanofluid flow of an electrically conducting viscous 

incompressible fluid through a vertical porous permeable plate 

in the manifestation of thermal radiation, thermal diffusion and 

chemical reaction are enumerated with the x-axis is 

contemplated along the plate in the precipitously up sloping 

orientation and the y-axis is stipulated normal to the plate. A 

uniform magnetic field strength B0 is implemented across to 

the flow direction. It is appraised that the temperature of the 

wall is Tw and concentration at the plate is Cw at initially which 

are constant but at time t>0. The plate is precipitated 

exponentially with a velocity u=U0 exp(a t́) in its own plane 

and the temperature and concentration level of the plate are 

elevated exponentially to Tw (=T ) and Cw (=C ) respectively 

with time t. The physical configuration and coordinate system 

of this present model is unveiled in Figure 1. 

 

 
 

Figure 1. Physical configuration 

 

According to Oyelakin et al. [1] and Biswas et al. [9], the 

rheological equation of Casson fluid flow has been 

contemplated as: 
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where, ij is the component of stress tension, π is the product 

of the component of deformation rate with itself, eij is (i, j)th 

component of the deformation rate, πc is critical value based 

on the non-Newtonian model and Py is comprehended as yield 

stress of the fluid which is verbalized as: 

 

𝑃𝑦 =
𝜇𝑏√2𝜋
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where, b = plastic dynamic viscosity of Non-Newtonian fluid. 

In a case of Casson fluid flow, where
c  , therefore 
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Under these speculations, the pivotal dimensional 

governing equations with boundary conditions can be asserted 

as: 
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The corresponding boundary conditions are: 
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where,  =́(c)p/(c)f is the ratio of the heat capacity of the 

nanoparticle material and the heat capacity of the fluid. The 

dimensionless governing equations have been solicited by 

appertaining the subsequent dimensionless parameters and 

variables 
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Therefore, the dimensionless equations are: 
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The boundary conditions can be elicited as: 
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The skin friction coefficient, Nusselt number and Sherwood 

number are evolved as:  
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The stream function (X,Y) with the velocity components 

are devised as: 
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3. CALCULATION TECHNIQUE 

 

An explicit finite difference scheme has been reconnoitred 

for deciphering the equations 14-17, because of that a 

rectangular region is ascertained where X- axis is pondered 

along the plate and Y-axis is normal to the plate. Here, plate 

of height is Xmax(=125) and Ymax(=125). Also, grid spacing are 

esteemed m=150 and n=300 which are spectacled in Figure 

1(a). 

 

 
 

Figure 1(a). The finite difference space grid 

 

The constant mash size is wangled 𝛥𝑋 = 0.83(0 ≤ 𝑥 ≤
125); 𝛥𝑌 = 0.50(0 ≤ 𝑦 ≤ 125) with the smaller time-step, 

=0.0005. Now,  
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The intermeddle boundary periphery in explicit form as: 
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Here i and j designate to the mesh points with X and Y 

coordinate respectively and the superscripts n connote a value 

of time, =n where, n=0, 1, 2 …. 

 

 

4. STABILITY AND CONVERGENCE ANALYSIS 

 

The exploration persists deficient without the stability and 

convergence test (SCT) as long as the finite difference scheme 

has been exerted. For the explicit mesh sizes, the stability 

criteria of the scheme has been actuated as follows: 
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By cast away the above values the following palliation 

equations are erected as: 
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+ +   

   
  

i X i YDe e −                                                                       (23) 

 

The overhead equations are revealed as 

 

1 2 3A A A A C A D = + +  (24) 

 

4C A C =  (25) 

 

5 6D A D A C = +  (26) 

 

where, 

 

1 2

1 2
1 1 (cos 1)

( )
A Y U

XY

 




   
= + +  − − 

 
  

(1 ) ( 1)i X i Ye V e
Y

 −  
− − −


  

1
1 Kp M 



 
− +  −  
 

  

2A Gr =  ; 3A Gm =    
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4 2

1 4 2
1 1 (cos 1)

Pr 3 ( )
A Ra Y

Y




 
= + +  − 

 
  

(1 ) ( 1)i X i YU e V e S
X Y

  
−   

− − − − + 
 

  

2

1 2
(cos 1)

Pr ( )1
Y

YC

 




 
+  − 

+ 
  

(1 ) ( 1)i X i YU e V e
X Y

  −   
− − − −

 
  

S +    

5 2

1 1 2
1 (cos 1)

( )
A Y

Sc Le Y




 
= + +  − 

 
  

(1 ) ( 1)i X i YU e V e
X Y

  
 −   

− − − − − 
 

  

6 2

2
(cos 1)

( )

Nt
A Sr Y

NbLe Y




 
= +  − 

 
  

 

Therefore the matrix form is: 

 

1 2 3

4

6 5

0 0

0

A A A A A

C A B

D A A C

     
      =
     
          

                                                (27) 

 

Therefore, T  =  where: 𝜂′ = [
𝐴′

𝐶 ′

𝐷′

] ;    

 

1 2 3

4

6 5

0 0 ;

0

A A A

T A

A A

 
  =
 
  

    

A

B

C



 
 

=
 
  

 

 

This is a fourth order square matrix. So, it is very hard to 

find out the eigenvalues and  is very compact in EFDM, i.e. 

→0. Under this appraisal, A2→0, A3→0 and A6→0. 

 

Therefore, 

1

4

5

0 0

0 0 ;

0 0

A

T A

A

 
  =
 
  

                                        (28) 

 

Therefore the eigenvalues are retrieved as 1=A1, 2=A4 and 

3=A5 such that 
1 4 51 1and 1A A A   and convinced 

admissible values are A1= -1, A4= -1 and A5= -1.   

So, the stability conditions are: 

 

(1 +
1

𝛽
)

2𝛥𝜏

(𝛥𝑌)2
+

𝑀𝛥𝜏

2
+ 𝑈

𝛥𝜏

𝛥𝑋
+ |−𝑉|

𝛥𝜏

𝛥𝑌
+  

1
1 1

2

Kp 



  
+  

 
                                                  (29) 

2

2

1 4 2 1
1

Pr 3 Pr( )
Ra Nt

YY

      
+ + +    

    
  

1
2

S
U V

X Y

    
+ + − − 

 
                                    (30) 

 

2

1 1 2
1

2( )
U V

Sc Le X YY

        
+ + + + −  

  
        (31) 

 

Exploiting basic agreement, U=V=T=C=0 at =0 the 

convergence criteria of the existent problem are retrieved as 

Sc0.18 and Le0.20. 

 

 

5. RESULTS AND DISCUSSION 

 

The numerical computations have been manipulated for the 

disparate values of miscellaneous parameters by an explicit 

finite difference method (EFDM) for the aspiration of 

scrutinizing the upshots of the contemporary work. The 

physical stipulation of the contemporaneous model such that 

velocity, temperature, concentration, skin friction coefficient, 

Nusselt number, Sherwood number, streamlines and isotherms 

lines has been procured for distinct parameters which are 

indicated in Figures 2 to 23. In order to prevail the numerical 

results, the succeeding values of default parameter are deputed 

as: M=1.0, Pr=0.71, Sc=0.22, Ra=0.50, =0.40, S=0.1, 

Nb=0.5, Nt =0.8, Le=2.5, Sr=1, Gm=5, =2, Gr=10, Kp=1.0, 

and =0.50 with time =10. These values are critiqued as 

homogeneous throughout the present study in respective 

figures. 

 

 
 

Figure 2. The illustration of  on U 

 

 
 

Figure 3. The illustration of Kp on U 

 

The impression of separate values of  and Kp on velocity 

are elucidated in Figure 2 and Figure 3, respectively. It is 
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proclaimed that velocity are economized 13.84 %, 9.01 %, 

20.8 %, and 19.92 % by =0.40 to =0.80, =0.80 to =1.00, 

=1.00 to =1.50 and =1.50 to =2.00 at Y=0.4556. 

Physically, by elaborating the values of  which remises the 

yield stress suppresses in the fluid velocity. Also, velocity is 

extenuation due to the prolongation of Kp which ensues in 

Figure 3. Naturally, permeability of porous medium which 

propagated a resistive force in the fluid. The numerical 

evolution of isolated parameters of U are flaunted in the Table 

1 and Figures 2-3. 

 

Table 1. Delineates the curve to curve fluid velocity 

(Figures. 2, 3) at Y= 0.4556 and =10 

 

Values of 

Parameter 

Numerical 

Value 

Increase/Decrease in 

(%) 

=0.40 0.13561 Initial position 

=0.80 0.11684 13.84% decrease 

=1.00 0.10632 9.01% decrease 

=1.50 0.08413 20.87% decrease 

=2.00 0.06737 19.92% decrease 

Kp =1.00 0.13561 Initial position 

Kp =1.50 0.10002 26.24% decrease 

Kp =2.00 0.07755 22.47% decrease 

Kp =2.50 0.06311 18.62% decrease 

Kp =3.50 0.04589 27.29% decrease 

 

 
 

Figure 4. The illustration of Pr T  

 

The impression of Pr, Nb, Ra and S on temperature 

schemes are found in the Figures 4-7. It is worth mentioned 

that temperature allocations are collapsed due to the 

enhancement of Pr. Instinctively, high Prandtl number have 

higher viscosity, which constricted the thermal boundary 

layer depth. Also, the temperature delineations are 

retrenched considerable with the accrual of Nb because it 

innovate an unbridled motions in the fluid. Here, 

temperature depictions are protracted as 35.46 %, 16.02 %, 

9.84 %, and 7.06 % for Ra=0.50 to Ra=1.00, Ra=1.00 to 

Ra=1.50, Ra=1.50 to Ra=2.00 and Ra=2.00 to Ra=2.50 

because the thermal boundary layer thickness are 

prosecuted due to completion of Ra. Further, temperature 

disbursements are surged due to augmentation of S. The 

preeminent vindication behind this upshot is that the heat 

absorption invokes a drop in the kinetic energy as well as 

thermal energy of the fluid. The numerical disposition of 

relative parameters are evinced in the Table 2 and Figures 

4-7. 

 
 

Figure 5. The illustration of Nt on T  

 

 
 

Figure 6. The illustration of Ra on T  

 

 
 

Figure 7. The illustration of S on T  

 

The denouements of , Sc, Le and Nb on concentration 

propagations are eliciting in Figures 8-11. By the offshoot of 

chemical reaction, concentration is alleviated because the 

positive values of chemical reaction parameter ( > 0) presages 

the sequels of destructive chemical reaction on the 

concentration field. It is fact that, Sc and Le constricts the 

concentration. It is true by physically that Schmidt number 
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aggrandizes the density of the fluid as well as concentration 

buoyancy force in the fluid. Also, from Figure 11, we 

perceived that concentration disposals abridge to the 

amplifications of Nb which leads the concentration allocation. 

Physically, it is intimated that Nt elongates the nanoparticle 

diffusion. The numerical values of these are dispensed in the 

Table 3 and Figures 8-11. 

The Figures 12 to 17 epitomize the repercussions of , Ra, 

Gr and Pr on skin friction coefficient (Cf), Nusselt number (Nu) 

and Sherwood number(Sh) for Casson nanofluid. It is devised 

that, Cf protracts with the accession of  and  which is 

disported in Figure 12 and Figure 13 respectively. Physically, 

skin friction is aggrandized the rate of velocity of the fluid 

flow. On the other hand the Nusselt number is a decay function 

of Ra and Gr but proliferation function of Pr. Generally, 

convective heat transfer distends with the quadrupling of 

Nusselt number. Also it is articulated from Figure 17 that, the 

Sherwood number prolongs with the retrenchment of Grashof 

number (Gr). 

 

Table 2. Incarnates the curve to curve fluid temperature 

(Figures 4-7) at Y= 4.18060 and =10.0 

 
Values of 

Parameter 

Numerical 

Value 

Increase/Decrease in 

(%) 

Pr=0.63 0.11834 Initial position 

Pr =1.00 0.10988 7.14% decrease 

Pr =1.38 0.09093 17.24% decrease 

Pr =7.00 0.05362 41.03% decrease 

Pr =11.62 0.05030 6.19% decrease 

Ra=0.50 0.11834 Initial position 

Ra =1.00 0.18336 35.46% increase 

Ra =1.50 0.21834 16.02% increase 

Ra =2.00 0.24216 9.84% increase 

Ra =2.50 0.26056 7.06% increase 

Nb=0.50 0.11834 Initial position 

Nb=1.00 0.13127 9.85% increase 

Nb=1.50 0.16192 18.93% increase 

Nb=2.00 0.19097 15.31% increase 

Nb=2.50 0.21830 12.52% increase 

S=0.10 0.11834 Initial position 

S=0.50 0.16319 27.48% increase 

S=1.00 0.24429 33.19% increase 

S=1.50 0.36841 33.79% increase 

S=2.00 0.56075 34.33% increase 

 

 
 

Figure 8. The illustration of  on C  

 

 
 

Figure 9. The illustration of Sc on C  

 

 
 

Figure 10. The illustration of Le on C  

 

 
 

Figure 11. The illustration of Nt on C  

 

Table 3. Emblematizes the curve to curve fluid concentration 

(Figures 8-11) at Y= 4.18060 and =10.0 

 
Values of 

parameter 

Numerical 

value 

Increase/decrease in 

(%) 

=0.50 0.24736 Initial position 

=1.00 0.19056 22.96% decrease 

=1.50 0.14917 21.72% decrease 
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=2.00 0.11864 20.47% decrease 

=2.50 0.09583 19.22% decrease 

Le=2.50 0.24736 Initial position 

Le=3.50 0.23075 6.71% decrease 

Le=4.50 0.22136 4.06% decrease 

Le=5.50 0.21532 2.73% decrease 

Le=6.50 0.21111 1.96% decrease 

Sc=0.22 0.24736 Initial position 

Sc=0.30 0.20128 33.97% decrease 

Sc=0.78 0.11386 18.62% decrease 

Sc=0.95 0.10479 43.43% decrease 

Sc=5.00 0.07891 24.79% decrease 

Nb=0.80 0.24736 Initial position 

Nb=1.00 0.20355 17.71% decrease 

Nb=1.80 0.19804 2.71% decrease 

Nb=2.00 0.18124 8.48% decrease 

Nb=2.50 0.15329 15.82% decrease 

 

 
 

Figure 12. Skin friction for different values of   

 

 
 

Figure 13. Skin friction for different values of   

 
 

Figure 14. Nusselt number for different values of Gr 

 

 
 

Figure 15. Nusselt number for different values of Pr 

 

 
 

Figure 16. Nusselt number for different values of Ra 
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Figure 17. Sherwood number for different values of Gr 

 

 
Figure 18. Illustration of Streamlines for Ra=0.50 and 

Ra=1.50 

 
Figure 19. Illustration of Isotherms for Ra=0.50 and 

Ra=1.50 

 

The dimensionless equations are unravelled numerically 

by EFDM such that, X and Y axis are dimensionless which 

depicts the mash point. Also, the stream and isotherms 

curves are disported in the above prominent Figures. Here, 

legend values of stream and isotherms insinuate the 

contours levels. Furthermore, streamlines dispensations can 

be utilized to meliorate the visualization of fluid fields. The 

boundary layer system of change can be proclaimed by an 

isotherm, where the temperature endures constant (T=0). 

An isotherm at 0 ℃ is denominated the freezing level. The 

denouement of radiation parameter (Ra) on streamlines and 

isotherms are construed in Figure 18 and Figure 19. The 

momentum boundary layer and thermal boundary layer 

inflate due to the escalation of Ra. Also, Figure 19 evinces 

the thermal direction of fluid with the comportment of two 

distinct thermal radiation parameters. The isotherms plot of 

the momentum boundary layer thickness with the poise of 

Nb where the green dashed flood lines is for Nb=0.50 and 

Nb=2.50 is trumped in Figure 20. Figure 21 struts the 

contour flood view for thermal Brownian motion parameter 

difference. The legend values of Figure 21 are given in the 

contours levels. Here we perceived that the thermal and 

momentum boundary layer thickness is augmented due to 

addendum of Nb. 

 
Figure 20. Illustration of Streamlines for Nb=0.50 and 

Nb=2.50 

 

 
 

Figure 21. Illustration of Isotherms for Nb=0.50 and 

Nb=2.50 
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Figure 22. Illustration of Streamlines for Nt=0.80 and 

Nt=1.30 

 
Figure 23. Illustration of Isotherms for Nt=0.80 and 

Nt=1.30 

 

The momentum and thermal direction of fluid (thermal 

boundary layer thickness) with divergent Nt are flaunted in the 

Figure 22 and 23. Figure 22 divulges the contour flood view 

of momentum boundary layer and Figure 23 imparts the 

thermal boundary layer thickness with legend values which are 

the contours levels. In this apprehension we have discerned 

that the momentum boundary layer thickness is escalating but 

thermal boundary layer is abbreviating due to the propagation 

of Nt. 

 

 

6. CONCLUSION 

 

In this disquisition, the unsteady MHD heat and mass 

transfer of Casson nanofluid flow in the appearance of variable 

thermal conductivity, heat absorption and thermal radiation 

has been propounded. The predicament is evaluated under the 

influence of strong cross field and consideration has been 

endorsed to those pragmatic fluids which are altered as liquid 

metals. The governing model equations are elucidated by 

utilizing explicit finite difference method (EFDM) and the 

numerical results are enumerated for the divergent 

dimensionless parameters. In this observation the Casson 

parameter and permeability of porous medium abates the 

velocity profiles. The Nusselt number is plunged by radiation 

parameter and Grashof number but accumulated by Prandtl 

number. Also, the skin friction coefficient proliferates with the 

inflation of Casson parameter and chemical reaction parameter. 

Further, Brownian motion parameter (Nb), chemical reaction 

(), Schmidt number (Sc) and Lewis number (Le) wanes the 

concentration profiles. But, Brownian motion parameter (Nb) 

which elevates the temperature profiles. Furthermore, 

temperature depictions are aggravating due to the 

amplification of heat source parameter and radiation parameter 

but dwindling due to the amelioration of Prandtl number. 

 

Table 4. The previous results by Ghadikolaei et al. [12] 

 
Previous Results by Ghadikolaei et al. [12] 

Increased 

Parameters 

 

U 

 

�̅� 

 

𝐂 

Skin 

fri. 

Nusl. 

Num. 

Sher. 

Num. 

Gr     Inc  

Nb  Inc Dec    

 Dec Inc Inc    

S  Inc  Inc   

R  Inc   Inc  

   Dec   Inc 

Pr  Dec     

Le   Dec    

 

Table 5. Comparison of the accuracy of the present results 

with the previous results by Ghadikolaei et al. [12] 

 
Previous Results by Ghadikolaei et al. [12] 

Increased 

Parameters 

 

U 

 

�̅� 

 

𝐂 

Skin 

fri. 

Nusl. 

Num. 

Sher. 

Num. 

Gr       

Nb  Inc Dec    

 Dec      

S  Inc  Inc   

R  Inc   Dec  

   Dec    

Pr  Dec     

Le   Dec    

 

Comparison of the accuracy of the present results with the 

previous results by Ghadikolaei et al. [12] are impersonated in 

the above Table 4. Here, it is permitted that, all values are same 

without just only one result is isolated with the works of 

Ghadikolaei et al. [12]. In this present disquisition, Nusselt 

number is dwindled by radiation parameter but opposite with 

the work of Ghadikolaei et al. [12]. 
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NOMENCLATURE 

 

x,y Cartesian coordinates (m) 

u,v Velocity components (m/s) 

 Chemical reaction parameter (-) 

U Dimensionless primary velocity (m/s) 

Sc Schmidt number (-) 

Nu Nusselt number (-) 

S Heat source parameter (-) 

Cf Skin friction (-) 

 Fluid density (kg/m3) 

 Kinematic viscosity (m2s-1) 

Tm Mean fluid temperature (K) 

Cs Concentration susceptibility (J/kg·K) 

Sh Sherwood number (-) 

T  Dimensionless fluid temperature (K) 

Nt Thermophoresis parameter (-) 

 Thermal conductivity variation parameter (-) 

g Acceleration due to gravity (ms-2) 

M Magnetic parameter (Wbm-2) 

T Thermal expansion coefficient (-) 

Pr Prandlt number (-) 

Gr Grashof number (-) 

Gm Modified Grashof number (-) 

Kp Permeability of porous medium (-) 

 Casson parameter (-) 

Sr Soret number (-) 

T Temperature of fluid (K) 

k Thermal conductivity (W/m·K) 

Cp Specific heat at constant pressure (J/m3·K) 

c Concentration expansion coefficient (-) 

C  Dimensionless fluid concentration (-) 

Le Lewis number (-) 

Nb Brownian motion parameter (-) 

Dm Molecular diffusivity of the species 

concentration (-) 

σ Stefan-Boltzmann constant (W/m2 K4) 
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