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 The numerical analysis for transfer of heat by natural convection on an unsteady 

Magnetohydrodynamic flow of non-Newtonian fluids through porous channel is considered. 

Equations governing the model are formulated, simplified and non-dimensionalised. The 

solution is obtained by employing Crank Nicolson’s type of finite difference discritization. 

Velocity as well as the temperature distributions for both Prandtl-Eyring and Eyring-Powell 

non-Newtonian fluid models are examined. Comparism between these two diverse liquid 

models is made with their graphical illustrations on velocity and temperature profiles. It is 

observed that the velocity is higher for Prandtl Eyring model than Eyring Powell model. Also, 

the temperature variation for Prandtl number in Eyring-Powell fluid is a little slower than that 

of Prandtl-Eyring fluid. 
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1. INTRODUCTION 

 

Fluid can be regarded as a material in nature that deforms 

continually under applied shear stress. Non-Newtonian fluids 

are fluids that do not obey the Newtonian relationship between 

the shear stress and shear rate. High molecular weight liquids, 

which include polymer melts and solutions of polymers, such 

as liquids in which fine particles are suspended like slurries, 

pastes, gels, polymer solutions are usually referred to as non-

Newtonian fluids. 

These non-Newtonian fluids have non-linear relationship 

between shear stress and shear strain. 

Several models with different rheological features have 

been established to describe the non-linear relationship 

between shear stress and shear strain. Examples of these 

models are Power-law model, Williamson model, Eyring-

Powell model, Prandtl-Eyring model, Prandtl model, and so on 

Some researchers distant themselves  from the study of non-

Newtonian fluids because of the complexity of these models. 

The few that find it easy prefer to use Power-law model 

because of its simple rheological features over a limited 

shearing rate. An advantage of Eyring-Powell model over 

Power-law model is that it accurately lessens to Newtonian 

behaviour for low and high shear rate. 

Also, Prandtl-Eyring model is of great importance in the 

manufacturing industries in the formulation of flow for 

ethylene glycol and powdered graphite.  

Timol and Kalthia [1] worked on the natural convection 

flows of all kinds of non-Newtonian visco inelastic fluids 

using systematic similarity analysis. Eldabe et al. [2] studied 

the one directional flow of non-Newtonian Powell-Eyring 

fluid with coupled stresses through parallel plates. Zueco and 

Beg [3] considered a pulsatile flow of Powell-Eyring fluid. 

Asmat et al. [4] studied radiation effects on boundary layer 

flow of a non-Newtonian Eyring-Powell fluid over a sheet that 

is exponentially shrinking.  

Using an Eyring-Powell fluid model, Malik et al. [5] studied 

boundary layer flow due to a stretching cylinder with variable 

viscosity. On the radiation effects affecting the flow of Powell-

Eyring fluid, Tasawar et al. [6] examined the non-Newtonian 

fluid past an unsteady inclined stretching sheet having non-

uniform heat source and sink.  

Also, numerical studies was carried out by Khader and 

Megahed [7] to study the heat transfer from an unsteady 

Powell-Eyring fluid with a stretching sheet over a thin film.  

Arifuzzaman et al. [8] investigated a Chemically reactive 

viscoelastic fluid flowing in presence of nano particle through 

porous stretching sheet. Khan et al. [9] studied thermal 

radiation and viscous dissipation effects on an unsteady 

magnetohydrodynamic free convection boundary-layer flow 

of a nanofluid along a stretching sheet. Cross Diffusion and 

magnetohydrodynamic effect on a high order chemically 

reactive micropolar fluid of naturally convective heat and 

mass transfer through an Infinite vertical porous medium with 

a Constant Heat Sink was considered by Arifuzzaman et al. 

[10]. MHD Maxwell fluid flow in presence of nano-particle 

through a vertical porous–plate with heat- generation, 

radiation absorption and chemical reaction was examined by 

Arifuzzaman et al. [11]. 

Zaman et al. [12] investigated an unsteady incompressible 

couette flow of Powell-Eyring non-Newtonian fluid under a 

uniform suction and injection. For an unsteady MHD Non-

Newtonian fluid having slip conditions in a porous medium, 

Gbadeyan and Dada [13] investigated the transfer of heat and 

radiation in the fluid. Adesanya and Gbadeyan [14] studied 

visco-elastic fluid flow having slip conditions in a planer 

medium using adomian decomposition method. Ahmed and 

Imen [15] examined the effect of variable thermal 

conductivity/refractive index on an analysis of conduction-

radiation heat transfer by applying Lattice Boltzmann method.  
Motivation of this present work comes from the work done 

by Darji and Timol [16] where they carried out a research that 
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involved the similarity analysis between Williamson and 

Prandtl-Eyring models for a natural convection boundary layer 

flow. It was observed in their work that the velocity in 

Williamson model is higher than that of Prandtl-Eyring model.  

In this manner, this work aimed at studying and comparing the 

flow of Prandtl Eyring and Eyring Powell models on an 

unsteady magnetohydrodynamic flow of non-Newtonian fluid 

in a porous medium. 

 

 

2. PROBLEM FORMULATION 

 

Unsteady incompressible non-Newtonian fluid through 

vertical parallel plates of width ℎ filled with porous medium is 

examined, with its 𝑥∗-axis selected ahead one of the plates and 

the 𝑦∗ -axis is chosen normal to it under the action of a 

perpendicularly applied magnetic field having a uniform 

strength. Using Boussinesq approximation for incompressible 

fluid model, the governing equations in terms of momentum 

and energy equations are as follows: 

 
𝜕𝑢∗

𝜕𝑡∗  = −
1

𝜌

𝜕𝑃∗

𝜕𝑥∗ −
1

𝜌

𝜕𝜏𝑥𝑦

𝜕𝑦∗ + g𝛽𝑇(𝑇∗ − 𝑇0
∗) −

1

𝜌
𝜎𝐵0

2𝑢∗ −
𝜈𝑢∗

𝐾
      (1) 

                                              
𝜕𝑇∗

 𝜕𝑡∗ =
𝑘

𝜌𝐶𝑝

𝜕2𝑇∗

𝜕𝑦∗2 −
1

𝜌𝐶𝑝

𝜕𝑞𝑟

𝜕𝑦∗ +
𝜐

𝐶𝑝
(

𝜕𝑢∗

𝜕𝑦∗)
2

                                    (2) 

 

where 𝑢∗ is the velocity of the fluid, 𝑡∗ is the time, 𝜌 implies 

fluid density, g stands for acceleration due to 

gravity, 𝑃∗implies fluid pressure, 𝐶𝑝 stands for specific heat at 

constant pressure,  𝑇∗ implies fluid temperature, 𝛽𝑇 equates to 

coefficient of thermal expansion,  k represent the thermal 

conductivity, 𝑇𝑤
∗  stands for temperature of the fluid at  𝑦∗ = ℎ 

while 𝑇0
∗  stands for temperature of the fluid at  𝑦∗ = 0 , 𝑞𝑟 

represents the radiative heat flux, 𝜎  implies electrical 

conductivity, 𝜐 equates to kinematic viscosity, 𝐵0 represents 

the magnetic field and h stands for the distance between two 

plates. 

The underlying and limit conditions are given as 

 

𝑡∗ = 0        𝑢∗ = 0             𝑇∗ = 𝑇0
∗     𝑦 ∈ (0, ℎ) 

𝑡∗ > 0,         𝑢∗ = 𝜆
𝜕𝑢∗

𝜕𝑦∗        𝑇∗ = 𝑇0
∗     about    𝑦∗ = 0 

                      𝑢∗ = 0             𝑇∗ = 𝑇𝑤 
∗     about     𝑦∗ = ℎ       (3) 

 

Following Gbadeyan and Dada [13], the radiation 

parameter is given as 

 
𝜕𝑞𝑟

𝜕𝑦∗ = 4(𝑇∗ − 𝑇0
∗)𝐿                                                               (4) 

 

where L=∫ 𝑘𝜆𝑤 (
𝑑𝑒𝑏𝜆

𝑑𝑇∗ )
𝑤

𝑑𝜆
∞

0
, 𝑘𝜆𝑤  represents coefficient of 

absorption and 𝑒𝑏𝜆 stands for the plank constant. 

By defining the following non-dimensional quantities, 

 

𝑋 =
𝑥∗

ℎ
, 𝑌 =

𝑦∗

ℎ
, 𝑈 =

𝑢∗

𝑢0
∗ , 𝑡 =

𝑡∗𝑢0
∗

ℎ
, 𝑃 =

𝑃∗

𝜌𝑢0
∗2 , 𝑇 =

𝑇∗−𝑇0
∗

𝑇𝑤
∗ −𝑇0

∗  , 𝑅𝑒 =
ℎ𝑢0

∗

𝜈
, 𝐸𝑐 =

𝑢0
∗2

𝐶𝑝(𝑇𝑤
∗ −𝑇0

∗)
 , 𝑁 =

4𝐿ℎ2

𝑘
, 𝑃𝑟 =

𝜌𝐶𝑝𝜈

𝑘
,

𝐷𝑎 =
ℎ2

𝐾
, 𝐺𝑟 =

𝑔𝛽𝑇(𝑇𝑤
∗ −𝑇0

∗)ℎ2

𝜈
, 𝑀2 =

𝜎𝐵0
2ℎ2

𝜌𝜈
, 𝐸𝑐 =

𝑢0
∗2

𝐶𝑝(𝑇𝑤
∗ −𝑇0

∗)
 ,

                             (5) 

 

Introducing equation (4) into equations (2) under the 

expression in equations (5), equation (2) becomes 

𝑅𝑒
𝜕𝑇

𝜕𝑡
=  

1

𝑃𝑟

𝜕2𝑇

𝜕𝑌2 −
𝑁

𝑃𝑟
𝑇 + 𝐸𝑐 (

𝜕𝑈

𝜕𝑌
)

2

                       (6) 

                                                                                                            

With the relating dimensionless limit conditions 

 

𝑡 = 0        𝑈 = 0         𝑇 = 0                        𝑌 ∈ (0, ℎ) 

𝑡 > 0,         𝑈 = 𝜆
𝜕𝑈

𝜕𝑌
    𝑇 = 0            about    𝑌 = 0 

                    𝑈 = 0,         𝑇 = 1,          about    𝑌 = 1          (7) 

                                                                                                   

Model for Prandtl-Eyring non-Newtonian fluid is defined 

according to Darji and Timol (16) as 

 

𝜏𝑥𝑦 = 𝛽𝑠𝑖𝑛ℎ−1 (
1

𝑏

𝜕𝑢∗

𝜕𝑦∗)                                                         (8) 

 

with 𝜏𝑥𝑦 , 
𝜕𝑢∗

𝜕𝑦∗ , 𝛽and 𝑏 representing the shear stress, velocity 

gradient and Prandtl-Eyring parameters respectively. 

From equation (8) above, sin ℎ−1 (
1

𝑏

𝜕𝑢∗

𝜕𝑦∗) =
1

𝑏

𝜕𝑢∗

𝜕𝑦∗ −

1

6
(

1

𝑏

𝜕𝑢∗

𝜕𝑦∗)
3

+
3

40
(

1

𝑏

𝜕𝑢∗

𝜕𝑦∗)
5

−
5

112
(

1

𝑏

𝜕𝑢∗

𝜕𝑦∗)
7

+ ⋯     

Taking the first term in the series expansion above,  

 

sin ℎ−1 (
1

𝑏

𝜕𝑢∗

𝜕𝑦∗) ≅
1

𝑏

𝜕𝑢∗

𝜕𝑦∗ , |
1

𝑏

𝜕𝑢∗

𝜕𝑦∗| ≪ 1                                     (9) 

 

The stress tensor for Prandtl-Eyring model is given as 

 

𝜏𝑥𝑦 =
𝛽

𝑏

𝜕𝑢∗

𝜕𝑦∗            (10) 

 

By introducing equations (5) and (10) into equation (1), the 

momentum equation for Prandtl-Eyring model becomes  

 

𝑅𝑒
𝜕𝑈

𝜕𝑡
= −

𝜕𝑃

𝜕𝑋
+ 𝜂

𝜕2𝑈

𝜕𝑌2 + 𝐺𝑟𝑇 − (𝑀2 + 𝐷𝑎)𝑈               (11) 

 

where 𝜂 =
𝛽

𝑏𝜇
 is the characteristics of Prandtl-Eyring model. 

Also, model for Eyring-Powell non-Newtonian fluid is 

modified according to Adesanya and Gbadeyan [14] as 

 

𝑇𝑥𝑦 = 𝜇
𝜕𝑢∗

𝜕𝑦∗ +
1

𝛼
𝑠𝑖𝑛ℎ−1 (

1

𝑐

𝜕𝑢∗

𝜕𝑦∗)                                          (12) 

 

with 𝜏𝑥𝑦, 
𝜕𝑢∗

𝜕𝑦∗, 𝜇, 𝛼 and 𝑐 signifying the shear stress, velocity 

gradient, coefficient of dynamic viscosity and the Eyring-

Powell fluid parameters respectively. 

From equation (12), the hyperbolic sine function of first 

order is given as 

 

sin ℎ−1 (
1

𝑐

𝜕𝑢∗

𝜕𝑦∗) ≅
1

𝑐

𝜕𝑢∗

𝜕𝑦∗ , |
1

𝑐

𝜕𝑢∗

𝜕𝑦∗| ≪ 1                                    (13) 

 

Introducing equation (13) into equation (12), stress tensor 

for Eyring-Powell fluid reduces to 

 

𝑇𝑥𝑦 =  𝜇
𝜕𝑢∗

𝜕𝑦∗ +
1

𝛼𝑐
[

𝜕𝑢∗

𝜕𝑦∗]                                                        (14) 

 

By introducing equations (5) and (14) into equation (1), the 

momentum equation for Eyring-Powell model becomes  

 

𝑅𝑒
𝜕𝑈

𝜕𝑡
= −

𝜕𝑃

𝜕𝑋
+ [1 + 𝐴]

𝜕2𝑈

𝜕𝑌2 + 𝐺𝑟𝑇 − (𝑀2 + 𝐷𝑎)𝑈          (15) 
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where A =
1

𝛼𝜇𝑐
 is the characteristics of Eyring-Powell model, 

𝜕𝑃

𝜕𝑋
= constant, U implies dimensionless velocity, t stands for 

dimensionless time, T represents dimensionless temperature 

function, N stands for thermal radiation, Pr represents Prandtl 

number, Da is Darcy number, Re signifies Reynold number, 

Gr implies thermal Grashof number, M implies Magnetic field 

parameter, Ec stands for Eckert number and 𝜆 is the wall-slip 

parameter. 

 

 

3. NUMERICAL SOLUTION 

 

The finite difference equations relating to equations (11), 

(15) and (6) respectively are 

 

𝑅𝑒
𝑈𝑗

𝑘+1−𝑈𝑗
𝑘

∆𝑡
 = 𝜂 [

𝑈𝑗−1
𝑘+1−2𝑈𝑗

𝑘+1+𝑈𝑗+1
𝑘+1+𝑈𝑗−1

𝑘 −2𝑈𝑗
𝑘+𝑈𝑗+1

𝑘

2(∆𝑌)2 ] +

𝐺𝑟 (
𝑇𝑗

𝑘+1+𝑇𝑗
𝐾

2
) − (𝑀2 + 𝐷𝑎)(

𝑈𝑗
𝑘+1+𝑈𝑗

𝑘

2
)                               (16) 

 

𝑅𝑒
𝑈𝑗

𝑘+1−𝑈𝑗
𝑘

∆𝑡
 = [1 + 𝐴] [

𝑈𝑗−1
𝑘+1−2𝑈𝑗

𝑘+1+𝑈𝑗+1
𝑘+1+𝑈𝑗−1

𝑘 −2𝑈𝑗
𝑘+𝑈𝑗+1

𝑘

2(∆𝑌)2 ] +

𝐺𝑟 (
𝑇𝑗

𝑘+1+𝑇𝑗
𝐾

2
) − (𝑀2 + 𝐷𝑎)(

𝑈𝑗
𝑘+1+𝑈𝑗

𝑘

2
)                           (17) 

 

 𝑅𝑒
𝑇𝑗

𝑘+1−𝑇𝑗
𝑘

∆𝑡
=

1

𝑝𝑟
[

𝑇𝑗−1
𝑘+1−2𝑇𝑗

𝑘+1+𝑇𝑗+1
𝑘+1+𝑇𝑗−1

𝑘 −2𝑇𝑗
𝑘+𝑇𝑗+1

𝑘

2(∆𝑌)2 ] −

𝑁

𝑃𝑟
[

𝑇𝑗
𝑘+1+𝑇𝑗

𝑘

2
] +

𝐸𝑐(𝑈𝑗+1
𝑘 −𝑈𝑗−1

𝑘 )
2

  

4(∆𝑌)2                              (18) 

 

With these underlying conditions 

 

𝑈𝑗
𝑘+1 = 0, 𝑢𝑗

𝑘 = 0, 𝑇𝑗
𝑘+1 = 0, 𝑇𝑗

𝑘 = 0, ∀ 𝑗, 𝑡 = 0 

𝑈𝑗−1
𝑘+1 =

−2∆𝑦𝑈𝑗
𝑘+1

𝜆
+ 𝑈𝑗+1

𝑘+1, 𝑇𝑗−1
𝑘+1 = 0, 𝑗 = 1, 𝑡 > 0 

𝑈𝑗−1
𝑘 =

−2∆𝑦𝑈𝑗
𝑘

𝜆
+ 𝑈𝑗+1

𝑘 , 𝑇𝑗−1
𝑘 = 0, 𝑗 = 1, 𝑡 > 0 

𝑈𝑗
𝑘+1 = 0, 𝑇𝑗

𝑘+1 = 1, 𝑈𝑗
𝑘 = 0, 𝑇𝑗

𝑘 = 1, 𝑗 = 𝑛, 𝑡 > 0          (19) 

 

The velocity and temperature at 𝑌 = 0 respectively are 𝑈0 

and 𝑇0  while 𝑈𝑛  and 𝑇𝑛  are respectively the corresponding 

velocity and temperature at 𝑌 = 1 with the interval ∆𝑌 =
1

𝑛
 . 

In the calculations, subscript 𝑗 and superscript 𝑘 assign grid 

points along 𝑌 and 𝑡 directions respectively. The estimations 

of 𝑈 and 𝑇  at 𝑡 = 0  are known at all grid points from the 

underlying conditions. The calculation of 𝑈 and 𝑇 for the next 

time level (𝑘 + 1)𝑡ℎ utilizing the known esteems at past time 

level are assessed by framing tri-diagonal system of equations 

from the finite difference equation (16), (17) and (18). The 

estimations of 𝑇 at each nodal point at any step length was 

resolved utilizing the known esteems at past time. Thomas 

algorithm was utilized to explain this tri-diagonal arrangement 

of equationss. Accordingly, the estimations of 𝑇 are computed 

at each nodal point on a particular 𝑗 at (𝑘 + 1)𝑡ℎ time level. 

Utilizing the estimations of 𝑇 at (𝑘 + 1)𝑡ℎ time level in Eq. 

(17), the estimations of 𝑈  at (𝑘 + 1)𝑡ℎ  time level are 

computed also in the same manner. Subsequently the 

estimations of 𝑇 and 𝑈 are known on a specific 𝑗 –level for 

Eyring-Powell model. Similarly, making use of the values of 

𝑇  at (𝑘 + 1)𝑡ℎ  time level in Eq. (16), the values of 𝑈  at 
(𝑘 + 1)𝑡ℎ  time level are ascertained which gives the 

estimations of 𝑇  and 𝑈  on a specific 𝑗  –level for Prandtl-

Eyring model. 

 

 

4. RESULTS AND DISCUSSION 

 

Numerical investigation was carried out to analyze the flow 

of Prandtl-Eyring and Eyring-Powell models on the velocity 

and temperature profiles.  

 

 
 

Figure 1. Velocity distribution for different values of Eyring-

Powel parameter (A) 

 

 
 

Figure 2. Velocity distribution for different values of 

Prandtl-Eyring parameter (η) 

 

Figures 1 and 2 delineates the velocity distributions for 

various values of non-Newtonian parameters A and 𝜂 . The 

Prandtl-Eyring and Eyring-Powell fluids velocity are 

decreasing functions of fluid parameters A and 𝜂. It was seen 

that increasing both parameters A and 𝜂 causes diminishment 
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in the rate of flow as observed on their velocity distributions. 

This retarding effect is due to the presence of Lorentz force 

within the fluid layers. The velocity variation in Prandtl-

Eyring fluid is higher than that of Eyring-Powell fluid. This 

diminishment represents the low rate of flow of Non-

Newtonian fluids.  

Figures 3 and 4 represents temperature distributions for 

various values of non-Newtonian parameters A and 𝜂 . 

Increasing both A and 𝜂 causes the temperature distribution to 

increase. This shows that rapid increase in the temperature 

with A and 𝜂 are guaranteed at the wall. 
 

 
 

Figure 3. Temperature distribution for different values of 

Prandtl number (Pr) for Eyring-Powel fluid 

 

 
 

Figure 4. Temperature distribution for different values of 

Prandtl number (Pr) for Prandtl-Eyring fluid 

 

The effects of Prandtl number  on velocity distributions for 

Prandtl-Eyring and Eyring-Powell models is reported on 

figures 5 and 6 respectively. Prandtl number portrays the 

proportion of thicknesses of the viscous and thermal boundary 

layers. Increasing Prandtl number causes the velocity profiles 

to decrease. 

 

 
 

Figure 5. Velocity distribution for different values of Prandtl 

number (Pr) for Eyring-Powel fluid 

 

 
 

Figure 6. Velocity distribution for different values of Prandtl 

number (Pr) for Prandtl-Eyring fluid 

 

 

5. CONCLUSION 

 

The numerical examination for an unsteady MHD non-

Newtonian fluid in a permeable medium is considered. Non-

Newtonian fluid models considered are Prandtl Eyring and 

Eyring Powell liquid. The resulting equations from the 

governing equation after non dimensionalising form coupled 

nonlinear partial differential equations which is solved using 

the implicit finite difference scheme of Crank Nicolson. It is 

noticed that, 

The velocity distribution in Prandtl-Eyring fluid is quite 

higher than the Eyring Powell fluid. 

The temperature variation for Pr=0.71, 1.0. 3.0 and 5.0 in 

Eyring-Powell fluid is a little slower than that of Prandtl-

Eyring fluid. 

Considering the importance of Non-Newtonian fluid 

models, other models can also be taken into account 

712



 

REFERENCES  

[1] Timol MG, Kalthia NL. (1985). Group theoretic 

approach to similarity solutions in non-Newtonian 

natural convection flows. Journal of Energy Heat and 

Mass Transfer 7(4): 251-288. 

[2] Eldaebe NTM, Hassan AA, Mona AA. (2003). Effect of 

couple stresses on the MHD of a non-Newtonian 

unsteady flow between two parallel porous plates. 

Journal of physics 58: 204-210. 

http://dx.doi.org/10.1515/zna-2003-0405 

[3] Zueco J, Beg OA. (2009). Network numerical simulation 

applied to pulsatile non-Newtonian flow through a 

channel with couple stress and wall mass effects. 

International Journal of Applied Mathematics and Mech. 

5: 1-1ֱ6. 

[4] Ara A, Khan NA, Khan H, Sultan F. (2014). Radiation 

effects on boundary layer flow of an Eyring-Powell fluid 

over an exindent potentially shrinking sheet. Ain Shams 

Engineering Journal 5: 1337-1342. 

[5] Malik MY, Hussian A, Nadeems. (2013). Boundary layer 

flow of an Eyring-Powell model fluid due to a stretching 

cylinder with variable viscosity. Journal of Scientia 

Iranica 20(2): 313-321. 

https://doi.org/10.1016/j.scient.2013.02.028 

[6] Hayat T, Asad S, Mustafa M, Alsaedi A. (2014). 

Radiation effects on the flow of Powell Eyring fluid past 

an unsteady inclined stretching sheet with non-uniform 

Heat Source/Sink. PLOS ONE 9(7): e103214. 

https://doi:10.1371/journal. pone. 0103214 

[7] Khader MM, Megahed AM. (2013). Numerical studies 

for flow and heat transfer of the Powell-Eyring fluid thin 

film over an unsteady stretching sheet with internal heat 

generation using the finite difference method. Journal of 

Applied Mechanics Technical Phys. 5(4): 440-450. 

https://doi.org/10.1134/S0021894413030139 

[8] Arifuzzaman SM, Khan MS, Hossain KE, Islam MS, 

Akter S, Roy R. (2017). Chemically reactive viscoelastic 

fluid flow in presence of nano particle through porous 

stretching sheet. Frontiers in Heat and Mass Transfer 

9(5): 1-11. http://dx.doi.org/10.5098/hmt.9.5 

[9] Khan MS, Karim I, Ali LE, Islam A. (2012). Unsteady 

MHD free convection boundary-layer flow of a 

nanofluid along a stretching sheet with thermal radiation 

and viscous dissipation effects. International Nano 

Letters 2(24). https://doi.org/10.1186/2228-5326-2-24 

[10] Arifuzzaman SM, Rana BMJ, Ahmed R, Ahmmed SF. 

(2017). Cross diffusion and MHD effect on a high order 

chemically reactive micropolar fluid of naturally 

convective heat and mass transfer past through an infinite 

vertical porous medium with a constant heat sink. AIP 

Conference Proceedings 1851, 020006. 

http://dx.doi.org/10.1063/1.4984635 

[11] Arifuzzaman SM, Khan MS, Islam MS, Islam MM, Rana 

BMJ, Biswas P, Ahmmed SF. (2017). MHD Maxwell 

fluid flow in presence of nano-particle through a vertical 

porous–plate with heat- generation, radiation absorption 

and chemical reaction. Frontiers in Heat and Mass 

Transfer 9(25): 1-14.  http://dx.doi.org/10.5098/hmt.9.25 

[12] Zaman H. (2013). unsteady incompressible couette flow 

problem for the Eyring-Powell model with porous walls. 

American Journal of Computational Mathematics 3: 313-

32ֳ5. http://doi 10.4236/ajcm.2013.34041 

[13] Gbadeyan JA, Dada MS. (2013). On the influence of 

radiation radiation and heat transfer on an unsteady MHD 

Non-Newtonian fluid flow with slip in a porous medium. 

Journal of Mathematical Research 5(3): 40-49. 

http://dx.doi.org/10.5539/jmr.v5n3p40  

[14] Adesanya SO, Gbadeyan JA. (2011). Adomia 

Decomposition approach to steady visco-elastic flow 

with slip through a planar channel. Journal of nonlinear 

science 11(1): 86-94.  

[15] Mahmoudi A, Mejri I. (2015). Analysis of conduction-

radiation heat transfer with variable thermal conductivity 

and variable refractive index: Application of the Lattice 

Boltzmann method. International Journal of Heat and 

Technology 33(1): 1-8. 

https://doi.org/10.18280/ijht.330101 
[16]  Darji RM, Timol MG. (2013). Group-theoretic 

similarity analysis for natural convection boundary layer 

flow of a class of non-Newtonian fluids. International 

Journal of Advanced Scientific and Technical Research 

3(1): 54-69. 

 

 

NOMENCLATURE 

 

g        gravitational acceleration 

k        permeability 

u        Velocity in the x direction 

v        Velocity in the y direction 

t*        Dimensional time 

t              Dimensionless time 

x*, y*  Dimensional coordinates along the plate and normal to 

           the plate 

X        Dimensionless coordinate along the plate 

Y        Dimensionless coordinate normal to the plate 

h         Characteristic length 

N        Thermal radiation parameter 

P*        Dimensional pressure 

P         Dimensionless fluid pressure 

T*       Dimensional temperature of fluid 

T        Dimensionless temperature of fluid  

A        Eyring-Powell parameter 

𝐵0      Applied magnetic field 

𝐶𝑝      specific heat at constant pressure 

Da      Darcy number 

Ec       Eckert number 

Gr       Thermal Grashof number 

Pr        Prandtl number 

qr        radiative heat flux 

Re       Reynolds number 

Tw      Temperature of the plate 

 

Greek alphabets 

 

Viscosity 

𝜌 density 

Stefan-Boltzmann constant 

𝛼, 𝑐       characteristic of Eyring-Powell model 

𝛽and 𝑏 characteristic of Prandtl-Eyring model 

𝜂          Prandtl-Eyring parameter 

𝜏𝑥𝑦      stress tenso 
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