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abstract

Matched subspace detectors generalize the matched filter by accommodating signals that are only constrained to lie in a
multidimensional subspace . There are four of these detectors, depending upon knowledge of signal phase and noise power . The
adaptive subspace detectors generalize the matched subspace detectors by accommodating problems where the noise covarianc e
matrix is unknow, and must be estimated from training data . In this paper we review the geometries and invariances of the matched
and adaptive subspace detectors . We also establish that every version of a matched or adaptative subspace detectors can be
interpreted as an estimator of output signal-to-noise ratio (SNR), in disquise .

1 . Introduction

The matched filter tests for the presence of a signal in a nois y
measurement by resolving the projection of a measurement onto
the signal template, in a coordinate system whitened by the nois e
covariance matrix . This statistic can be generalized to cases where
the signal phase is unknown, and to cases where the noise scalin g
is unknown [1, 2, 3, 4] . In the latter case, the coherence or direction
cosine between the measurement and signal is computed . When
the signal is known only to lie in a multidimensional linear
subspace, then no such template may be used. The theory of
"matched subspace detectors" (MSDs) shows that the resolution

onto a template is replaced by a projection onto the signal subspac e
[5, 6] . The MSDs are not ad hoc variations of the matched
filter; rather they are Uniformly Most Powerful (UMP) Invarian t
Neyman-Pearson tests, and Generalized Likelihood Ratio Test s
(GLRT) [5, 6, 7] . When the noise covariance matrix is unknown ,
then it must be estimated . This produces variations on the MSDs ,
which are called "adaptive subspace detectors " (DSDs), and
which employ a sample covariance matrix estimated from training
data. In this paper we review the geometries, invariances, and
optimalities of the MSDs and ASDs . Their distributions are treate d
in [5] . Then we reinterpret the MSDs and ASDs as estimators of
output sigal-to-noise ratio (SNR) . The key to this interpretation i s
a coordinate rotation to align the measurement with respect to a n
orthogonal basis defined by the signal and the measurement .

1 . This work was supported by the Office of Naval Research under Contract # N00014-89-J-1070 .
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2. Matched subspac e
detectors : geometries
and invariances

The matched subspace detectors have clearly stated optimalitie s
and invariances and have evocative geometrical interpretations [5 ,
6, 7] . They are uniformly most powerful (UMP) for detecting a
subspace signal in Gaussian noise among all detectors required
to be invariant to relevant transformations of the measuremen t
[5].They are also all Generalized Likelihood Ratio Tests (GLRT)
[6]. In the paragraphs to follow we review their geometries an d
invariances .

2.1 . Matched filter
Figure 1. — Invariances of Matched Filter. The invariance set is the surfac e
of the plane, where the projection of z onto the whitened signal subspace i s
constant.

The simplest of the four MSDs is the matched filter, proportiona l
to a weighted inner product between a signal template 't/' and the
measurement vector y :

V
'rl) * R 1

0-

The vectors L and y are N-dimensional and the matrix R i s
N x N. The threshold ï is chosen so that the probability of falsel y
choosing H1 (signal present) in a test of Ho (signal absent) :
y : CN[O, o• 2 R] versus H 1 (signal present) : y : CN[µ ,, a2R]

is a. In this problem, the signal and its phase, and the nois e

scaling and covariance a- 2 R are known . Only the siganl gain p i s
unknown; the detectors is UMP over all values of p .

The whitened version of this problem is to test YHo : z :

CN[O, a 2 I] versus Hl : z; CN[µcß, a 2 I] where z = R–ī/2 y

is the whitened measurement and = R–1/2 1P is the whitened
signal. In this coordinate system, the matched filter i s

0* z
n =

	

< rl ,
0*0a

The statistic n measures the resolution of the measurement y onto

the subspace O, in a coordinate system whitened by R –1/ 2
Alternatively, it is the resolution of the whitened measurement z
onto the whitened signal tb. The detector is invariant to translation s

of the measurement z in the orthogonal subspace (0) 1 . Thus ,
as illustrated in Figure 1, the invariance set of transformed
measurements is a plan, where the projection of the measuremen t
z onto the subspace (0) is constant .

2.2. Matched subspace detector

When the phase of the signal template i/l is unknown, then the
UMP detector for detecting a subspace signal in Gaussian noise ,
amoung all detectors required to be invariant to rotations i n
the whitened signal subspace and translations in the orthogona l
subspace, is given by magnitude squaring the matched filter [5] :

X2 =

	

11y~2a
<

	

( 3 )
( R )~

In this problem, the signal subspace (1) and the noise scaling an d
covariance a' 2 R are known . The phase of the sigal and the signal
gain p, are unknown .

In whitened coordinates, the matched subspace detector is [5, 6]

2	
0*zl

2	 _ z*P~z~

	

(4 )

	

(~*ç)a2

	

0-2 <17 ,

where Po is the projection onto the subspace (cß) :

	

Po = 0(0*ç)–1,*-

	

(5)

The statistic x 2 computes the energy of the measurement y in th e

subspace O, in a coordinate system whitened by R –1/2 . The
detector is invariant to rotations of the z in the subspace (0), and to

translations in the orthogonal subspace (0)1 . Thus, as illustrated
in figure 2, the invariance set of transformed measurements is th e
surface of two planes, where the energy of the measurement z in
the subspace (6) is constant .

n = ~
*R 1

~	 < rJ (1 )

( 2 )
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Plane of Invariance s
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Figure 3. — Invariances ofn CFAR Matched Filter. The variance set is the
surface of the cone, where the angle z makeswith the whitened signal i s
constant.

Plane of Invariances

Figure 2. — Invariances of Matched Subspace Detector. The invariance set i s
the surface of the two planes, where the energy of z in the whitened signa l
subspace is constant.

2 .4. CFAR matched subspac e
detector

2 .3 . CFAR matched filter

When the phase of the signal vector / is known, but the nois e
scaling is not, then the UMP detector among all detectors require d
to be invariant to measurement scaling and rotations in th e
orthogonal subspace (0)1 , is given by normalizing the matche d
filter by the magnitude of the measurement vector in whitened
coordinates [5] :

In this problem, the signal and phase and the noise covariance
R are known, but the complex signal gain tt and the noise scalin g
Q-2 are unknown . The statistic cos measures the coherence, or
cosine, between the measurement y and the subspace (v') i n

a coordinate system whitened by R —112 . It is also the cosine
between the whitened measurement z and the whitened signal O .
The detector is invariant to rotations of the measurement z in the
orthogonal subspace (ç)1 , and to scaling of the measurement .
Thus, as illustrated in Figure 3, the invariance set of transforme d
measurements is the surface of a cone, where the angle that the
measurement z makes with the signal 0 is constant.

When neither the phase of the signal vector nor the nois e
scaling is known, The UMP detector among all detectors require d
to be invariant to measurement scalings and subspace rotation s
in (q5) and (0 l , is given by normalizing the matched filter by
the magnitude-squared of the measurement vector in whitened
coordinates [5] :

I tP*R —1 ?! 1
2	 _	

~~*zI2

	

__ z* Poz
=ß

	

(0*R—10)(y *R—ly)

	

(0*0)(z*z)

	

z *z <rl ( )

In this problem, the signal subspace O and the noise covariance
R are known. The phase of the signal, signal gain and th e
noise scaling Q2 are unknown . This detector was first advocated
in a coherent "t" form in the 1970's [1, 2, 3, 4] . It has also been
suggested by Conte, Lops, and Ricci, who derived it as a limiting -
case GLRT for detecting signals in compound-Gaussain noise o f
Known covariance structure [8, 9] . the statistic i measures the
squared coherence, or cosine-squared between the measuremen t
y an the subspace (0) in a coordinate system whitened by R —1/2 .
It is also the fraction of the whitened measurement energy that lie s
in the signal subspace (0) . The detector is invariant to rotation s
of the measurement z in the subspace (0, to rotations in the

orthogonal subspace KO', and to scaling of the measurement .
Thus, as illustrated in Figure 4, the invariance set of transforme d
measurements is the surface of a double cone, where fractiona l
energy of z in the subspace (0) is constant .

O * R-ly

0*R-1 *R-ly

~i * z

	 <rl
0 *~3z * z

(6 )cos =
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Figure 4 . — Invariances ofn CFAR MatchedSubspace Detector . The invariance
set is the surface of the double cone, where the fractional energy of z in th e
whitened,signal suibspace is constant.

Figure 5. — Decomposition of N' into signal subspace (0) and subcomponents

of the orthogonal subspace (0) 1 .

3. Matched subspace
detectors : SNR
interpretations

In order to interpret the MSDs in terms of output SNRs we wil l
need to resolve the measurement energy z*z into its constituen t
parts . To this end, we will construct an orthogonal span for th e
plane defined by the signal and the measurement z and com-
plete N-dimensional space by constructing a unitary subspace
perpendicular to his plane . Thus we define the rotation matri x

u = [u~ u z V] ,

where u, is a unit vector in the direction of ql and uz , is a uni t
vector in the direction of (I — Po)z :

1
uz = (I — Po)z	 .

~z (I — Po) z

The matrix V is a rank (N — 2) unitary matrix with the propert y
V * U = [0, 0, I] . This decomposition of complex Euclidean space
is illustrated in Figure 5 . The idea is to insert : UU * = I into z* z

to reveal the energy components in the signal subspace and the
orthogonal subspace .

3.1 . Matched susbspace detectors

The matched filter of Equation 1 may be written as ,

0* z

where 71 is a sample estimate of the signal gain :

~ * z
p = O*O .

Note µ : CN[µ, a-2 /çß * 5] and n : CN[ó ~ V'çl,1] . In this form

the matched filter is seen to be an estimator of input (voltage )

SNR, namely µ/a, times voltage gain 0 * c/;i, meaning it is an

estimate of the output (voltage) SNR :

n = VSNR =

	

6 .

In a similar manner, the matched subspace detector of Equatio n
3 can be written as an estimate of the output SNR,

* z 2

	

2

x2

	

(~
	 )0.2

	

I ~~

	

= SNR,

	

(14)

where 1 11 2/a2 is a sample estimated of the input SNR and if (15 is
the matched filter gain . Note that the estimate of input SNR may
be written as

	

1/1 2 __	 I * zl 2 __ z*P~z
a2

	

(0*0)2a2

	

0 * qa2 '

which shows it to be the signal energy per sample, or signal powe r
z*Poz/r.5* 0, divided by the per sample noise power a- 2 .

( 8 )

( 9 )

~*4 =

	

0* 0,

(12 )

(13)

(15 )
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as

3.2. CFAR matched susbpace detectors

The CFAR matched filter of Equation 6 may be written as

o *z
cos = * —	

c~ ~~/z* z

Now the basis (U) of Equation 8 may be used to resolve the energ y
term z* z as

— 10*zI2 o
*o+z * (I—P~)z

(0*0) —

= IĪ~l 2
~

*
O +

z
*(N

P~}z(N
1) .

We go one step further in our decomposition of z* z by calling the
second term the sample estimate of the noise variance, 'b-- 2 :

z*z = 1Td 2 cb
*
O+1 2 (N — 1)

	

(18 )

VSNR =

=

In fact, this sample estimate *,(Tr 2z*(I — Po)z/N _ 1 is x 2 - dis-

tributed with mean value a2 . With this decomposition of z*z we
may write the CFAR matched subspace detector as

VSNR
cos =	 	 (19 )

IVSNRF + N — 1

where the sample estimate of output SNR i s

The double over-bar indicates that we are estimating output SN R
by two sample estimates : one for Ēi and one for ~ .

To complete the interpretation of coherence, we write it a s

cos =	
t

	

(21 )
lti 2 +1 '

where t, within a scale constant, is the classical t-statisti c

cos

	

VSNR
1—cos 2 \/N— 1

So, the CFAR matched filter is a monotonic function of th e
statistician's classical t test ; it is simply the estimated output SNR ,
divided by \/N — 1 .

Finally, the CFAR matched subspace detector of Equation 7 take s
the canonical form

where 0 2 is the sample estimate of the noise variance scaling, a2 :

2

	

z*I — (P~)z

N— 1

This formula for squared coherence may also be written in term s
of the sample estimate of the output SNR :

ß =
SNR + N — 1

SNR = (N 1)	 =	
z*(IPo)z

	

I ~~2*¢~

	

(25 )

To complete the interpretation of squared coherence, we write i t

F
ß F+1 '

where F, within a scale constant, is the classical F-statisti c

F=
SNR

So, the coherence detector is a beta version of the statistician' s
classical F test ; in its F form it is simply the estimated outpu t
SNR, divided by N — 1 .

Let' summarize : The four matched subspace detectors described
here are the uniformly-most-powerful (UMP) invariant detector s
for a subspace signal in Gaussian noise. They have the appropri-
ate invariances and evocative geometries . They all have simple
interpretations in terms of estimated output SNR . These geome-
tries and SNR interpretations are different than those publishe d
by Picinbono [10], but there is an idea in common, namely a de -
composition, of the measurement space into the direct sum of a
signal subspace and an orthogonal subspace .

4. Adaptive
subspace detectors :
geometries an d
Invarlances

The matched subspace detectors require prior knowledge of th e
noise covariance matrix R . This information is usually not known ,
meaning that it must be estimated and used correctly in an adaptiv e
detector. A seemingly ad hoc approach to this problem is to simpl y
replace the noise covariance by a sample covariance matrix ,
constructed from a sequence of M i .i .d. CN[0, RI training vectors

µ (16 )

(17 )

1
— Po ) zlN — 1

* (20 )

t= (22)

(24)

SNR

1—ß N—1

(26)

(27 )

(23) 8 =1711 2 0
*
0

ß =
IPI 20

*
0 + ā- 2 (N — 1) '

(28 )
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These training vectors are independent of the test vector y, the
measurement to be tested for Hu versus H1 . They share the same
noise structure R as y, but not necessarily the same noise scalin g
(in the adaptive context, o- is a relative scaling of the test vecto r
relative to the training vectors) [11] .

4.1 . Coherence adaptive matched filte r

Using the Sample covariance, an adaptative matched filter (AMF)
is given by :

0*S–lyn = -,

	

(29 )

V i
*S–1,¢6

This statistic measures the resolution of the measurement y onto
the signal in an adaptively witened coordinate system . For
purposes of interpretation, it is useful to write the coherent AM F
as

¢ *I–1
z

	

z
n- --	

¢*I Oa

	

¢ io-

where the matrix I is the sample estimate of identity and where ¢

and z are resolutions of and z in the coordinate system I
1/ 2

I

	

¢ ; z = I 1/2 z .

	

(31 )

The AMF is invariant to translations of the measurement in the
orthogonal subspace (¢ ) 1 . Thus, the invariance set is the surfac e
of a plane, where the projection of the measurement z onto the
signal (¢) is constant. So Figure 1 still applies .

4.2. Adaptive subspace detecto r

The adaptive subspace detector (ASD) is given by the magnitude -
squared of the coherence AMF :

~V) *S -1 yI 2x __

(0*S–1~y)~2
<rl

( 32 )

This detector was first proposed by Robey, et al . [12] and by Chen
and Reed [13] . It is a simplification of the Kelly detector [14], wich
is the actual GLRT corresponding to x 2 for the adaptive case (for
more explanation, see [7] . The ASD measures the energy of th e
measurement y contained in the subspace (0), in the adaptivel y
whitened coordinate system . the ASD may be rewritten a s

10*I 	 zl 2 _ {0

	

_x

	

z~ 2â _	 _
¢*Î ¢o-

2

	

(15 0,7a

where ¢ and z are adaptively whitened versions of and y .
this statistic_ is invariant to rotations of the measurement z in the
subspace (¢), and to translations in the perpendicular subspac e

(¢) -L . Thus, the invariance set is the surface of two planes, where

the energy of the measurement z in the subspace (¢) is constant ,
consistent with F igure 2 .

4.3 . CFAR adaptive matched filter

The CFAR adaptive matched filter i s

It measures the coherence, or direction cosine, of the measuremen t
y with the signal in the adaptive whitened coordinate system .
This detector maybe rewritten in adaptively whitened coordinate s
as

cos

\/ /2*I
1

/3\/y*I
1 y

It is invariant to rotations of the measurement z in the perpendic -

ular subspace ( ¢
I

), to scaling of the sample covariance S, and t o
a different scaling of the measurement [15] . That is,

cos(c2y,c1S) = cos(y,S) .

Thus, the invariance set is the surface of a cone, where the angl e
that the measurement z makes with the signal ¢ is constant ,
consistent with figure 3 .

4.4. CFAR adaptive subspace detecto r

The CFAR ASD is given by

ß = (¢*S
1 	

5)( ~S–ly) <
rl .

	

( 37)

This statistic measures the squared coherence, or cosine-squared ,
between the measurement y and the subspace (g') in an adaptivel y
whitened coordinate system . In the adaptively whitened coordi-
nates, the statistic may be rewritten as

It is invariant to rotations of the measurement z in the subspace
(¢), to rotations in the perpendicular subspace (¢)-L , to scaling
of the sample covariance S, and to a different scaling of th e

(30)

Î = R– 1 /2SR–*/2 ;
-1/2

(33)

¢*S–1 y

\/
1/5 *S lV) ~y

*S
1y

—
coss = (34 )

(35 )

(36)

,ß=
(¢*I–1¢)(z*I

–iz) _
(~ ~)(z)z

(38 )
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measurement y . Thus, the invariance set is the surface of a double
cone, where the fractional energy of the measurement z in th e
subspace (0) is constant, consistent with Figure 4 . These are
fundamental invariances for incoherent signal detection whe n
signal phase and channel attenuation are unknown .

5 . Adaptive
subspace detectors :
SNR interpretations

As with the matched subspace detectors, the adaptive subspace de -
tectors can be rewritten in terms of maximum likehood estimate s
of the signal gain pi and noise scaling a, yielding interpretations of
the statistics in terms of estimated output SNR. These maximum
likelihood estimates are obtained in the adaptative scenario b y
considering the joint density function of both the test and trainin g
data vectors :

1

	

1
fl(y,yl, . . . ,yM)

_ ,n
— ~2(y l~~) t

M

	

1
R—1(y

	

,rN det (R)
exp {—yt R

—'Y
m }

m= 1

Maximizing this likelihood function over µ and a yields the
following maximum likelihood estimates for the signal gain an d
noise scaling [ 11] :

z

	

,"?P- Z

L
(I—P0z . MN

Here L is an over-training parameter, L = M — N + 1 .

These estimates only depend on two vectors, z and cß . Moreover,

the angle between z and 0 is invariant to rotation of the coordinat e
system in which it is measured . Therefore, we may construct an
orthogonal span for the two-dimensional subspace defined by the
signal 0 and the measurement z, and complete N-dimensional
space by constructing the perpendicular subspace . To this end ,
we follow the procedure surrounding Equation 8 to construct U
and apply it to z and O . This allows us to produce the following
SNR interpretations .

which is an adaptive sample estimate of the output voltage signal -
to-noise . Similarly, the noncoherent adaptive subspace detecto r
may be written as

x 2 = 1122

„

_O = SN,

	

(43 )

which is an adaptive sample estimate of the output signal-to-nois e
ratio .

5.2. CFAR adaptive subspace detectors

The CFAR adaptive matched filter may be written a s

6 2
MN

L

As in Section 3 .2, côs may be rewritten in terms of signal gai n
noise scaling estimates as

\/IVSNR1 2 + MN '

So the adaptive Tis just a scaled version of the adaptively estimated
output voltage SNR, and vice-versa. The double hat indicates that
the estimate of VSNR uses estimates of both µ and a .

Finally, the CFAR ASD may be written a s

ß
I2~*

	

MN
Iw

	

-}- 6 2

Again as in Section 3 .2, may be written as

(41)

cos =
lr_ (±

(44)

—
cos s =	 _

I~ 2 + 1

t

(39)

VSNR

-
. *

VSNR =	 ~
z

1

1

-z-* (1 — P)z
~N

(4 5 )

(40)

	

where t is the adaptive t-statisti c

=
cos _ L

VSNR
1 1 côs i2

	

MN
(46 )

(47)

L

5.1 . Adaptive subspace detectors
_ F

-=

SNR
ß F + 1 SNR

+ MN
L

The adaptive matched filter may be written a s

= µ 1/rbcß = VSNR,

	

(42) SNR = MN
L z*

z	 _P -9;1	 _ w1 2
0)z

	

Q 2
(48)
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where F is the adaptive F-statistic

L
=	

ß = MN
SNR .

	

(49 )
1 —

So, the CFAR ASD is a beta version of an adaptive F test, which i s
simply the adaptively estimated output SNR, divided by MN/L .

The approach of substituting a sample covariance for the know n
covariance was independently suggested in [8, 9, 15] . The adaptive
CFAR statistic of Equation 48 has since been shown to be the
Generalized Likelihood Ratio Test over the joint likelihood of th e
test and training data [11] .

6. conclusions

In this paper we have reviewed the theory of matched and adaptiv e
subspace detectors [7] for the case where the signal to be detected
lies in the one-dimensional complex subspace (t ) . The story
generalizes completely to the case where the subspace (T) i s
multidimensional, thus making it applicable to matched field
processing, detection in multi-path, etc .

The most succinct summary statement for the matched subspace
detectors is that they are uniformly-most-powerful-invariant an d
generalized likelihood ratio tests . Beyond this, their geometrie s
and invariances are evocative, and they may all be interpreted in
terms of estimated output SNRs . For a quite different perspective,
see [10], which is one of the first detection papers to develop
insights from signal and orthogonal subspace decompositions .

Of the adaptive subspace detectors discussed in this paper, only
the two CFAR tests are truly generalized likelihood ratio tests .
But all four have evocative geometries and invariances, and al l
four may be interpreted in terms of estimated output SNRs .
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