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abstract

Matched subspace detectors generalize the matched filter by accommodating signals that are only constrained to lie in a
multidimensional subspace. There are four of these detectors, depending upon knowledge of signal phase and noise power. The
adaptive subspace detectors generalize the matched subspace detectors by accommodating problems where the noise covariance
matrix is unknow, and must be estimated from training data. In this paper we review the geometries and invariances of the matched
and adaptive subspace detectors. We also establish that every version of a matched or adaptative subspace detectors can be
interpreted as an estimator of output signal-to-noise ratio (SNR), in disquise.

onto a template is replaced by a projection onto the signal subspace
[5, 6]. The MSDs are not ad hoc variations of the matched
filter; rather they are Uniformly Most Powerful (UMP) Invariant
Neyman-Pearson tests, and Generalized Likelihood Ratio Tests
(GLRT) {3, 6, 71. When the noise covariance matrix is unknown,

1. Introduction

The matched filter tests for the presence of a signal in a noisy
measurement by resolving the projection of a measurement onto
the signal template, in a coordinate system whitened by the noise
covariance matrix. This statistic can be generalized to cases where
the signal phase is unknown, and to cases where the noise scaling
isunknown [1, 2, 3, 4]. In the latter case, the coherence or direction
cosine between the measurement and signal is computed. When
the signal is known only to lie in a multidimensional linear
subspace, then no such template may be used. The theory of
“matched subspace detectors” (MSDs) shows that the resolution

then it must be estimated. This produces variations on the MSDs,
which are called “adaptive subspace detectors” (DSDs), and
which employ a sample covariance matrix estimated from training
data. In this paper we review the geometries, invariances, and
optimalities of the MSDs and ASDs. Their distributions are treated
in [5]. Then we reinterpret the MSDs and ASDs as estimators of
output sigal-to-noise ratio (SNR). The key to this interpretation is
a coordinate rotation to align the measurement with respect to an
orthogonal basis defined by the signal and the measurement.
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2. Matched subspace
detectors: geometries
and invariances

The matched subspace detectors have clearly stated optimalities
and invariances and have evocative geometrical interpretations 5,
6, 7]. They are vniformly most powerful (UMP) for detecting a
subspace signal in Gaussian noise among all detectors required
to be invariant to relevant transformations of the measurement
[5]. They are also all Generalized Likelihood Ratio Tests (GLRT)
[6]. In the paragraphs to follow we review their geometries and
invariances.

2.1. Matched filter

The simplest of the four MSDs is the matched filter, proportional
to a weighted inner product between a signal template 1) and the
measurement vector y :

PRy
n = etz W

/w*R-le

The vectors ¢ and y are N-dimensional and the matrix R is
N x N. The threshold 7 is chosen so that the probability of falsely
choosing H; (signal present) in a test of Hy (signal absent) :
y : CNIQ,0’R] versus Hy (signal present) : y : CN[uz, 0?R}
is c. In this problem, the signal P and its phase, and the noise
scaling and covariance o?R are known. Only the siganl gain p is
unknown; the detectors is UMP over all values of p.

The whitened version of this problem is to test Y Hy : z
CN[0,021] versus Hy : z;CN|ug,o%1] where z = R™ 1/2
is the whitened measurement and ¢ = R~ v 2@ is the whltened

signal. In this coordinate system, the matched filter is

2, (2)

The statistic n measures the resolution of the measurement y onto

the subspace (¢}, in a coordinate system whitened by R™Y/2,
Alternatively, it is the resolution of the whitened measurement z
onto the whitened signal ¢. The detector is invariant to translations
of the measurement 2z in the orthogonal subspace (¢)*. Thus,
as illustrated in Figure 1, the invariance set of transformed
measurements is a plan, where the projection of the measurement
z onto the subspace (¢) is constant.
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/ Plane of Invariances
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Figure 1. ~ Invariances of Matched Filter. The invariance set is the surface
of the plane, where the projection of z onto the whitened signal subspace is
constant,

2.2. Matched subspace detector

When the phase of the signal template 1) is unknown, then the
UMP detector for detecting a subspace s;énal in Gaussian noise,
amoung all detectors required to be invariant to rotations in
the whitened signal subspace and translations in the orthogonal
subspace, is given by magnitude squaring the matched filter [5] :

s Ry

= md) (3)

In this problem, the signal subspace (1) and the noise scaling and
covariance ¢?R are known. The phase of the sigal and the signal
gain 4 are unknown.

In whitened coordinates, the matched subspace detector is [5, 6]

o
Yioae T o

where Py is the projection onto the subspace (¢) :

2*Pyz
222, (4)

=8(¢79) "¢ (5)

The statistic x? computes the energy of the measurement y in the

subspace (1), in a coordinate system whitened by R™Y2 The
detector is invariant to rotations of the z in the subspace (¢),and to
translations in the orthogonal subspace (#)~. Thus, as illustrated
in figure 2, the invariance set of transformed measurements is the
surface of two planes, where the energy of the measurement z in
the subspace (¢) is constant.
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/ Plane of Invariances

Plane of Invariances

Figure 2. — Invariances of Matched Subspace Detector. The invariance set is
the surface of the two planes, where the energy of z in the whitened signal
subspace is constant.

2.3. CFAR maiched filter

When the phase of the signal vector ¢ is known, but the noise
scaling is not, then the UMP detector among all detectors required
to be invariant to measurement scaling and rotations in the
orthogonal subspace (¢), is given by normalizing the matched

filter by the magnitude of the measurement vector in whitened
coordinates [5] :

'Ry ¢

‘z
JorTw Ry \/@@z”

In this problem, the signal ¢ and phase and the noise covariance
R are known, but the compEx signal gain p and the noise scaling
o2 are unknown. The statistic cos measures the coherence, or
cosine, between the measurement y and the subspace () in

COos =

(6)

a coordinate system whitened by R™Y/2. 1t is also the cosine
between the whitened measurement z and the whitened signal ¢.
The detector is invariant to rotations of the measurement z in the
orthogonal subspace (¢)*, and to scaling of the measurement.
Thus, as illustrated in Figure 3, the invariance set of transformed
measurements is the surface of a cone, where the angle that the
measurement z makes with the signal ¢ is constant.

~ -~

e

Cone of Invariances

(8)*

Figure 3. — Invariances ofn CFAR Matched Filter. The variance set is the
surface of the cone, where the angle z makeswith the whitened signal is
constant.

2.4. CFAR matched subspace
detector

When neither the phase of the signal vector 1) nor the noise
scaling is known, The UMP detector among all detectors required
to be invariant to measurement scalings and subspace rotations
in (¢) and (¢)*, is given by normalizing the matched filter by

the magnitude-squared of the measurement vector in whitened
coordinates [5] :

_ o WRTy Pz
TR DGR Goey  zz oD

In this problem, the signal subspace (1) and the noise covariance
R are known. The phase of the signal, signal gain g, and the
noise scaling o2 are unknown. This detector was first advocated
in a coherent “f” form in the 1970s [1, 2, 3, 4]. It has also been
suggested by Conte, Lops, and Ricci, who derived it as a limiting-
case GLRT for detecting signals in compound-Gaussain noise of
Known covariance structure {8, 9]. the statistic § measures the
squared coherence, or cosine-squared between the measurement
y an the subspace (7)) in a coordinate system whitened by R™/2,
1tis also the fraction of the whitened measurement energy that lies
in the signal subspace (¢). The detector is invariant to rotations
of the measurement 2z in the subspace (¢), to rotations in the
orthogonal subspace {¢)*, and to scaling of the measurement.
Thus, as illustrated in F—igure 4, the invariance set of transformed
measurements is the surface of a double cone, where fractional
energy of z in the subspace (@) is constant.

529
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Cone of Invariances

Figure 4. — Invariances ofn CFAR MatchedSubspace Detector. The invariance
set is the surface of the double cone, where the fractional energy of z in the
whitened,signal suibspace is constant.

3. Matched subspace
detectors: SNR
interpretations

In order to interpret the MSDs in terms of output SNRs we will
need to resolve the measurement energy z*z into its constituent
parts. To this end, we will construct an orthogonal span for the
plane defined by the signal ¢ and the measurement z and com-
plete N-dimensional space by constructing a unitary subspace
perpendicular to his plane. Thus we define the rotation matrix

U: [ﬁg&)yzﬂv]? (8)

where w4 is a unit vector in the direction of ¢ and u,, is a unit
vector in the direction of (I — Py)z :

1

Uy = 9\/—; 9)
@9
u, =(I- P¢)gz—*(11—_—l?¢);.

The matrix V is a rank (V — 2) unitary matrix with the property
V*U = [0,0,1]. This decomposition of complex Euclidean space
is illustrated in Figure 5. The idea is to insert : UU* = Linto 2%z
to reveal the energy components in the signal subspace and the
orthogonal subspace.
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Figure 5. — Decomposition of N™ into signal subspace (¢) and subcomponents
of the orthogonal subspace ($).

3.1. Matched susbspace detectors

The matched filter of Equation 1 may be written as,

¢z T
== o==4/0" 1
n Q*éo. ? _Qé o Qj 9’ ( )
where T is a sample estimate of the signal gain :
¢z
=5 (12)

Note 7z : CN|u,0%/¢"¢] and n : CN[5,/¢"¢,1]. In this form
the matched filter is seen to be an estimator of input (voltage)
SNR, namely 7i/o, times voltage gain 4/ Q*Q, meaning it is an

estimate of the output (voltage) SNR :

_VSNE = P /5
n=VSNR = £, /¢".

In a similar manner, the matched subspace detector of Equation
3 can be written as an estimate of the output SNR,
* 12 —2

O A S | T

S gge T st

where |Ji|? /o2 is a sample estimated of the input SNR and ¢* ¢ is

the matched filter gain. Note that the estimate of input SNR may
be written as

(13)

(14)

w2 le'z? 2Pz

o7 TG G g0
which shows it to be the signal energy per sample, or signal power
Z*Pyz/ Q* ¢, divided by the per sample noise power 2.

(15)
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3.2. CFAR maiched susbpace detectors

The CFAR maiched filter of Equation 6 may be written as

'z
R+ /TR

Now the basis (U) of Equation 8 may be used to resolve the energy
term z*z as

(16)

6" 2|
¥z == Q*Q+g*(I—P¢)Z
o, 2T —Pg)z

We go one step further in our decomposition of z*z by calling the
second term the sample estimate of the noise variance, Lo
Zz=aP¢ o+ (N ~ 1) (18)

In fact, this sample estimate 722*(I — Pg)z/ 5y _ ¢ is x°- dis-

tributed with mean value o2. With this decomposition of z*z we
may write the CFAR matched subspace detector as

VSNR
VIVSNRZ + N — 1

where the sample estimate of output SNR is

- 1 NN
\/@\/5*(1—%)&/]\,_1“5—\/@ (20)

The double over-bar indicates that we are estimating output SNR
by two sample estimates : one for 7z and one for 7.

cos = (19)

VSNR =

To complete the interpretation of coherence, we write it as

t
COS = W, (21)

where ¢, within a scale constant, is the classical ¢-statistic

cos VSNR

= =
N~1

1—]cosf? (22)

So, the CFAR matched filter is a monotonic function of the
statistician’s classical ¢ test; it is simply the estimated output SNR,

divided by v N — 1.
Finally, the CFAR matched subspace detector of Equation 7 takes
the canonical form

where 2 is the sample estimate of the noise variance scaling, o

—2 2’1~ (P¢)§
S . 2 Ly 4
3] N1 (24)

This formula for squared coherence may also be written in terms
of the sample estimate of the output SNR :

(25)

To complete the interpretation of squared coherence, we write it
as

F
= 26
b= (26)
where F, within a scale constant, is the classical F'-statistic
Jo] SN
F=-r—=—. 27
1-8 N-1 (27)

So, the coherence detector is a beta version of the statistician’s
classical F test; in its F' form it is simply the estimated output
SNR, divided by N — 1.

Let’ summarize : The four matched subspace detectors described
here are the uniformly-most-powerful (UMP) invariant detectors
for a subspace signal in Gaussian noise. They have the appropri-
ate invariances and evocative geometries. They all have simple
interpretations in terms of estimated output SNR. These geome-
tries and SNR interpretations are different than those published
by Picinbono [10], but there is an idea in common, namely a de-
composition, of the measurement space into the direct sum of a
signal subspace and an orthogonal subspace.

4. Adaptive
subspace detectors:
geometries and
invariances

The matched subspace detectors require prior knowledge of the
noise covariance matrix R. This information is usually not known,
meaning that it must be estimated and used correctly in an adaptive
detector. A seemingly ad hoc approach to this problem is to simply
replace the noise covariance by a sample covariance mattix,
constructed from a sequence of M i.i.d. CN|Q, R] training vectors

Yp YooYy

1 M
= 37 2l (28)
1=1
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These training vectors are independent of the test vector ¥, the
measurement to be tested for Hy versus H,. They share the same
noise structure R as y, but not necessarily the same noise scaling
(in the adaptive context, o is a relative scaling of the test vector
relative to the training vectors) {11].

4.1. Coherence adaptive matched filter

Using the Sample covariance, an adaptative matched filter (AMF)
is given by :

*S—l
n= —————*———‘1/1 Y 2.

w*s*1¢o<
AN

This statistic measures the resolution of the measurement y onto
the signal ¢ in an adaptively witened coordinate system. For
purposes of interpretation, it is useful to write the coherent AMF
as

(29)

, (30)

where the matrix 1 is the sample estimate of identity and where @

and Z are resolutions of ¢ and z in the coordinate system T

T=R V2R §=1 "y z=1"

(31)

The AMF is invariant to translations of the measurement Z in the
orthogonal subspace (). Thus, the invariance set is the surface
of a plane, where the projection of the measurement 2 onto the
signal @) is constant. So Figure 1 still applies.

4.2. Adaptive subspace detector

The adaptive subspace detector (ASD) is given by the magnitude-
squared of the coherence AMF :

= STy
Pm 32

X @S o2 21). (32)
This detector was first proposed by Robey, et al. [12] and by Chen
and Reed [13]. Itis a simplification of the Kelly detector [ 14], wich
is the actual GLRT corresponding to x? for the adaptive case (for
more explanation, see [7}]. The ASD measures the energy of the
measurement y contained in the subspace (1), in the adaptively
whitened coordinate system. the ASD may be rewritten as

(33)
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where ¢ and Z are adaptively whitened versions of ¢ and y.
this statistic is invariant to rotations of the measurement Zin the
subspace (¢), and to translations in the perpendicular subspace

(@L Thus, the invariance set is the surface of two planes, where

the energy of the measurement Z in the subspace (qﬁ) is constant,
consistent with F igure 2.

4.3. CFAR adaptive maiched filter

The CFAR adaptive matched filter is

P87y
\/w*S lL\/y*S Yy

It measures the coherence, or direction cosine, of the measurement
y with the signal ¢ in the adaptive whitened coordinate system.
This detector may be rewritten in adaptively whitened coordinates
as

(34)

A#1 N
2z

T Ve

1t is invariant to rotations of the measurement Z in the perpendic-

1@;

€08 = (35)

L
ular subspace (¢ ), to scaling of the sample covariance 8, and to
a different scaling of the measurement {15]. That is,

(eay, ¢38) = Oy, §). (36)

Thus, the invariance set is the surface of a cone, where the angle

that the measurement Z makes with the signal d) is constant,
consistent with figure 3.

4.4. CFAR adaptive subspace detector

The CFAR ASD is given by

[*S ™ y|?
W*S'yY)(y*S~ly)

This statistic measures the squared coherence, or cosine-squared,
between the measurement y and the subspace (1) in an adaptively
whitened coordinate system. In the adaptively whitened coordi-
nates, the statistic may be rewritten as

B= 27 (37)

(38)

It is invariant to rotations of the measurement Z in the subspace
(¢). to rotations in the perpendicular subspace (¢)*, to scaling
of the sample covariance S, and to a different scaling of the
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measurement y. Thus, the invariance set is the surface of a double
cone, where the fractional energy of the measurement Z in the
subspace ((Z) is constant, consistent with Figure 4. These are
fundamental invariances for incoherent signal detection when
signal phase and channel attenuation are unknown.

5. Adaptive
subspace detectors:
SNR interpretations

As with the matched subspace detectors, the adaptive subspace de-
tectors can be rewritten in terms of maximum likehood estimates
of the signal gain ;1 and noise scaling o, yielding interpretations of
the statistics in terms of estimated output SNR. These maximum
likelihood estimates are obtained in the adaptative scenario by
considering the joint density function of both the test and training
data vectors:

1 1
fi@y, Yy = mexp{‘ﬁ@* M@T
M
Ry ) ] g e (ol R 1w, 69
m=1

Maximizing this likelihood function over p and o yields the
following maximum likelthood estimates for the signal gain and
noise scaling [11] :

%z ., ZPZ

i=== i =—=Z (40)
¢ 9 ¢ 9

~ . . L

U:\/z =Pz (41)

Here L is an over-training parameter, L = M — N + 1.

These estimates only depend on two vectors, Z and é Moreover,
the angle between Z and 25 is invariant to rotation of the coordinate
system in which it is measured. Therefore, we may construct an
orthogonal span for the two-dimensional subspace defined by the
signal (E and the measurement 2, and complete N-dimensional
space by constructing the perpendicular subspace. To this end,
we follow the procedure surrounding Equation § to construct U
and apply it to Z and (Z This allows us to produce the following
SNR interpretations.

5.1. Adaptive subspace detectors

The adaptive matched filter may be written as

ﬁzg ¢'$ = VSNR, (42)

which is an adaptive sample estimate of the output voltage signal-
to-noise. Similarly, the noncoherent adaptive subspace detector
may be written as
5 _BPss o
X? = —5¢ ¢ =SNR,

o2 =—

(43)

which is an adaptive sample estimate of the output signal-to-noise
ratio.

5.2. CFAR adaptive subspace detectors

The CFAR adaptive matched filter may be written as

&‘

(44)

_ /o b
COS = — MN
\/mpé ?+32 7

As in Section 3.2, ¢os may be rewritten in terms of signal gain
noise scaling estimates as

t VSNR

=P = N
+ \/[V§NR|2+T

b

*

= 3 1 T ==
veNR = 22 T = eVee (1)
G ONT APz
where { is the adaptive t-statistic
~ Cos L ==
t = = SNR 46
1 — |€os|? I\/[NV (46)

Sothe adaptive tis justascaled version of the adaptively estimated
output voltage SNR, and vice-versa. The double hat indicates that
the estimate of VSNR uses estimates of both ¢ and o.

Finally, the CFAR ASD may be written as

5 X
ﬁ = - _;]\/IN (47)
A9 % + o> =
Again as in Section 3.2, B may be written as
G- F SNR
F+1 gup4 MN
L
= MN ZP2Z Gl2 s~
SNR = 2 = L‘i'?_ ¢, (48)

L Z0-P2
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where F is the adaptive F-statistic

- B L =
F=—"_— " SNk 4
—SNR (49)

So, the CFAR ASD is abeta version of an adaptive F test, whichis
simply the adaptively estimated output SNR, divided by M N/L.
The approach of substituting a sample covariance for the known
covariance was independently suggestedin (8,9, 15]. The adaptive
CFAR statistic of Equation 48 has since been shown to be the
Generalized Likelihood Ratio Test over the joint likelihood of the
test and training data [11].

6. conclusions

In this paper we have reviewed the theory of matched and adaptive
subspace detectors [7] for the case where the signal to be detected
lies in the one-dimensional complex subspace (i). The story
generalizes completely to the case where the su_b_space (D) is
multidimensional, thus making it applicable to matched field

processing, detection in multi-path, etc.

The most succinct summary statement for the matched subspace
detectors is that they are uniformly-most-powerful-invariant and
generalized likelihood ratio tests. Beyond this, their geometries
and invariances are evocative, and they may all be interpreted in
terms of estimated output SNRs. For a quite different perspective,
see [10], which is one of the first detection papers to develop
insights from signal and orthogonal subspace decompositions.

Of the adaptive subspace detectors discussed in this paper, only
the two CFAR tests are truly generalized likelihood ratio tests.
But all four have evocative geometries and invariances, and all
four may be interpreted in terms of estimated output SNRs.
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