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Currently, many simulation tools based on numerical methods are available for modelling 

of low frequency electromagnetic problems such as eddy current related problems, 

electrical machines and electromagnetic actuators analysis. Commonly, it’s the finite 

element method (FEM) which is used; nevertheless, the exploit of other numerical 

approaches, such as the finite volume method (FVM) can be strongly promising. 

Accordingly, the main purpose of this paper is to present the FVM method as an alternative 

method for low frequency electromagnetic problems. Thus, 2D and 3D FVM computer 

codes are developed and examined through the analysis of two TEAM workshop problems 

and an experimental electromagnetic micro-actuator. These types of problems are 

habitually analyzed by the FEM method. By using the FVM method, the solution of the 

above listed problems includes eddy current, torque and magnetic force computation. 
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1. INTRODUCTION

Computational electromagnetic tools are impressively 

indispensable for analysing and optimization of 

electromagnetic devices such as electrical machines. These 

numerical tools help powerfully designers in order to 

minimize both time and cost. At the present time, many 

simulation tools based on numerous numerical methods are 

commercially available even for low (LF) or high (HF) 

frequency electromagnetic problems. For LF electromagnetic 

problems such as related to eddy current analysis or magnetic 

force computation, it is the finite element method (FEM) 

which is commonly used according to its efficiency. What's 

more, because the method is enough developed and famously 

known throughout the scientific community in 

electromagnetic. However, there exist other numerical 

methods which can be as well extremely promising for LF 

electromagnetic problems, such as the finite volume method 

(FVM). Several previous works have been interested in the 

comparison between the FVM and the FEM regarding various 

physical problems [1-4]. Compared to the FEM, the FVM 

method is especially promising in terms of computational time 

(CPU) and required storage memory [5-7]. Originally, the 

FVM method is applied for the solution of problems related to 

fluid flows [8, 9]. Then, the FVM method is applied to solve 

Maxwell's equations in the HF domain such as in wave 

propagation problems [10, 11]. The method is applied 

moreover to solve some electrostatic problems such as in the 

study [12]. In the last few years, the FVM is presented as a 

new method to solve LF electromagnetic problems [13, 14] 

where quasi-static magnetic field is analysed. As well, other 

researchers are interesting in developing FVM in time domain 

to analyze nonlinear electromagnetic field [15].  

For 3D LF electromagnetic problems, note that the FVM 

method has been already developed where a simple hexahedral 

volume element is used [16, 17] (Figure 1.a). Thus, in order to 

handle more complex geometries, this paper proposes a 3D 

unstructured FVM by making use of prism element (Figure 

1.b).

(a) (b) 

Figure 1. Control volume shape for 3D FVM method 

(a) Hexahedral mesh, (b) Prism mesh

As well, for 2D LF electromagnetic problems, a simple 

rectangular control volume is usually associated to the FVM 

[18]. Furthermore, to give more flexibility to the FVM to 

analyze more complex geometries in the 2D case, this paper 

proposes in addition a 2D unstructured FVM by making use of 

triangular mesh.  

To check the developed computing codes, two TEAM 

workshop problems and an experimental electromagnetic 

micro-actuator are analyzed. The solution of 1st TEAM 

includes the determination of levitation height of an 

aluminium plate and the applied magnetic force, while the 2nd 

one requires torque computation. The two TEAM problems 

require eddy current computation for either force or torque 

computation. The third problem is related to magnetic force 

computation and dynamic analyses. 

2. FVM FORMULATION

To give an idea as well as more details on the FVM method, 

in this section we will study the FVM in both cases 2D with 

triangular element and 3D with prism volume. For both cases, 

starting from Maxwell’s equations [19], in terms of the 
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magnetic vector potential A, the equation to solve is: 

 

s

1
ind


  = +A J J   (1) 

 

  0 at infinity=A   (2) 

 

μ is the magnetic permeability, Js is the source current 

density and Jind is the eddy current density. Eq. (2) describes 

the impressed Dirichlet condition at infinity. 

 

2.1 2D case 

 

In the 2D case the magnetic flux density is defined only in 

the Oxy plan and consequently the magnetic vector potential 

and the source current density have only one component as: 

 

zA=A k   (3) 

 

 s szJ=J k   (4) 

 

where, k is the unit vector in the z direction. Thus, in this case 

Eq. (1) can be rewritten as: 
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The eddy current density, which is induced either by 

movement or temporal variation of the current source, is given 

by: 
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In Eq. (6) v is the velocity, B is the magnetic flux density 

and σ is the electrical conductivity. In the 2D case; the velocity 

term can be rewritten as follows: 
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Figure 2. Triangular mesh scheme for 2D FVM method 

vx and vy are the velocity components in the Oxy plan. By 

substituting Eq. (7) in Eq. (6), and by using the harmonic 

representation, Eq. (5) becomes: 
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At this stage, Eq. (8) has to be solved by the 2D FVM 

method with triangular mesh. As described in Figure 2, in the 

case of triangular mesh scheme, each principal control volume 

Ωp is represented by its principal node P and surrounded by 

three neighbourhood control volumes represented by their 

nodes K, L and M. 

Subsequently, the FVM method involves a surface 

integration of Eq. (8) over the principal control volume Ωp of 

node P as:  
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The first term in Eq. (9) can be rewritten as follows: 
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n is the normal vector and dei is the ith edge length with 

respect to i=1, 2, 3. The term 𝛻𝐴𝑧 . 𝒏𝑖  can be approximated for 

each edge by a finite difference, for example for the edge de1: 
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By the way, Eq. (10) leads to an algebraic expression as: 
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Eq. (12) can be rewritten as follows: 
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Let’s assume a uniform distribution of the current density in 

the principal control volume Ωp. Therefore, the source term is 

integrated as follows: 
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The integration of all terms given by Eq. (9) leads in an 

algebraic equation that express the potential in the principal 

control volume in terms of potentials of its three 

neighbourhoods as: 
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The coefficients Cp, Ck, Cl and Cm describe geometrical and 

physical properties associated with the principal control 

volume and its neighbourhoods. JszP is the current density in 

the principal control volume. Rewriting Eq. (15) for all control 

volumes, thus leads to the following matrix equation: 

 

    2 Jz szA =M   (16) 

 

Compared to the FEM method, we point out that the FVM 

method leads to a sparser matrix M2; this particular property 

are very significant regards to computational time and required 

storage memory. 

 

2.2 3D case 

 

The 3D standard FVM method featured by hexahedral 

control volume shape has been already demonstrated in 

previous works showing its effectiveness for electromagnetic 

devices. Unfortunately, the hexahedral element appears too 

cost in the case of complex geometry, such as for example for 

circular coils. To overcome the limitation of the standard FVM 

method and enable it to handle more complex geometry, we 

propose a 3D unstructured FVM method. In such alternative 

the simple hexahedral control volume is replaced by a prism 

control volume (Figure 3). 

 

 
 

Figure 3. Prism control volume for 3D FVM method 

 

Here, each control volume element Dp consists of a central 

node P and delimited by five faces. The neighbourhood 

control volumes of Dp are represented by their central nodes K, 

L and M in the Oxy plan, B and T according to the z direction. 

As in the 2D case, Eq. (1) must be integrated over the prism 

control volume: 

 

( )s

1

p p

p ind p

z z

d dz d dz


 

    
      = +  
       
   A J J   (17) 

 

with: 
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According to the Green-Ostrogradsky theorem, Eq. (17) 

becomes: 
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For the first term we have: 
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Let consider for example the integration of the x component: 
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Let us define the first coefficient as: 
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Subsequently, all the coefficients in the previous algebraic 

equation can be rewritten as the the following general form: 
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The developpement of the x component of the first term 

leads to the following algebraic equation: 

 

(

) (

)

1 1 2 2 3 3

4 4 5 5 1 1 2 2

3 3 4 4 5 5

1 2 3 4 5

( - ) ( - ) ( - )

( - ) ( - ) - C A C A

C A C A C A

( )

x xp x xp x xp

x xp x xp x x

x x x

xp

C A A C A A C A A

C A A C A A

A C C C C C

− + +

+ + = +

+ + +

+ + + + + 

  (24) 

 

By assuming that the current density is constant within the 

control volume, the x component of the potential in the central 

node P is given by: 
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Cp, C1, C2, C3, C4, C5 and C6, describe geometrical and 

physical properties associated with the principal control 

volume and its five neighbourhoods. Vxi is the electrical 

potential. Similarly, we can find both y and z components of 

the potential in the central node as: 
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These last three equations can be rewritten in a matrix form 

as: 

 

    3 s=M A J   (28) 

 

As in the 2D case, the 3D FVM method leads to sparse and 

symmetric matrix M3; this feature is strongly significant 

regards to computational time and required storage memory 

especially for the 3D case. By the way, both 2D and 3D 

computer codes are developed in Matlab. To check the 

developed computer codes, two TEAM workshop problems 

and an experimental electromagnetic micro-actuator are 

analyzed in the next sections. 

 

 

3. APPLICATION FOR SOME LF 

ELECTROMAGNETIC PROBLEMS 

 

3.1 TEAM workshop problem No. 30 

 

The TEAM Workshop problem No.30 deals with a special 

three phase induction motor, in which the eddy current in the 

rotor is induced by the time harmonic current in the stator 

windings, and by the rotation of the rotor [20]. The 

arrangement of the three phase coils A, B and C is shown in 

Figure 4. The rotor angular velocity is ranging from 0 to 1200 

rad/s. In this special three phase induction motor, the windings 

are not embedded in slots and the rotor is made of steel and 

aluminium with depth of 100cm. The relative magnetic 

permeability of the steel is μr = 30. The motor is supplied with 

current density 310A/cm2, 60Hz. 

 

 
 

Figure 4. Description of TEAM workshop problem No. 30 

r1=2, r2=3, r3=3.2, r4=5.2, r5=5.7, cm 

 

To solve this problem, the developed 2D FVM computer 

code using triangular mesh is used. Thus, both fundamental 

quantities of the motor are computed i.e. the electromagnetic 

torque and the induced voltage in the phase coil A. The 

electromagnetic torque is calculated by using the following 

equation: 

em indzC dV=   r J B   (29) 

 

Table 1, Figure 5 and Figure 6, illustrate a comparison of 

the fundamental quantities of the motor, in which we 

recognize a very small difference between the 2D FVM 

solution and the analytical solution provided by the TEAM 

workshop problem. Both results appear to be comparable at all 

angular velocity of the rotor. Figure 7, Figure 8 and Figure 9 

show respectively, the magnetic flux density vectors, the 

induced current density in the rotor and the electromagnetic 

force vectors in the rotor at angular velocity of 200 rad/s. As 

expected, this modelling makes obvious that the finite volume 

method is a competitive method in the solution of problems 

related to eddy current and electromagnetic torque 

computation in the 2D case. 

 

 
 

Figure 5. The electromagnetic torque 

 

 
 

Figure 6. The induced voltage in the phase coil A 

 

3.2 TEAM workshop problem No. 28 

 

Figure 10 shows the electromagnetic levitation problem; 

TEAM workshop problem No. 28 [21]. The problem is made 

with a cylindrical aluminium plate of electrical conductivity 

σ=3.4E7S and m=0.107kg placed above two cylindrical coils. 

The inner coil has 960 turns while the outer coil has 576 turns. 

Both coils are electrically connected in series, but with inverse 

sense of winding. By this configuration, the plate is subject to 

an electromagnetic repulsion force Fz produced by eddy 

currents induced in this plate. This electromagnetic force can 

be expressed as following:  

 

Fz ind= J B   (30) 
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Table 1. Comparison between the FVM solution and the analytical results 

 
 Electromagnetic Torque [Nm] Induced Voltage in The Phase Coil A [V] 

Angular Velocity [rad/s] Analytical Solution FVM Solution Analytical Solution FVM Solution 

0 3.83 3.70 0.63 0.58 

200 6.50 6.47 0.84 0.76 

400 -3.89 -3.88 1.48 1.42 

600 -5.76 -5.96 0.76 0.68 

800 -3.59 -3.96 0.62 0.57 

1000 -2.70 -2.73 0.58 0.54 

1200 -2.25 -2.73 0.56 0.53 

 

 
 

Figure 7. Vectors of the magnetic flux density at 200rad/s 

 

 
 

Figure 8. Eddy current density [A/m2] in the rotor at 

200rad/s 

 

 
 

Figure 9. Vectors of the electromagnetic force in the rotor 

The aim here is to check the efficiency of the developed 3D 

FVM computer code associated to the prism mesh, that’s why 

we don’t take advantage of the axisymmetrical feature of the 

problem. 

 

 
 

(a) (b) 

 

Figure 10. TEAM workshop problem No. 28 (a) Description, 

(b) Prism mesh 

 

The solution of TEAM workshop problem No.28 requires 

the determination of the levitation height hz of the aluminium 

plate which refers to the distance between the lower edge of 

the plate and the upper edge of coils. In order to give the 

equilibrium position of the plate, i.e. equality of both 

electromagnetic force Fz and the weight force of the plate Fp, 

the solution of a correspondent inverse problem is carried out 

as shown in Figure 11. 

 

 
 

Figure 11. Flowchart of the inverse problem 

 

The algorithm of the inverse problem can be summarized as 

follows: 

Step 0: Give an initial value of the levitation height hz(k), 

k=0. 
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Step 1: By using the direct electromagnetic formula i.e. Eq. 

28, and for a given hz(k) we compute the electromagnetic force 

Fz(k) by Eq. 30. 

Step 2: Check the convergence criterion of the inverse 

problem given by forces difference. If the convergence 

criterion is satisfied the iteration process is stopped, else the 

levitation height hz(k) is updated for the next inverse iteration 

k=k+1, and return to step (1). 

Step 3: The levitation height of the aluminium plate hz(k) 

and the repulsive force Fz(k) are given by the last inverse 

iteration.  

Table 2 shows a summary of the results. For each inverse 

iteration k, both the repulsive electromagnetic force Fz and the 

levitation height hz are computed. After eight inverse 

iterations, the difference F becomes small enough and that is 

why the iteration process is stopped. As results, the aluminium 

plate is levitated with 11.84mm whereas the experimental 

value is 11.4mm [21]. 

 

Table 2. Summary of numerical results obtained by 3D FVM 

 

Inverse iteration k 
Levitation 

hz[mm] 

Repulsive force 

Fz[N] 

1 

2 

3 

4 

5 

6 

7 

8 

15 

7.5 

11.25 

13.13 

12.19 

11.72 

11.95 

11.84 

0.59 

2.12 

1.17 

0.84 

0.99 

1.08 

1.03 

1.06 

Experimental levitation 

[mm] 
11.4 

 

As well as in the 2D case, by this we show that the FVM 

method is a competitive and can be an alternative method in 

the solution of problems related to eddy current and 

electromagnetic force computation in the 3D case. 

 

3.3 Electromagnetic micro-actuator 

 

In this section, an experimental electromagnetic micro-

actuator has been analyzed (Figure 12). The micro-actuator is 

made with two fixed identical coils and two permanent 

magnets. Each magnet is bonded to a non-magnetic material 

disc as a magnet support. In addition, the magnets are placed 

in opposite polarities. For more details on this micro-actuator 

as dimensions we refer to [22, 23].  

 

 
 

Figure 12. The actuation steps of the micro-actuator 

The actuating mode consists with moving vertically both 

permanent magnets inside a non-magnetic cylindrical channel. 

The magnetic force applied to magnets is generated by means 

the interaction of magnetic fields of both magnets and coils. 

The actuation is produced with a cyclical movement, where 

one cycle can be subdivided into three main actuation steps 

(Figure 12). 

Let consider only the actuation of the upper magnet i.e. only 

the top coil will be supplied. Accordingly, only steps 1 and 3 

are measured. In step 1, the top coil is supplied (I1=0, I2≠0) 

and thus a magnetic repulsive force is applied which drive the 

upper magnet to reach the lower one. In step 3, both coils are 

unsupplied (I1=I2=0) and hence a repulsive force between 

magnets drive the upper magnet to achieve the upper coil 

while the lower magnet still fixed to the lower coil.  

The aim here is to simulate the actuation mode of the upper 

magnet by using the FVM method. The magnetic force applied 

to the upper magnet can be expressed as following:  

 

z a xF J B=    (31) 

 

where, Ja is the equivalent fictive current of the upper magnet 

according to the Ampere’s approach: 

 

0

r

a
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
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J   (32) 

 

In order to simulate the dynamic characteristic of the upper 

magnet i.e. magnet displacement versus time, the following 

mechanical equation is used: 

 
2
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
= +
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  (33) 

 

where, m and z are respectively the mass and the displacement 

of the upper magnet, and g is the gravity. Both numerical and 

experimental characteristics of the actuation are compared in 

Figure 13. Since frictions are not taken into account in the 

mechanical equation, the elapsed time in the numerical 

characteristic is less than in the experimental one with a 

difference of 4ms approximately. However, as in the two 

previous problems, the FVM method shows once more its 

effectiveness in the solution of problems related to 

electrodynamics. 

 

 
 

Figure 13. Dynamic characteristic of the upper magnet 

 

 

4. CONCLUSION 

 

This paper presents the FVM as an alternative method for 

low frequency electromagnetic problems and in particular 
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those require eddy current and electromagnetic force or torque 

computation. Both 2D and 3D computer codes are developed 

and tested. To examine the efficiency of both programs and 

showing the competitiveness of the FVM, both TEAM 

workshop problems No.28 and No.30 and an experimental 

electromagnetic micro-actuator are analyzed. One can see that 

numerical results obtained using the FVM are compared to the 

analytical or experimental results provided by these problems. 

Furthermore, the 3D FVM associated to the prism mesh can 

be a very promising for modelling problems without being 

constrained by their geometries. 
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MOMENCLATURE 

 

Js Source current density 

Jind Eddy current density 

A Magnetic vector potential 

B Magnetic flux 

v Velocity 

Cem Electromagnetic torque 

Fz Electromagnetic force. 

hz Levitation height 

g Gravity 

m Mass 

Ci 
Geometrical and physical properties 

associated with the control volume 

Greek symbols 

 


  Magnetic permeability 

σ  Electrical conductivity 

Ωp Principal control volume of node P 
  Magnetic reluctivity 

 

Subscripts 

 

FVM Finite volume method 

FEM Finite element method 
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