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 This paper presents a decentralized Takagi Sugeno (T-S) control scheme for a PV powered 

water pumping system, which is composed of a photovoltaic generator (PVG) supplying 

via a DC-DC boost converter, a DC-AC inverter, an Induction Motor coupled to a 

centrifugal pump. A T-S fuzzy controller is developed for MPPT (Maximum Power Point 

Tracking) to control the DC-DC boost converter, under variable solar irradiation and 

ambient temperature. An observer-based T-S fuzzy controller is dedicated to control the 

IM to guarantee the field-oriented control performances. From the optimal PV power 

provided in the MPP conditions, the optimal speed is calculated and delivered to control 

the IM, so that the proposed PV pumping system operates in optimal conditions and thus, 

maximizes the quantity of water pumped daily. Finally, simulation results are presented 

for both transient and steady state operation while taking into account all changes in 

climatic conditions, in order to validate the efficiency of the developed decentralized 

controller. 
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1. INTRODUCTION 

 

Nowadays, recently and in a variety of countries, people 

suffer from the lack of potable water necessary to consume. 

Most of these countries are located in isolated areas where, 

conventional pumping systems is not a reliable solution, since 

that the electric power is not available. And, given the 

importance of this issue, renewable energy, specifically 

photovoltaic one, is integrated here to compensate the 

unavailability of electric power. Hence PV water pumping 

systems are considered as one of the most reliable remedy. 

More attention is dedicated to these operations’ design and 

implementation, in order to perform in a very reliable and 

economical way [1]. 

Different control strategies have been already developed for 

PV pumping systems; a dynamic performances analysis of a 

permanent magnet brushless DC (PMBLDC) motor is 

developed; proportional integral (PI) and a fuzzy logic (FL) 

speed controller are presented [2]. Betka and Moussi [3] has 

presented an optimal operation of a direct photovoltaic 

pumping system based on an induction motor (IM). Also 

sliding mode control design to track the maximum power point 

(MPPT) for a photovoltaic pumping system is proposed by 

Ellouze et al. [4], and Ameziane et al. [5]. 

There are a variety of motor pump unit configurations that 

are applied to PV pumping systems. Depending on the 

required application, the pumping system can be based on, 

submersible and surface or floating pumps types [6]. The 

commonly used pump is the centrifugal pump. This type of 

pump, the movement of the water through the pipe is assured 

by the impeller’s rotation, while equally depending on the total 

head of the water and the obtained mechanical power. 

Likewise, the pump type, both AC and DC motors are used 

for the PV pumping systems. As it is frequently known about 

the DC motor, it indicates the disadvantage of brushes 

maintenance cost [7] which permits to permanent magnet 

brushless DC motors to be introduced in some applications [8]; 

but the PMBLDC motor is still not the best because of its high 

cost and its complicated hardware. Recent researches in AC 

motors made the (IM) an attractive and a worth option to take 

into consideration for the AC motors-based pumping setups 

[8]. 

Lately, the Takagi-Sugeno (T-S) approach is deemed to be 

a very effective method for modeling non-linear systems. It is 

based on the decomposition of the dynamic system behavior 

into different operation areas, that each one is presented by a 

local linear sub-model, in order to reduce the complexity of 

modeling task. These local sub-models are contributed 

through IF-THEN rules to the T-S global model, which is 

obtained by the interpolation of all sub-models [9-11]. 

 In recent years, the design of decentralized controllers has 

been studied for large scale systems, due to the physical 

configuration and high dimensionality of this kind of system; 

which makes centralized control is neither economically 

feasible nor even necessary. 

Since power systems are modelled as large-scale nonlinear 

systems, much effort has been focused on the application of 

decentralized control for these kind of systems [12, 13]. 

Particularly, a robust decentralized excitation control scheme 

is proposed for multimachine power system transient stability 

enhancement [14]. This work is divided into eliminating the 

nonlinearities of the multimachine power system at first and 

then developing a robust decentralized controller in order to 

guarantee the stability of the whole system. Bian et al. [15], 

Jian and Jiang [16] presented an adaptive decentralized control 

for large scale systems with unknown parameters and dynamic 
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uncertainties with an application to power systems. By using 

the theory of robust adaptive dynamic programming (RADP), 

a decentralized optimal control design is given for large-scale 

systems with unmatched uncertainties.  

In this paper we will develop a trajectory tracking 

decentralized control law for controlling both the boost 

converter and the induction motor using the multi-models 

fuzzy T-S technique. The aim of the proposed decentralized 

control is to decompose the global large-scale system (PV 

pumping system) into two sub-systems. Thus, the controller 

synthesis is equally divided into two local controllers in a way 

that for each sub-system is associated a local independent 

controller. First, T-S fuzzy controller is developed to insure 

the MPPT of the PV conversion first sub-system. In the other 

hand, the control of real large-scale systems, makes it 

unreasonable to assume that all states are measured, therefor 

an observer-based T-S fuzzy controller is designed which 

consists in reconstructing the inaccessible variables required 

for the IM. The control method, for both systems is based on a 

reference model to specify the desired trajectory, and it is 

based on the minimization of the effect of the disturbances on 

the tracking error according to the criterion H∞. For the 

stability phase, the control strategy adopted is based on the 

Lyapunov theory to guarantee a performant trajectory tracking. 

Hence, stability conditions are formulated as linear matrix 

inequalities (LMI).  

The main contributions of this paper can be highlighted as 

follows: (1) Based on T-S fuzzy model, a H∞ decentralized 

control approach is designed to ensure that the whole system 

is asymptotically stable while rejecting external perturbations. 

(2) For the second observer-based T-S fuzzy controller, a one-

step algorithm is proposed and formulated as an optimization 

problem in terms of matrix inequality, in order to give the 

observer and controller gains on a single step. 

 

 

2. DESCRIPTION AND MODELING OF THE 

PROPOSED PUMPING SYSTEM 

 

 
 

Figure 1. Photovoltaic pumping system 

 
The above Figure 1 presents the structure of the proposed 

PV pumping system which is composed of the first subsystem: 

PV panel connected to a boost converter; a T-S fuzzy 

controller is developed to ensure the MPPT, and a second 

subsystem: an inverter connected to the unit motor-pump 

(centrifugal pump); equally a T-S fuzzy controller is dedicated 

for trajectory tracking under variable solar irradiation and 

ambient temperature.   

 

2.1 PV conversion system 

 

2.1.1 PV module 

In the case of high-power applications and in order to reach 

the desired voltage and current levels, solar modules are 

electrically wired together to obtain a continuous electric 

source known as a photovoltaic generator (PVG). In this work, 

the PVG used is composed of 10 LC120P solar panels 

connected in series. Its parameters are presented in the Table 

1. 

 

Table 1. LC120-12P module 

 
Parameters Abbreviations Values 

Maximum power 

Maximum current 

Maximum voltage 

Short circuit 

current 

Open circuit 

voltage 

𝑷𝒑𝒗𝒐𝒑𝒕 

𝑰𝒑𝒗𝒐𝒑𝒕 

𝑽𝒑𝒗𝒐𝒑𝒕 

𝑰𝒑𝒉 

𝑽𝒐𝒄 

120W 

7A 

17.1V 

7.7A 

21.8V 

 

 
 

Figure 2. Solar cell equivalent circuit 

 

According to the above Figure 2, the photovoltaic current is 

given by the following expression: 

 

𝐼𝑝𝑣 = 𝐼𝑝ℎ − 𝐼0 (exp (
𝐼𝑝𝑣 + 𝑅𝑠𝐼𝑝𝑣

𝑛𝑉𝑇
) − 1)

− (
𝑉𝑝𝑣 + 𝑅𝑠𝐼𝑝𝑣

𝑅𝑠ℎ
) 

(1) 

 

where, VT=
𝐾𝑇

𝑞
; K is the Boltzmann constant, T is the cell 

temperature, q is the elementary charge, RS and Rsh are series 

and parallel resistances, respectively, 𝐼𝑝ℎ  is the generated 

photo current depending on the insolation and temperature 

changes and 𝐼0 represents the diode’s saturation current. The 

following Figure 3 indicates the Power–Voltage (P-V) 

characteristic of the PV module. The curve shows the location 

of the MPP of the PV panel under various values of solar 

irradiation and constant cell temperature (25℃). 

 

 
 

Figure 3. Characteristics of the PV module for various 

values of insolation 

 

2.1.2 DC/DC boost converter modeling 

Figure 4 shows the basic circuit topology of the DC-DC 

boost converter. Its dynamic can be expressed with a linear 

differential equation that correspond to two phases: the store 

phase of electrical energy in the inductor (the switch is ON) 
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and the transfer phase of energy (the switch is OFF). This leads 

to an average model as follows: 

 

𝑥1̇(𝑡) = [𝐴11𝑥1(𝑡) + 𝐸1𝑤1(𝑡)]𝑢(𝑡)

+ [𝐴12𝑥(𝑡) + 𝐸1𝑤1(𝑡)](1 − 𝑢(𝑡)) 
(2) 

 

As well, 

 

𝑥1̇(𝑡) = 𝐴12𝑥1(𝑡) + (𝐴11 − 𝐴12)𝑥1(𝑡)𝑢(𝑡)
+ 𝐸1𝑤1(𝑡) 

(3) 

 

𝑥1̇(𝑡) = 𝐴12𝑥1(𝑡) + 𝐵1(𝑥1(𝑡))𝑢(𝑡) + 𝐸1𝑤1(𝑡) (4) 

 

where, 𝑢(𝑡) ∈ [0,1] 
 

𝐴11 =

(

 
 

0 −
1

𝐶1
0

1

𝐿
−
𝑅𝐿

𝐿
0

0 0 −
1

𝑅𝐶2)

 
 

; 𝐴12 =

(

 
 

0 −
1

𝐶1
0

1

𝐿
−
𝑅𝐿

𝐿
−
1

𝐿

0
1

𝐶2
−

1

𝑅𝐶2)

 
 

; 

𝐸1 = (

1

𝐶1

0
0

)     𝑥1(𝑡) = (

𝑉𝑝𝑣(𝑡)

𝐼𝐿(𝑡)

𝑉𝑐2(𝑡)

)      𝑤1(𝑡) = 𝐼𝑝𝑣(𝑡) 

 

where, 𝐵1(𝑥1(𝑡)) = (

0
𝑉𝑐2(𝑡)

𝐿

−
𝐼𝐿(𝑡)

𝐶2

) and u(t) defines the duty cycle. 

 

 
 

Figure 4. DC/DC boost converter 

 

2.1.3 MPPT searching algorithm 

The MPPT algorithm adapted in our work, is based on the 

instant computation of the partial derivative of PV power with 

respect to the PV current. The MPP searching bloc gets the 

insolation and the temperature as inputs and provides the 

optimal values of PV voltage and current. At a maximum 

power point, the following condition is verified [11]: 

 
𝑑

𝑑𝐼𝑝𝑣
(𝑉𝑝𝑣𝐼𝑝𝑣) = 0 (5) 

 

Therefore, 

 

𝑉𝑝𝑣 + 𝐼𝑝𝑣
𝑑𝑉𝑝𝑣

𝑑𝐼𝑝𝑣
= 0  (6) 

 

For maximum values of PV current and voltage, the value 

of PV power is maximum. By substituting Vpvopt and 
𝑑𝑉𝑝𝑣

𝑑𝐼𝑝𝑣
 by 

their values in in the above equation, we obtain the following 

equation: 

 
2𝑅𝑠
𝑛𝑉𝑇

𝐼𝑝𝑣𝑜𝑝𝑡 − (𝐼𝑝ℎ − 𝐼𝑝𝑣𝑜𝑝𝑡 + 𝐼0)𝐿𝑛 (
𝐼𝑝ℎ − 𝐼𝑝𝑣𝑜𝑝𝑡 + 𝐼0

𝐼0
)

= 0 

(7) 

The previous equation is solved for Ipvopt and indicates that 

this latter is proportionally dependent on the cell photocurrent 

Iph:  

 

𝐼𝑝𝑣𝑜𝑝𝑡 = 0.9091 𝐼𝑝ℎ (8) 

 

2.1.4 T-S fuzzy model for boost converter 

The Takagi-Sugeno models are considered as universal 

approximators that ensure the perfect description of the 

dynamic behavior of nonlinear systems. The premise variables 

 𝑧1𝑘(𝑡) = 𝑥1𝑘(𝑡) ∈  [𝑧1𝑘,𝑚𝑖𝑛  , 𝑧1𝑘,𝑚𝑖𝑛], 𝑘 = 1 , 2  of the PV 

system are chosen as follow: 

 

{
𝑧11(𝑡) = 𝑉𝑐2(𝑡)

𝑧12(𝑡) = 𝐼𝐿(𝑡)
 

 

Thus, the membership functions are defined by the 

following expressions: 

 

𝐹1𝑘,𝑚𝑖𝑛(𝑧(𝑡)) =
𝑧1𝑘(𝑡) − 𝑧1𝑘,𝑚𝑖𝑛
𝑧1𝑘,𝑚𝑎𝑥 − 𝑧1𝑘,𝑚𝑖𝑛

 

𝐹1𝑘,𝑚𝑎𝑥(𝑧(𝑡)) = 1 − 𝐹1𝑘,𝑚𝑖𝑛(𝑧(𝑡)) 

 

The weighting functions of the derived T-S model are given 

by: 

 

ℎ1(𝑧(𝑡)) = 𝐹11,𝑚𝑖𝑛(𝑧(𝑡)) ∗ 𝐹12,𝑚𝑖𝑛(𝑧(𝑡)) 

ℎ2(𝑧(𝑡)) = 𝐹11,𝑚𝑖𝑛(𝑧(𝑡)) ∗ 𝐹12,𝑚𝑎𝑥(𝑧(𝑡)) 

ℎ3(𝑧(𝑡)) = 𝐹11,𝑚𝑎𝑥(𝑧(𝑡)) ∗ 𝐹12,𝑚𝑖𝑛(𝑧(𝑡)) 

ℎ4(𝑧(𝑡)) = 𝐹11,𝑚𝑎𝑥(𝑧(𝑡)) ∗ 𝐹12,𝑚𝑎𝑥(𝑧(𝑡)) 

 

Eventually, the overall output of the fuzzy rule-based 

system is given by: 

 

𝑥1̇(𝑡)=∑ ℎ𝑖(𝑧(𝑡))(𝐴12𝑥1(𝑡)+𝐵1𝑖𝑢1(𝑡)+ 𝐸1𝑤1(𝑡))
4

𝑖=1

 (9) 

 

𝐵11 = (

0
𝑉𝑐2𝑚𝑖𝑛(𝑡)

𝐿
𝐼𝐿𝑚𝑖𝑛(𝑡)

𝐶2

);  𝐵12 = (

0
𝑉𝑐2𝑚𝑖𝑛(𝑡)

𝐿
𝐼𝐿𝑚𝑎𝑥(𝑡)

𝐶2

) 

𝐵13 = (

0
𝑉𝑐2𝑚𝑎𝑥(𝑡)

𝐿
𝐼𝐿𝑚𝑖𝑛(𝑡)

𝐶2

);   𝐵14 = (

0
𝑉𝑐2𝑚𝑎𝑥(𝑡)

𝐿
𝐼𝐿𝑚𝑎𝑥(𝑡)

𝐶2

) 

 

2.1.5 T-S fuzzy reference model 

The goal to reach from this work is to elaborate a T-S fuzzy 

controller capable of ensuring the tracking of an optimal 

reference model which will produce the appropriate reference 

state to track. The equation of the MPP reference model in the 

state form can be written as follow [11]: 

 

�̇�1𝑟(𝑡) = 𝐴1𝑟𝑥1𝑟(𝑡) + 𝑟1(𝑡) (10) 

 

where, 

 

𝐴1𝑟 =

(

 
 

0 −
1

𝐶1
0

1

𝐿
−
𝑅𝐿

𝐿
−
1

𝐿
(1 − 𝑢𝑜𝑝𝑡)

0
1

𝐶2
(1 − 𝑢𝑜𝑝𝑡) −

1

𝑅𝐶2 )
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𝑢𝑜𝑝𝑡 = √
𝑉𝑝𝑣𝑜𝑝𝑡

𝑅𝐼𝑝𝑣𝑜𝑝𝑡
 

 

The reference model (10) is also nonlinear via the premise 

variable 𝑧1𝑟 = (1 − 𝑢𝑜𝑝𝑡) . Thereby, the membership 

functions are presented by the following expressions: 

 

𝑁1𝑚𝑖𝑛(𝑧1𝑟(𝑡)) =
𝑧1𝑟(𝑡) − 𝑧1𝑟,𝑚𝑖𝑛
𝑧1𝑟,𝑚𝑎𝑥 − 𝑧1𝑟,𝑚𝑖𝑛

 

 

The matrices of the reference model are defined as: 

 

𝐴11𝑟 =

(

 
 
 
 
0 −

1

𝐶1
0

1

𝐿
−
𝑅𝐿
𝐿

−
1

𝐿
𝑧𝑟,𝑚𝑖𝑛

0
1

𝐶2
𝑧𝑟,𝑚𝑖𝑛 −

1

𝑅𝐶2 )

 
 
 
 

 

𝐴12𝑟 =

(

 
 
 
 
0 −

1

𝐶1
0

1

𝐿
−
𝑅𝐿
𝐿

−
1

𝐿
𝑧𝑟,𝑚𝑎𝑥

0
1

𝐶2
𝑧𝑟,𝑚𝑎𝑥 −

1

𝑅𝐶2 )

 
 
 
 

 

 

As so, the global T-S fuzzy reference model is: 

 

�̇�1𝑟(𝑡) = ∑ℎ𝑘(𝑧1𝑟(𝑡))(𝐴1𝑘𝑟𝑥1𝑟(𝑡) + 𝑟1(𝑡))

2

𝑘=1

 (11) 

 

2.1.6 T-S fuzzy controller 

This section is dedicated to develop the control laws which 

are also based on the T-S fuzzy modeling. Here, we adopted 

the same principle of the ordinary PDC controller but in 

addition, in the control law, we take into account the term of 

the tracking error: 𝑒1𝑟(𝑡)  =  (𝑥1(𝑡) − 𝑥1𝑟  (𝑡)) . As 

mentioned before, the objective is that, in spite of the change 

in the insolation values, the system needs to function in the 

optimum operating conditions which are characterized by a 

tracking error converging to zero. Thus, the trajectory tracking 

issue is formulated as a fuzzy state feedback control given by: 

 

𝑢1(𝑡) =∑ℎ𝑗(𝑧(𝑡))𝐾1𝑗(𝑒1𝑟(𝑡))

4

𝑗=1

 (12) 

 

where, K1j are the controller gains to calculate later. 

By replacing each of the reference state (11), the system real 

state (9) and the control law (12) by their expressions, we 

obtain the error dynamics as: 

 

𝑒1𝑟̇ (𝑡)

=∑∑∑ℎ𝑖

2

𝑘=1

(𝑧(𝑡))ℎ𝑗(𝑧(𝑡))ℎ𝑘(𝑧𝑟(𝑡))

4

𝑗=1

4

𝑖=1

× [
(𝐴12 + 𝐵1𝑖𝐾1𝑗)𝑒1𝑟(𝑡) +

(𝐴12 − 𝐴1𝑘𝑟)𝑥𝑟1(𝑡) + 𝐸1𝑤1(𝑡) − 𝑟1(𝑡)
] 

(13) 

 

Thus, by injection the above expression in the overall T-S 

fuzzy model (9), the following augmented state-space form is 

obtained: 

𝑥1̅̅ ̅̇(𝑡) =∑∑∑ℎ𝑖

2

𝑘=1

(𝑧(𝑡))ℎ𝑗(𝑧(𝑡))ℎ𝑘(𝑧1𝑟(𝑡))

4

𝑗=1

4

𝑖=1

× [�̅�𝑖𝑗𝑘𝑥1̅̅̅(𝑡) + 𝐸1̅̅ ̅𝑤1̅̅̅̅ (𝑡)] 

(14) 

 

where,  

 

𝑥1̅̅̅(𝑡) = [
𝑒𝑟1(𝑡)

𝑥1𝑟(𝑡)
]   𝑤1̅̅̅̅ (𝑡) = [

𝑤1(𝑡)

𝑟1(𝑡)
]   𝐸1̅̅ ̅ = [

𝐸1 −𝐼
0 𝐼

]  

�̅�𝑖𝑗𝑘 = [
𝐴12 + 𝐵1𝑖𝐾1𝑗 𝐴12 − 𝐴1𝑘𝑟

0 𝐴1𝑘𝑟
]   

 

r1(t) is the external input depending on the insolation and 

the temperature and W1(t) designates the external disturbance. 

The 𝐻∞ performance is added to the closed-loop control 

system in the purpose of attenuating the external disturbance’s 

effect; it is expressed as follow: 

 

∫ 𝑥1̅
𝑇

𝑡𝑓

0

(𝑡)𝑄
1̅
𝑥1̅(𝑡)   𝑑𝑡 ≤ 𝜌

1
2  ∫ 𝑤1̅̅ ̅

𝑇
𝑡𝑓

0

(𝑡)𝑤1̅̅ ̅(𝑡)   𝑑𝑡 (15) 

 

where, 𝑄1̅̅ ̅ = [
𝑄1 0
0 0

] is a positive definite weighting matrix 

and 𝜌1  is a prescribed attenuation level against the external 

disturbance effect. 

 

2.2 Induction Motor modeling and control 

 

To elaborate the electromagnetic dynamics of the IM, we 

are looking to determine the biphasic model of the machine in 

the synchronously d-q reference frame, in order to facilitate its 

study. In this context, these hypotheses are adopted: 

• The magnetic circuit is linear. 

• The permeability of the magnetic circuit is assumed 

to be infinite and iron losses are not taken into 

account. 

• The mechanical losses are neglected. 

The air gap thickness is constant while the notch effect is 

neglected. 

 

2.2.1 Mathematical model in d-q coordinates 

The dynamic model of the IM in the synchronous biphase 

d-q reference frame can be formulated as follow [17]: 

 

𝑥2̇(𝑡) = 𝑓2(𝑥2(𝑡)) + 𝑔2(𝑥2(𝑡))𝑢2(𝑡) + 𝑤2(𝑡) (16) 

 

𝑔2(𝑥2(𝑡)) = [

1

𝜎𝐿𝑠
0 0 0 0

0
1

𝜎𝐿𝑠
0 0 0

]

𝑇

; 𝑢2(𝑡) = [𝑢𝑠𝑑 𝑢𝑠𝑞]𝑇 

𝑥2(𝑡) = [𝑖𝑠𝑑 𝑖𝑠𝑞 𝜓𝑟𝑑 𝜓𝑟𝑞 𝑤𝑚]𝑇;  

𝑤2(𝑡) = [0 0 0 0 −
𝐶𝑟
𝐽
]
𝑇

 

𝑓2(𝑥2(𝑡)) =

[
 
 
 
 
 
 
 
 −𝛼𝑖𝑠𝑑 + 𝑤𝑠𝑖𝑠𝑞 +

𝐾𝑠

𝑇𝑟
𝜓𝑟𝑑 +𝐾𝑠𝑛𝑝𝑤𝑚𝜓𝑟𝑞

−𝑤𝑠𝑖𝑠𝑑 − 𝛼𝑖𝑠𝑞 −𝐾𝑠𝑛𝑝𝑤𝑚𝜓𝑟𝑑 +
𝐾𝑠

𝑇𝑟
𝜓𝑟𝑞

𝑀

𝑇𝑟
𝑖𝑠𝑑 −

1

𝑇𝑟
𝜓𝑟𝑑 + (𝑤𝑠 − 𝑛𝑝𝑤𝑚)𝜓𝑟𝑞

𝑀

𝑇𝑟
𝑖𝑠𝑞 − (𝑤𝑠 − 𝑛𝑝𝑤𝑚)𝜓𝑟𝑑 −

1

𝑇𝑟
𝜓𝑟𝑞

𝑛𝑝𝑀

𝐽𝐿𝑟
(𝜓𝑟𝑑𝑖𝑠𝑞 − 𝜓𝑟𝑞𝑖𝑠𝑑) −

𝑓

𝐽
𝑤𝑚 ]

 
 
 
 
 
 
 
 

 ; 

𝛼 = (
1

𝜎𝑇𝑠
+
1−𝜎

𝜎𝑇𝑟
); 𝐾𝑠 =

𝑀

𝜎𝐿𝑠𝐿𝑟
; 𝑇𝑟 =

𝐿𝑟

𝑅𝑟
; 𝑇𝑠 =

𝐿𝑠

𝑅𝑠
   

𝜎 = 1 −
𝑀2

𝐿𝑠𝐿𝑟
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where, ws is the electrical speed of stator, wm is the rotor speed, 

(usd;usq) are the direct and quadratic voltages of the stator, 

(isd;isq) are the stator currents and (𝜓𝑟𝑑;𝜓𝑟𝑞) are the flux of the 

rotor, Cr is the load torque, J is the moment of inertia, (𝑅𝑠;𝑅𝑟) 

are the rotor and stator resistances, (𝐿𝑠;𝐿𝑟) are the rotor and 

stator inductances, M is the mutual-inductance, f is the friction 

coefficient and np is the number of pole pairs. 

 

2.2.2 Open loop control strategy 

In this section we adopted the principle of rotor flow 

orientation for the open loop control, it ensures a natural 

decoupling between the stator current isd and the rotor flux 𝜓𝑟𝑑 

and between the stator current 𝑖𝑠𝑞  and the electromagnetic 

torque Cem. By replacing the state variables 𝑥2(𝑡) =
[𝑖𝑠𝑑𝑐 𝑖𝑠𝑞𝑐 𝜓𝑟𝑑𝑐 𝜓𝑟𝑞 𝑤𝑚𝑐]𝑇 of the machine by its 

reference corresponding ones 𝑥2𝑟(𝑡) =
[𝑖𝑠𝑑𝑐 𝑖𝑠𝑞𝑐 𝜓𝑟𝑑𝑐 0 𝑤𝑚𝑐]𝑇  in (16), we obtain the 

following model: 

 

{
 
 
 
 

 
 
 
 

𝑑

𝑑𝑡
𝑖𝑠𝑑𝑐 = −𝛼𝑖𝑠𝑑𝑐 + 𝑤𝑠𝑖𝑠𝑞𝑐 +

𝐾𝑠

𝑇𝑟
𝜓𝑟𝑑𝑐 +

1

𝜎𝐿𝑠
𝑢𝑠𝑑𝑐

𝑑

𝑑𝑡
𝑖𝑠𝑞𝑐 = −𝑤𝑠𝑖𝑠𝑑𝑐 − 𝛼𝑖𝑠𝑞𝑐 −𝐾𝑠𝑛𝑝𝑤𝑚𝑐𝜓𝑟𝑑𝑐 +

1

𝜎𝐿𝑠
𝑢𝑠𝑞𝑐

𝑑

𝑑𝑡
𝜓𝑟𝑑𝑐 =

𝑀

𝑇𝑟
𝑖𝑠𝑑𝑐 −

1

𝑇𝑟
𝜓𝑟𝑑𝑐

0 =
𝑀

𝑇𝑟
𝑖𝑠𝑞𝑐 − (𝑤𝑠 − 𝑛𝑝𝑤𝑚𝑐)𝜓𝑟𝑑𝑐

𝑑

𝑑𝑡
𝑤𝑚𝑐 =

𝑛𝑝𝑀

𝐽𝐿𝑟
(𝜓𝑟𝑑𝑐𝑖𝑠𝑞𝑐) −

𝑓

𝐽
𝑤𝑚𝑐 −

𝐶𝑟

𝐽

. (17) 

 

From the above system, we extract the reference stator 

current, the reference electrical speed and the open-loop 

control law: 

 

{
 

 𝑖𝑠𝑑𝑐 =
𝜓𝑟𝑑𝑐
𝑀

+
𝑇𝑟
𝑀

𝑑

𝑑𝑡
𝜓𝑟𝑑𝑐

𝑖𝑠𝑞𝑐 =
𝐽𝐿𝑟

𝑛𝑝𝑀𝜓𝑟𝑑𝑐
(
𝐶𝑟
𝐽
+
𝑓

𝐽
𝑤𝑚𝑐 +

𝑑

𝑑𝑡
𝑤𝑚𝑐)

 (18) 

 

𝑤𝑠𝑐 = 𝑛𝑝𝑤𝑚𝑐 +
𝑀

𝑇𝑟𝜓𝑟𝑑𝑐
𝑖𝑠𝑞𝑐  (19) 

 

{
 

 𝑢𝑠𝑑𝑐 = 𝜎𝐿𝑠 (
𝑑

𝑑𝑡
𝑖𝑠𝑑𝑐 + 𝛼𝑖𝑠𝑑𝑐 −𝑤𝑠𝑐𝑖𝑠𝑞𝑐 −

𝐾𝑠
𝑇𝑟
𝜓𝑟𝑑𝑐)

𝑢𝑠𝑞𝑐 = 𝜎𝐿𝑠 (
𝑑

𝑑𝑡
𝑖𝑠𝑞𝑐 + 𝛼𝑖𝑠𝑞𝑐 + 𝑤𝑠𝑐𝑖𝑠𝑑𝑐 + 𝐾𝑠𝑛𝑝𝑤𝑚𝑐𝜓𝑟𝑑𝑐)

  (20) 

 

2.2.3 T-S fuzzy model of the Induction Motor 

When the field-oriented strategy is implemented, the 

dynamics of the IM is similar to the separately excited DC 

motor and the electrical stator speed is expressed in the 

synchronously rotating frame as: 

 

𝑤𝑠 = 𝑛𝑝𝑤𝑚 +
𝑀

𝑇𝑟𝜓𝑟𝑑𝑐
𝑖𝑠𝑞  (21) 

 

Thus, the nonlinear model of the IM may be given as the 

state space form: 

 

{
𝑥2̇(𝑡) = 𝐴2𝑥2(𝑡) + 𝐵2𝑢2(𝑡) + 𝑤2(𝑡)

𝑦2(𝑡) = 𝐶2𝑥2(𝑡)
 (22) 

 

𝐴2(𝑥2(𝑡)) =

[
 
 
 
 
 
 
 
 −𝛼 𝑤𝑠

𝐾𝑠

𝑇𝑟
𝐾𝑠𝑛𝑝𝑤𝑚 0

−𝑤𝑠 −𝛼 −𝐾𝑠𝑛𝑝𝑤𝑚
𝐾𝑠

𝑇𝑟
0

𝑀

𝑇𝑟
0 −

1

𝑇𝑟

𝑀

𝑇𝑟𝜓𝑟𝑑𝑐
𝑖𝑠𝑞 0

0
𝑀

𝑇𝑟
−

𝑀

𝑇𝑟𝜓𝑟𝑑𝑐
𝑖𝑠𝑞 −

1

𝑇𝑟
0

0 0
𝑛𝑝𝑀

𝐽𝐿𝑟
𝑖𝑠𝑞 −

𝑛𝑝𝑀

𝐽𝐿𝑟
𝑖𝑠𝑑 −

𝑓

𝐽]
 
 
 
 
 
 
 
 

; 

𝐵2 =

[
 
 
 
1

𝜎𝐿𝑠
0 0 0 0

0
1

𝜎𝐿𝑠
0 0 0

]
 
 
 
𝑇

; 

𝐶2 = [
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

] ;  𝑤2(𝑡) = [0 0 0 0 −
𝐶𝑟
𝐽
]
𝑇

; 

 

𝐴2(𝑥2(𝑡))  includes nonlinear terms 𝑧2𝑘(𝑡) = 𝑥2𝑘(𝑡) ∈
[𝑧2𝑘𝑚𝑖𝑛 , 𝑧2𝑘𝑚𝑎𝑥] with 𝑘 = 1,2,3, as follow: 

 

{

𝑧21(𝑡) = 𝑖𝑠𝑑(𝑡)

𝑧22(𝑡) = 𝑖𝑠𝑞(𝑡)

𝑧23(𝑡) = 𝑤𝑚(𝑡)

 (23) 

 

Thus, the membership functions corresponding to the 

premise variables (23) are: 

 

{
𝐹2𝑘,𝑚𝑖𝑛(𝑧𝑘(𝑡)) =

𝑧2𝑘(𝑡) − 𝑧2𝑘,𝑚𝑖𝑛
𝑧2𝑘,𝑚𝑎𝑥 − 𝑧2𝑘,𝑚𝑖𝑛

𝐹2𝑘,𝑚𝑎𝑥(𝑧𝑘(𝑡)) = 1 − 𝐹2𝑘,𝑚𝑖𝑛(𝑧2𝑘(𝑡))

 (24) 

 

The global fuzzy model is inferred as follows: 

 

𝑥2̇(𝑡) =∑𝜃𝑖(𝑧(𝑡))(𝐴2𝑖𝑥2(𝑡)+𝐵2𝑢2(𝑡)+𝑤2(𝑡))

8

𝑖=1

 (25) 

 

where, 

 

{
 
 

 
 𝜃𝑖(𝑧(𝑡)) =

𝜆𝑖(𝑧(𝑡))

∑ 𝜆𝑖(𝑧(𝑡))
8
𝑖=1

;  𝜆𝑖(𝑧(𝑡)) =∏𝐹2𝑖,𝑘(𝑧2𝑘(𝑡))

3

𝑘=1

𝜃𝑖(𝑧(𝑡)) > 0; ∑𝜆𝑖(𝑧(𝑡))

8

𝑖=1

= 1  

 

 

𝜃𝑖(𝑧(𝑡))  is the normalized weight of the i-rule, and 

𝐹2𝑖,𝑘(𝑧2𝑘(𝑡)) is the grade of membership of 𝑧2𝑘(𝑡) in 𝐹2𝑖,𝑘. 

 

2.2.4 T-S fuzzy reference model for Induction Motor 

Basing on the same previous principle, the T-S fuzzy 

reference model will generate the desired trajectory to be 

tracked by the state variables of the machine. A positive 

parameter 𝐾𝑖 is inserted in the model, in order to improve the 

transient performance of the closed-loop system. The new 

control input vector is defined as follow [18]: 

 

{
𝑢′𝑠𝑑𝑐 = 𝑢𝑠𝑑𝑐 + 𝐾𝑖𝜎𝐿𝑠(𝑖𝑠𝑑𝑐 − 𝑖𝑠𝑑𝑟)

𝑢′𝑠𝑞𝑐 = 𝑢𝑠𝑞𝑐 + 𝐾𝑖𝜎𝐿𝑠(𝑖𝑠𝑞𝑐 − 𝑖𝑠𝑞𝑟)
 (26) 
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{
 

 𝑢𝑠𝑑𝑐 = 𝜎𝐿𝑠(
𝑑𝑖𝑠𝑑𝑐
𝑑𝑡

+ 𝛼𝑖𝑠𝑑𝑐 − 𝑤𝑠𝑐𝑖𝑠𝑞𝑐 −
𝐾𝑠
𝑇𝑟
𝜓𝑑𝑟𝑐)

𝑢𝑠𝑞𝑐 = 𝜎𝐿𝑠(
𝑑𝑖𝑠𝑞𝑐

𝑑𝑡
+ 𝛼𝑖𝑠𝑞𝑐 +𝑤𝑠𝑐𝑖𝑠𝑑𝑐 + 𝐾𝑠𝑛𝑝𝑤𝑚𝑐𝜓𝑑𝑟𝑐)

 (27) 

 

The system (28) can be rewritten as: 

 

{
 
 

 
 𝑢′𝑠𝑑𝑐 = 𝜎𝐿𝑠[

𝑑𝑖𝑠𝑑𝑐

𝑑𝑡
+ (𝛼 + 𝐾𝑖)𝑖𝑠𝑑𝑐 − 𝑤𝑠𝑐𝑖𝑠𝑞𝑐 −

𝐾𝑠

𝑇𝑟
𝜓𝑑𝑟𝑐

−𝐾𝑖𝜎𝐿𝑠𝑖𝑠𝑑𝑟]

𝑢′𝑠𝑞𝑐 = 𝜎𝐿𝑠[
𝑑𝑖𝑠𝑞𝑐

𝑑𝑡
+ (𝛼 + 𝐾𝑖)𝑖𝑠𝑞𝑐 + 𝑤𝑠𝑐𝑖𝑠𝑑𝑐 + 𝐾𝑠𝑛𝑝𝑤𝑚𝑐𝜓𝑑𝑟𝑐

−𝐾𝑖𝜎𝐿𝑠𝑖𝑠𝑞𝑟] 

. (28) 

 

Also, 

 

{
𝑢′𝑠𝑑𝑐 = 𝑢𝑠𝑑𝑟 − 𝐾𝑖𝜎𝐿𝑠𝑖𝑠𝑑𝑟
𝑢′𝑠𝑞𝑐 = 𝑢𝑠𝑞𝑟 − 𝐾𝑖𝜎𝐿𝑠𝑖𝑠𝑞𝑟

 (29) 

 

The state equation of the reference model of the IM is: 

 

�̇�2𝑟(𝑡) = 𝐴2𝑟𝑥2𝑟(𝑡) + 𝑟2(𝑡) (30) 

 

where, 

 

(𝑥2(𝑡)) =

[
 
 
 
 
 
 
 
 −𝜉1 𝑤𝑠𝑟

𝐾𝑠

𝑇𝑟
𝐾𝑠𝑛𝑝𝑤𝑚𝑟 0

−𝑤𝑠𝑟 −𝜉1 −𝐾𝑠𝑛𝑝𝑤𝑚𝑟
𝐾𝑠

𝑇𝑟
0

𝑀

𝑇𝑟
0 −

1

𝑇𝑟

𝑀

𝑇𝑟𝜓𝑟𝑑𝑐
𝑖𝑠𝑞𝑟 0

0
𝑀

𝑇𝑟
−

𝑀

𝑇𝑟𝜓𝑟𝑑𝑐
𝑖𝑠𝑞𝑟 −

1

𝑇𝑟
0

0 0
𝑛𝑝𝑀

𝐽𝐿𝑟
𝑖𝑠𝑞𝑟 −

𝑛𝑝𝑀

𝐽𝐿𝑟
𝑖𝑠𝑑𝑟 −

𝑓

𝐽]
 
 
 
 
 
 
 
 

; 

𝜉1 = 𝛼 + 𝐾𝑖 ;  𝑤𝑠𝑟 = 𝑛𝑝𝑤𝑚𝑟 +
𝑀

𝑇𝑟𝜓𝑟𝑑𝑐
𝑖𝑠𝑞𝑟  ; 

and 𝑟2(𝑡) = [𝐵2 𝐼] [
𝑢2𝑟
𝑤2(𝑡)

] ;  where 𝑢2𝑟(𝑡) = [
𝑢𝑠𝑑𝑟
𝑢𝑠𝑞𝑟

] 

 

The measurable premise variables are defined as: 

 

{

𝑧21𝑟(𝑡) = 𝑖𝑠𝑑𝑟(𝑡)

𝑧22𝑟(𝑡) = 𝑖𝑠𝑞𝑟(𝑡)

𝑧23𝑟(𝑡) = 𝑤𝑚𝑟(𝑡)

 

 

The overall fuzzy reference model is given by: 

 

�̇�2𝑟(𝑡) =∑𝜃𝑟𝑗(𝑧2𝑟(𝑡))𝐴2𝑗𝑟𝑥2𝑟(𝑡) + 𝑟2(𝑡)

8

𝑗=1

 (31) 

 

The H∞ performance related to the tracking error 𝑒2𝑟(𝑡) =
𝑥2𝑟(𝑡) − 𝑥2(𝑡) is presented by the following inequality: 

 

∫ [(𝑥2𝑟(𝑡) − 𝑥2(𝑡))
𝑇𝑄2(𝑥2𝑟(𝑡) − 𝑥2(𝑡))]𝑑𝑡 ≤

𝑡𝑓
0

 𝜌2
2 ∫ [(𝑟2(𝑡)

𝑇𝑟2(𝑡) + 𝑤2(𝑡)
𝑇𝑤2(𝑡)]𝑑𝑡

𝑡𝑓
0

. 
(32) 

 

r2(t) is the reference input, w2(t) is the external disturbance, 

Q2 is a positive definite weighting matrix and ρ2 is the 

attenuation level. 

 

2.2.5 T-S fuzzy observer for Induction Motor 

A Luenberger type multi-observer is constructed in this part 

to estimate the immeasurable state of the induction motor. 

Since the availability of all the variables is required, the T-S 

observer will to estimate the inaccessible rotor flux. As so, the 

T-S fuzzy observer is developed as so: 

 

{

�̂�2̇(𝑡) = ∑ 𝜃𝑖(𝑧(𝑡))(
8
𝑖=1 𝐴2𝑖�̂�2(𝑡) + 𝐵2𝑢2(𝑡)

+𝐿𝑖(𝑦2(𝑡) − �̂�2(𝑡)))

�̂�2 = 𝐶2�̂�2(𝑡)

. (33) 

 

�̂�2(𝑡) and �̂�2(𝑡) designate respectively the estimated state 

and output vectors, while 𝐿𝑖  are the observer gains. 

We define the estimated error as 𝑒2(𝑡) = 𝑥2(𝑡) − �̂�2(𝑡) for 

which the fuzzy model is given by: 

 

�̇�2(𝑡) =∑𝜃𝑖(𝑧(𝑡))[(

8

𝑖=1

𝐴2𝑖−𝐿𝑖𝐶2)𝑒2(𝑡)] + 𝑤2(𝑡) (34) 

 

2.2.6 Tracking controller design 

For the design of the observer-based controller, we adopted 

the same principle of the ordinary PDC controller but in 

addition, in the feedback control law, we take into account the 

reference state xr(t) as following: 

 

𝑢2(𝑡) = ∑𝜃𝑖(𝑧(𝑡))𝐾2𝑖(

8

𝑖=1

�̂�2(𝑡)−𝑥2𝑟(𝑡)) (35) 

 

where, K2i are the fuzzy control gain and  𝑒2𝑟(𝑡) =
�̂�2(𝑡)−𝑥2𝑟(𝑡) is the tracking error for which the fuzzy model 

is as: 

 

�̇�2𝑟(𝑡) = ∑ ∑ 𝜃𝑖(𝑧(𝑡))(
8
𝑗=1 𝜃𝑗(𝑧2𝑟(𝑡))[

8
𝑖=1 (𝐴2𝑖 +

𝐵2𝐾2𝑗)𝑒2𝑟(𝑡) − 𝐵2𝐾2𝑗𝑒2(𝑡) + (𝐴2𝑖 −

𝐴2𝑗𝑟)𝑥2𝑟(𝑡)] + 𝑤2(𝑡) − 𝑟2(𝑡). 

(36) 

 

We obtain the following closed-loop system written in an 

augmented state-space form as: 

 

�̇̅�2(𝑡) =∑∑𝜃𝑖(𝑧(𝑡))(

8

𝑗=1

𝜃𝑗(𝑧2𝑟(𝑡)) ×

8

𝑖=1

[𝐺̅̅ ̅𝑖𝑗�̅�2(𝑡)

+ �̅�2�̅�2(𝑡)] 

(37) 

 

�̅�2(𝑡) = [

𝑒2𝑟(𝑡)

𝑒2(𝑡)

𝑥2𝑟(𝑡)
]   �̅�2(𝑡) = [

𝑤2(𝑡)
𝑟2(𝑡)

]   �̅�2 = [
𝐼 −𝐼
𝐼 0
0 𝐼

] 

�̅�𝑖𝑗 = [

𝐴2𝑖 + 𝐵2𝐾2𝑗 −𝐵2𝐾2𝑗 𝐴2𝑖 − 𝐴2𝑗𝑟
0 𝐴2𝑖 − 𝐿𝑖𝐶2 0
0 0 𝐴2𝑗𝑟

] 

 

Therefore, the H∞ tracking performance is reformulated as: 

 

∫ 𝑥2̅̅ ̅
𝑇

𝑡𝑓

0

(𝑡)𝑄2̅̅̅̅ 𝑥2̅̅ ̅(𝑡)   𝑑𝑡 ≤ 𝜌2
2  ∫ 𝑤2̅̅̅̅

𝑇
𝑡𝑓

0

(𝑡)𝑤2̅̅̅̅ (𝑡)   𝑑𝑡 (38) 

 

where, 𝑄2̅̅ ̅ = [
𝑄2 0 0
0 0 0
0 0 0

] 

 

The next part is dedicated to study the stability of the closed 

loop system while maintaining a good trajectory tracking 

performance. 
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2.2.7 Reference speed 

In order to search the optimum operating speed 

corresponding to the maximum power delivered by the PVG 

for various values of temperature and insolation, a reference 

speed bloc is added to compute instantly the reference speed 

𝑤𝑚𝑜𝑝𝑡 that should be tracked and which assures the optimal 

operating of the IM, and thus a significant part of the available 

solar power is transferred to the unit motor-pump. 

First, we start by defining the electrical power equation 

absorbed by the IM: 

 

𝑃𝑎𝑏𝑠 =
3

2
∗ (𝑢𝑠𝑑 ∗ 𝑖𝑠𝑑 + 𝑢𝑠𝑞 ∗ 𝑖𝑠𝑞) (39) 

 

Then, and by replacing usd, usq,  𝑢𝑠𝑑 , isd, and isq by their 

equations respectively (28) and (18), the DC electrical power 

will be expressed as a function of the motor speed in the 

following form as follow: 

 

𝑃𝑎𝑏𝑠 = 𝐶1 + 𝐶2 ∗ 𝑤𝑚𝑜𝑝𝑡
2 + 𝐶3 ∗ 𝑤𝑚𝑜𝑝𝑡

3 + 𝐶4 ∗ 𝑤𝑚𝑜𝑝𝑡
4  (40) 

 

𝐶1 =  𝜎𝐿𝑠 (
𝜓𝑟𝑑
𝑀
)
2

(𝛼 − 𝐾𝑠
𝑀

𝑇𝑟
) 

𝐶2 =  𝜎𝐿𝑠(𝛼𝐾𝑞
2𝑓2 + 𝐾𝑠𝐾𝑞𝑛𝑝𝑓𝜓𝑟𝑑) 

𝐶3 =  𝜎𝐿𝑠𝐴𝑝(2𝛼𝐾𝑞
2𝑓 + 𝐾𝑠𝐾𝑞𝑛𝑝𝜓𝑟𝑑) 

𝐶4 =  𝜎𝐿𝑠𝛼𝐾𝑞
2𝐴𝑝

2; 𝐾𝑞 =
2𝐿𝑟

3𝑛𝑝𝑀𝜓𝑟𝑑
 

 

By assuming that the loses in DC converter is only in the 

inductance resistor RL, and in the case of reaching the 

maximum power point conditions of the PVG, the optimal 

motor speed wmopt can be obtained on-line by the Eq. (42) 

while adopting the following relation: 

 

𝑃𝑎𝑏𝑠 = 𝑃𝑝𝑣 − 𝑅𝐿 ∗ 𝐼𝑝𝑣
2 (41) 

 

𝑤𝑚𝑜𝑝𝑡 =
𝑃𝑝𝑣 − 𝑅𝐿 ∗ 𝐼𝑝𝑣

2 − 𝐶1

𝐶2 ∗ 𝑤𝑚𝑜𝑝𝑡 + 𝐶3 ∗ 𝑤𝑚𝑜𝑝𝑡
2 + 𝐶4 ∗ 𝑤𝑚𝑜𝑝𝑡

3  (42) 

 

2.3 Centrifugal pump 

 

In this work, we used a centrifugal pump for which the 

characteristic H(Q) may be represented by: 

 

𝐻 = 𝑎𝑄2 + 𝑏𝑄𝑤𝑚 + 𝑐𝑤𝑚
2  (43) 

 

𝐻 is the total head, Q designates the flow rate, wm is the 

speed and a, b and c are three constants that depends on the 

pump’s dimensions. The above equation relates the main 

parameters of the centrifugal pump, the flow rate, the head and 

the speed. The pump performance is predicted by specifying a 

load curve [20]: 

 

𝐻 = 𝐻𝑔 + ∆𝐻 (44) 

 

Hg is the static height (the distance between the free level of 

water and the highest point of the canalization), and ∆H is the 

pressure losses in the canalization equal to:  

 

∆𝐻 =
8 (
𝜕𝑙
𝑑
+ 𝜉)𝑄2

𝜋2𝑑4𝑔
 (45) 

 

where, 𝜕 is a resistance coefficient in the canalization, l is the 

length of the pipeline, d is the diameter of the pipeline, 𝜉 is a 

local resistance coefficient and g is the gravity acceleration. 

Hence, the objective of this study is to determine a 

decentralised fuzzy controller with the H∞ tracking 

performance able to force the PV pumping system to operate 

very close to its maximum power trajectory for all climatic 

conditions’ variations. The main result is stated in the 

following two theorems. 

Theorem 1: Considering the photovoltaic system (9). The 

closed-loop system (14) is asymptotically stable and the 

H∞ performance (15) with the attenuation level ρ is bounded, 

if there exist the following matrices X11 = P11
−1 > 0, P12 >

0, Y1i and a positive scalar ρ1 solution for the following 

optimization problem: 

 

min
(𝑃11,𝑃12)

(𝜌1) 

 

Subject to: 

 

[
 
 
 
 
 
 
 
 
𝜓11 (𝐴12 − 𝐴1𝑘𝑟) 𝐸1 −𝐼 0 0 0 𝑋11
∗ −2𝜇1𝑋11 0 0 −𝜇1𝐼 0 0 0
∗ ∗ −2𝜇1 0 0 −𝜇1𝐼 0 0
∗ ∗ ∗ −2𝜇1 0 0 −𝜇1𝐼 0
∗ ∗ ∗ ∗ 𝜓22 0 𝑃12 0

∗ ∗ ∗ ∗ ∗ −𝜌1
2𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜌1
2𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑄1
−1]
 
 
 
 
 
 
 
 

 

< 0                                         (46) 

 

where, 

 

𝑌𝑖 = 𝐾1𝑖𝑋11;  𝜓22 = 𝐴1𝑘𝑟
𝑇 𝑃12 + 𝑃12𝐴1𝑘𝑟     

 𝜓11 = 𝐴12𝑋11 + 𝑋11𝐴12
𝑇 + 𝐵1𝑖𝑌1𝑗 + 𝑌1𝑗

𝑇𝐵1𝑖
𝑇  

 

𝜇1 is a scalar. 

Theorem 2: For a positive scalar µ, the closed-loop system 

(37) is asymptotically stable and the H∞ performance (38) 

with the attenuation level ρ is bounded if there exist definite 

matrices X21 = P21
−1 > 0, P22 > 0, P23 > 0, Y2j,  Ji and a 

positive scalar ρ2 solution for the following optimisation 

problem: 

 

min
(𝑃21,𝑃22)

(𝜌2) 

 

Subject to: 

 

[
 
 
 
 
 
 
 
 
 
 
𝜑11 −𝐵2𝐾2𝑗 𝐴2𝑖 − 𝐴2𝑗𝑟 𝐼 −𝐼 0 0 0 0 𝑋21
∗ −2𝜇2𝑋21 0 0 0 𝜇2𝐼 0 0 0 0
∗ ∗ −2𝜇2𝐼 0 0 0 𝜇2𝐼 0 0 0
∗ ∗ ∗ −2𝜇2𝐼 0 0 0 𝜇2𝐼 0 0
∗ ∗ ∗ ∗ −2𝜇2𝐼 0 0 0 𝜇2𝐼 0
∗ ∗ ∗ ∗ ∗ 𝜑22 0 𝑃22 0 0
∗ ∗ ∗ ∗ ∗ ∗ 𝜑33 0 𝑃23 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜌2
2𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜌2
2𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑄2
−1]
 
 
 
 
 
 
 
 
 
 

 

< 0                                       (47) 

 

where, 

 

𝑌2𝑗 = 𝐾2𝑗𝑋21
−1;  𝐿𝑖 = 𝑃22

−1𝐽𝑖 

𝜑11 = 𝐴2𝑖𝑋21 + 𝑋21𝐴2𝑖
𝑇 + 𝐵2𝑌2𝑗 + 𝑌2𝑗

𝑇𝐵2
𝑇 

𝜑22 = 𝐴2𝑖
𝑇 𝑃22 + 𝑃22𝐴2𝑖 − 𝐽𝑖𝐶2 − 𝐶2

𝑇𝐽2𝑖
𝑇  

𝜑33 = 𝑃23𝐴2𝑗𝑟 + 𝐴2𝑗𝑟
𝑇 𝑃23 
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and 𝜇2 is a scalar. 

 

2.4 Global stability of PV pumping system 

 

The stability of the global system is studied using the 

quadratic function of Lyapunov 𝑉(�̅�(𝑡)) such that �̅�𝑖  is a 

positive definite symmetric matrix (i = 1,2) [19]: 

 

𝑉(�̅�(𝑡)) = �̅�1
𝑇(𝑡)�̅�1�̅�1(𝑡) + �̅�2

𝑇(𝑡)�̅�2�̅�2(𝑡) (48) 

 

The derivative of Lyapunov's function is written as: 

 

�̇�(�̅�(𝑡))= �̅�1
𝑇̇ (𝑡)�̅�1�̅�1(𝑡)+ �̅�1

𝑇(𝑡)�̅�1�̅�1̇(𝑡)

+ �̅�2
𝑇̇ (𝑡)�̅�2�̅�2(𝑡)+ �̅�2

𝑇(𝑡)�̅�2�̅�2̇(𝑡) 
(49) 

 

According to the 𝐻∞ tracking performances (15) and (38), 

and in order to realize the stability of the global pumping 

system, the following inequality must be verified: 

 

�̇�(�̅�(𝑡)) + �̅�1
𝑇(𝑡)�̅�1�̅�1(𝑡) − 𝜌1

2 �̅�1
𝑇(𝑡)�̅�1(𝑡)

+ �̅�2
𝑇(𝑡)�̅�2�̅�2(𝑡)

− 𝜌2
2 �̅�2

𝑇(𝑡)�̅�2(𝑡)  < 0 

(50) 

 

Taking the derivative of 𝑉(�̅�(𝑡)) with respect to t, the 

above inequality becomes: 

 

∑∑∑ℎ𝑖𝑗𝑘

2

𝑘

(𝑧(𝑡))∑∑𝜇𝑖𝑗(𝑧(𝑡))

8

𝑗

8

𝑖
[
 
 
 
�̅�1(𝑡)

�̅�1(𝑡)

�̅�2(𝑡)

�̅�2(𝑡)]
 
 
 
𝑇

×

4

𝑗

4

𝑖

 

[
 
 
 
 
�̅�𝑖𝑗𝑘
𝑇 �̅�1 + �̅�1�̅�𝑖𝑗𝑘 + �̅�1 �̅�1�̅�1 0 0

�̅�1
𝑇�̅�1 −𝜌1

2𝐼1 0 0

0 0 �̅�𝑖𝑗
𝑇 �̅�2 + �̅�2�̅�𝑖𝑗 + �̅�2 �̅�2�̅�2

0 0 �̅�2
𝑇�̅�2 −𝜌2

2𝐼2]
 
 
 
 

 

× [

�̅�1(𝑡)
�̅�1(𝑡)
�̅�2(𝑡)
�̅�2(𝑡)

] < 0 

(51) 

 

We note that  �̅�1 = 𝑑𝑖𝑎𝑔[𝑃11 𝑃12]  and �̅�2 =
𝑑𝑖𝑎𝑔[𝑃21 𝑃22 𝑃23]. Which allows to extract the following two 

inequalities: 

 

[
�̅�𝑖𝑗𝑘
𝑇 �̅�1 + �̅�1�̅�𝑖𝑗𝑘 + �̅�1 �̅�1�̅�1

�̅�1
𝑇�̅�1 −𝜌1

2𝐼1
] < 0 (52) 

 

[
�̅�𝑖𝑗
𝑇 �̅�2 + �̅�2�̅�𝑖𝑗 + �̅�2 �̅�2�̅�2

�̅�2
𝑇�̅�2 −𝜌2

2𝐼2
] < 0 (53) 

 

By replacing each augmented matrix with its expression, the 

above inequalities are bilinear matrix inequalities. So, to 

resolve this problem, it is necessary to pre-and post-multiply 

the BMIs by  𝑍𝑖 = 𝑑𝑖𝑎𝑔[𝑃𝑖1
−1 𝑊𝑖] (i =  1,2), where 𝑊1 =

𝑑𝑖𝑎𝑔 [𝑃11
−1 𝐼 𝐼]  and  𝑊2 = 𝑑𝑖𝑎𝑔 [𝑃21

−1 𝐼 𝐼 𝐼]; Which leads to 

obtain an inequality in the form: 

 

[
𝑃𝑖1
−1Π𝑖11𝑃𝑖1

−1 𝑃𝑖1
−1Π𝑖12𝑊𝑖

∗ 𝑊𝑖Π𝑖22𝑊𝑖
] < 0 (54) 

 

The verification of this condition will signify that 

𝑊𝑖Π𝑖22𝑊𝑖 < 0 so the above inequality is equivalent to [7]: 

(𝑊𝑖 + 𝜇𝑖Π𝑖22
−1)

𝑇
Π𝑖22(𝑊𝑖 + 𝜇𝑖Π𝑖22

−1) < 0 ⇔

𝑊𝑖Π𝑖22𝑊𝑖 < −2𝜇𝑖𝑊𝑖 − 𝜇𝑖
2Π𝑖22

−1. 
(55) 

 

where, μi is a scalar. 

By substituting (55) to (54) and applying the Schur 

complement, we get: 
 

[
𝑃𝑖1
−1Π𝑖11𝑃𝑖1

−1 𝑃1
−1Π𝑖12𝑊𝑖 0

∗ −2𝜇𝑖𝑊𝑖 −𝜇𝑖𝐼𝑖
∗ ∗ Π𝑖22

] < 0 (56) 

 

By applying the Schur complement one second time for 

both inequalities (i=1, 2), we obtain two standard LMIs 

mentioned in the above two theorems which the resolution of 

each one gives the control gains for each subsystem. 
 

 

3. SIMULATION RESULT-S 
 

In order to indicate the efficiency of the proposed control 

applied to the PV powered water pumping system, simulation 

tests have been done basing on 10 modules in series of the type: 

Lorentz solar PV module LC120-12P whose specifications are 

mentioned in Table 1, to obtain the desired power to deliver to 

the unit motor-pump. For the boost converter, the parameters 

are chosen as follow L = 10mH, RL = 0.01Ω, C1 = 500μF and 

C2 = 100μF. 
 

 
 

Figure 5. Variation of insolation 
 

 
 

Figure 6. Curve of duty cycle 
 

 
 

Figure 7. Power curves under variation of insolation 
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Figure 8. Curve of photovoltaic voltage 

 

 
 

Figure 9. Curve of induction current 

 

 
 

Figure 10. Curve of the boost converter’s output voltage 

 

 
 

Figure 11. D-axis stator current curves comparison under 

variation of insolation 

 

 
 

Figure 12. Q-axis stator current curves comparison under 

variation of insolation 

 
 

Figure 13. D-axis rotor flux curves comparison under 

variation of insolation 

 

 
 

Figure 14. Q-axis rotor flux curves comparison under 

variation of insolation 

 

 
 

Figure 15. Rotor speed curves 

 

The simulation test includes analyzing the controllers 

performance during both the transient and steady-state period. 

In this test, the insolation profile changes between 300W/m2 

and 1000W/m2 in the Figure 5. The variations of the duty cycle, 

the PV power, the PV voltage, the inductance current end the 

load voltage, in response to the mentioned insolation changes 

are presented in Figures 6, 7, 8, 9 and 10. 

As it is shown in the under figures, the different state 

variables of the PV conversion system, converge successively 

to their reference values i.e. the desired trajectory to track, with 

respect to the solar irradiation variation. The PV power and 

PV voltage curves show peaks during the transient mode, but 

despite that they present a very good convergence towards the 

reference curve in the steady-state period. Figures 11, 12, 13, 

14 and 15 illustrate the response of the d-axis stator current, 

the q-axis stator current, the d-axis rotor flux, the q-axis rotor 

flux and the rotor speed, controlled by the second designed T-

S fuzzy controller. 

It is seen from these graphs, that the proposed T-S fuzzy 

control method presents a rapid convergence speed to the 

reference trajectory and consequently a good tracking 

accuracy is achieved. The d-axis rotor flux tracks the reference 

value, and hence the decoupling control characteristic between 

the rotor flux and the generator torque is assured. Likewise, 

the different upper curves show the evolution of the state 
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variables and their estimated states delivered by the proposed 

T-S fuzzy observer under the changes of optimal rotor speed. 

In the purpose of illustrating the characteristic of the pump 

H(Q), a continuous variation of the insolation is adopted in the 

Figure 16, starting from a minimum value of 200 𝑊/𝑚2 in 6h 

of the morning and finishing by a maximum value of 1000 

𝑊/𝑚2  in 13h. The characteristic H(Q) is illustrated in the 

Figure 17. 

 

 
 

Figure 16. Continuous variation of insolation 

 

 
 

Figure 17. Characteristic of centrifugal pump H(Q) 

 

 

4. CONCLUSIONS 

 

In this paper a T-S fuzzy MPPT decentralized control 

method for Solar PV Powered Water Pumping System driven 

by Induction Motor was presented. Using the proposed MPPT 

T-S fuzzy controller for the first PV conversion system, this 

latter is forced to operate close to the MPP trajectory. While 

basing on the PV power delivered by the PVG, a reference 

motor speed value has been pre-calculated, in order to make 

the unit motor-pump operate in the maximum power 

conditions. The T-S fuzzy observer-based controller is 

developed for the IM. Furthermore, H∞ tracking performance 

is adopted, to ensure a disturbance rejection of abrupt climatic 

conditions variation. Controllers’ gains are obtained by 

solving sets of LMIs. The obtained simulation results show 

that the proposed T-S fuzzy approach exhibits a good tracking 

performance during transient and steady-state periods, 

likewise for both proposed T-S controllers, a fast convergence 

speed and an attenuation of disturbance effect due to rapidly 

changing climatic conditions by using a H∞ performance. 

Future work will focus on the design of a Fault Tolerant 

Tracking Control (FTC) for the PV pumping system based on 

the IM. This control strategy will offsets the effect of the faults 

that can effect the speed sensor and will ensure the transfer of 

optimal power to unit motor–pump. 
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