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ABSTRACT 

This paper presents both crisp and fuzzy EOQ models for defective items present in each 

lot when shortages are allowed and backorder takes place. The aim of the work is to first 

construct an optimal order quantity for the crisp case and then to develop the 

corresponding fuzzy model. In contrast to the previous inventory models, an allowable 

proportionate discount is incorporated for the defective items present in each lot to 

provide a general framework to the model. The aim of the present paper is to find the 

optimal order size and the expected shortage level so as to obtain the optimum total profit 

for both the models. The necessary and sufficient conditions for the existence and 

uniqueness of the optimal solutions are derived and it is also shown that under certain 

conditions the crisp model boils down the traditional EOQ backorder formula. For the 

fuzzy case, triangular fuzzy numbers are used for the defective rates and for 

defuzzification signed distance method is used. Finally, numerical example is provided to 

illustrate the solution procedure and sensitivity analysis is performed on the results to 

analyze the effect of the variations taken place for the parameters involved in the model. 
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1. INTRODUCTION

Harris’s [7] is the first who presented the traditional EOQ 

formula which appears in almost all text books covering 

inventory management. Thereafter, many researchers have 

extensively analysed on economic lot size problems by 

changing some of the original assumptions of the traditional 

EOQ model. The traditional EOQ model includes few 

unrealistic assumptions. One of the unrealistic assumptions 

which the traditional EOQ model holds is the received 

quantities are all of perfect qualities. But practically, this 

assumption is very impractical. To address this many authors 

have developed various EOQ models considering the lot with 

imperfect type items. Porteus [17] was the first researcher 

who gave attention on imperfect quality items. He 

incorporated the effect of defective items into the traditional 

EOQ model. At the same time Rosenblatt and Lee [12] 

focused on rework of defective items and found that the 

presence of defective products causes smaller lot sizes. The 

assumption of imperfect quality was first initiated by 

Salameh and Jaber [20] and they assumed that the defective 

items could be sold at a discounted price in a single batch at 

the end of 100 % screening of all the received items. Goyal 

and Cardnas-Baron [6] extended the work of Salameh and 

Jaber [20] and they developed a practical approach to 

optimize the lot size. Wahab and Jaber [22] extended the 

models of Salameh and Jaber [20] and Maddah and Jaber 

[14] and presented an optimal lot size for items with

imperfect quality under the consideration of two types of

holding costs. Many researchers have extended the work of

the original model proposed by Salameh and Jaber [20] in

between 2000 – 2015. But, Rezaei [18] deed the extension of

an EOQ model with shortages backordered. He was the first

person who brought the concept of shortages in the model of 

Salameh and Jaber [20]. He introduced the concept of cyclic 

shortage resulting out of the imperfect production, leads to 

backorder in the beginning of each cycle. Wee et al. [23] 

developed an inventory model with items of imperfect 

quality and shortages are backordered by allowing 100% 

screening of items where, the screening rate is greater than 

the demand rate. Subsequently, Eroglu and Ozdemir [5] 

established an inventory model with some percentage of 

defectives by allowing shortages to be fully backordered. 

Chang & Ho [2] provided closed-form solutions using the 

renewal reward theorem. However, in their work they 

assumed that the items satisfying the backorder are delivered 

without any screening process. Hsu and Hsu [8] considered 

the inventory model with multiple screening for items of 

imperfect quality and shortages backordered. Jagadeeswari 

and Chenniappan [9] extended an inventory model by taking 

quadratic time dependent demand for deteriorating items with 

shortages are partially backlogged. Khanna et al. [10] 

developed an inventory model for items of imperfect quality 

with deterioration under trade-credit policies having selling 

price dependent demand and shortages which are fully 

backlogged. The traditional inventory models including 

uncertainties and randomness were handled with the help of 

probability theory. Specifically, when there is a lack of 

historical data to estimate the probability distributions for 

different uncertain factors present in the model, we prefer to 

include fuzzy numbers. Thus, considering the inventory 

model of Salameh and Jaber [20], researchers like Chang [1], 

Chen and Chang [3] developed inventory models by 

introducing fuzzy numbers for different parameters involved 

in it. Lee and Yao [13] developed an economic production 

quantity (EPQ) model in which the demand and the 
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production quantity are assumed to be fuzzy. De and Rawat 

[4] developed a fuzzy inventory model without shortages by 

a using triangular fuzzy numbers. Kumar and Goswami [11] 

developed a fuzzy EOQ inventory model for items with 

imperfect quality where shortages are completely 

backlogged. Sujatha and Parvathi [21] investigated an 

inventory model for deteriorating items with shortages under 

partially backlogging where the demand rate is two 

parameter Weibull distribution and the inventory costs are 

taken to be triangular fuzzy numbers. Recently, Patro et al. 

[16] established both crisp and fuzzy Economic order 

quantity (EOQ) models with proportionate discount for items 

with imperfect quality under learning effect over a finite time 

horizon. Patro et al. [15] have also developed a fuzzy 

inventory model for time dependent Weibull deterioration 

and quadratic demand rate where shortages are allowed and 

are partially backlogged.  

In this paper, we develop a fuzzy EOQ inventory model of 

imperfect quality items, present in each lot, with shortages by 

introducing allowable proportionate discount. To obtain the 

total profit, a 100% screening is conducted for the lot and an 

allowable proportionate discount is introduced for the 

defective items. In case of the fuzzy inventory model, the 

defective rates are taken to be fuzzy with the allowable 

proportionate discount for the defective items present in each 

lot, where the total profit per unit time is derived in fuzzy 

sense. The fuzzy EOQ models are derived by using the 

triangular fuzzy numbers for the defective rates and the fuzzy 

models are defuzzified by using the signed distance method. 

The solutions for maximizing the fuzzy total profits per unit 

time have been derived and numerical examples are given to 

illustrate the model. Finally, the sensitivity analysis is 

performed on the results to analyse the effect of the 

variations taken for the parameters involved in the model.  

 

 

2. THE MATHEMATICAL MODEL 

 

2.1 Crisp model 
 

 
 

Figure 1. Behaviour of the inventory level over time 

 

Using the above assumption, the cycle wise total cost is 

given as follows: 

𝑓(𝑧, 𝑄)=Ordering cost + unit cost of variable + screening 

cost with regard to cycle wise lot  

size + holding cost +Shortage cost 

 

𝑓(𝑧, 𝑄) = 𝐶𝑘 + 𝐶𝑝𝑧 + 𝐶𝑠𝑧 + 𝐶ℎ × (
𝑧(1−𝑝)−𝑄

2
𝑡1 +

𝑝𝑧2

𝑤
) +

𝑄𝐶𝑏

2
𝑡2          (2.1.1) 

 

The cycle wise total revenue is given as follows: 

𝑔(𝑧, 𝑄)=total sales with regard to good quality items +
total sales with regard to imperfect type of items. 
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After simplification the result obtained for 𝑔(𝑧, 𝑄) is given 

as follows. 
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The cycle wise total profit 𝜋(𝑧, 𝑄)  is the difference 

between the cycle wisetotal revenue and the cycle wise total 

cost per cycle. 
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The total profit per unit time is denoted by 𝜋𝑢(𝑧, 𝑄) and 

the formula used for the total profit is given as follows.  
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where 𝑇 =
𝑧(1−𝑝)

𝐷
 and replacing 𝑡1  and 𝑡2  by 

𝑧(1−𝑝)−𝑄
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respectively in equation (2.1.3) the total profit per unit time 

can be written as:  

 

𝜋𝑢(𝑧, 𝑄) =
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Since 𝑝  is the percentage of defective items, which is 

received with a known probability density functions, then the 

Eq. (2.1.4). 𝐸𝜋𝑢(𝑧, 𝑄), is given as follows: 
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The optimality condition for the nonlinear problem the 

expected total profit per unit time given in Eq. (2.1.5), is 

demonstrated by finding the first and second partial 

derivatives of 𝐸𝜋𝑢(𝑧, 𝑄) with respect to 𝑧, 𝑄 are obtained as 

follows: 
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By setting (2.1.6(a)) and (2.1.6(b)) equal to zero, we obtain: 
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For large value of 𝑧,
1

𝑧
→ 0 

 

( )
( )

( ) ( ) ( )

2 2
2 3

2

3 2 2 2 3 2

2 2 2

2 2 2 4 2 [ ]

2 (1 [ ])
2 2 [ ] 3 ( [ ] ) [ ]

2 (1 [ ]) [ ](1 [ ]) [ ](1 [ ])

g p s k k

b h
h h h h

b h

h b h h

b h b h b h

DS DC DC DC DC E p
z

C C E p
C C E p C E p C E p

C C

C E p C C E p E p C E p E p

C C C C C C


− − + +

=
−

+ − − −
+

− − −
− − −

+ + +

         (2.1.7) 

 

(1 [ ])h

b h

C z E p
Q

C C


 −
=  

+ 

       (2.1.8) 
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The maximum inventory level is obtained by substituting 

the value of Eq.(3.1.7) and Eq.(3.1.8) in equation Eq. (3.1.9) 

we get the following: 
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Now, we obtain the Hessian matrix H to examine the 

sufficient conditions for getting maximum value is given as 

follows: 
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The first principal minor of H is: 
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The second principal minor of H is: 
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At point (𝑧∗, 𝑄∗)  the Hessian Matrix H  is negative 

definite. Therefore, there exist the unique values of 𝑧∗
 and 𝑄∗

 
in 

 
(2.1.7) and (2.1.8) respectively that maximizes 𝐸𝜋𝑢(𝑧, 𝑄).  
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When 𝑝 = 0, 𝐶𝑠 + 𝐶𝑝  =  𝑆𝑔 , equation (3.1.7) reduces to 

the traditional EOQ backorder formula 
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2.2 Fuzzy model 

 

Total profit per unit time is given by  

 

( )
( )   22 2 ( )

,
(1 )(2 1) 2 1 (1 )(2 1)

g k p s h b h
D S z C C z C z C z z pz B B C C

z B
p z zp z zp p z zp


− − − + − +

= − + 
− + + + + − + + 

  

Fuzziness of the defective rate 𝑝  (or equivalently, the 

fuzziness of good-quality rate; 1 − 𝑝) 

Let 𝑞 = 1 − 𝑝 and rewrite the above expression as follows: 
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Let us consider 𝑞 = 1 − 𝑝 as the triangular fuzzy number,

1 2( , , )q q q q= − + , where 0 < 𝛥1 < 𝑞  and 0 < 𝛥2 ≤ 1 −

𝑞. Then the total profit per unit time can be written in fuzzy 

sense which is given as follows: 
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Now, we defuzzify 𝜋(𝑧, 𝐵)
∼

 using the signed distance 

method. The signed distance of 𝜋(𝑧, 𝐵)
∼

 to 0̃1  is given as 

follows. 
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The total profit per unit time in fuzzy sense 𝜋(𝑧, 𝐵)
∼

, given 

below, is obtained by substituting the results of 𝑑(�̃�, 0̃1) and 

𝑑 (
1
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, 0̃1) in the above equation we get the following: 
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The first and the second derivatives of 𝜋(𝑧, 𝐵)
∼

 with respect 

to 𝑧 and 𝐵 are obtained to find the maximum profit in fuzzy 

sense. The following are the expressions for both the 

derivatives. 
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By setting (2.2.5(a)) and (2.2.5(b)) equal to zero, we obtain: 
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For large value of 𝑧,
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In other hand by replacing (2.2.6) and (2.2.7) in equation 

(2.2.8) we have: 
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In order to examine the second-order sufficient conditions 

(SOSC) for maximum value, we first obtain the Hessian 

matrix H which is given as follows: 
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Taking 𝛥1 = 𝛥2 = 𝛥 in Eq. (2.2.6), we get the following 

equation. 
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When 𝛥 → 0 by applying L’Hospital’s Rule 
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When 1q = and 𝐶𝑠 + 𝐶𝑝  =  𝑆𝑔 in Eq. (2.2.17), 𝑧 reduces to 

the traditional EOQ backorder formula for the lot size i.e., 
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3. NUMERICAL RESULTS 
 

To illustrate the proposed models, we have considered the 

following examples: 

 

Example-3.1: (Crisp Model) 

 

𝐷  =50,000 units/year, 𝐶𝑘 =100/cycle, 𝐶ℎ = $5/unit/year 𝑤 

=1unit/min, 𝐶𝑠 =0.5/unit, 𝐶𝑝 =25/unit, 𝐶𝑏 =$ 20/unit, 𝑆𝑔 = 

$50/unit, 

[We assume the operation of the inventory model operates 

8 hours a day, for 365 days a year, so the annual inspection 

rate is 𝑤 =175 200 units/year] 

Also, we assume the defective rate 𝑝  to be uniformly 

distributed with p.d.f given as follows: 
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The expected values present in the model are given as 

follows: 
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The optimal value of 𝑧∗ and 𝐵 that optimizes the expected 

total profit per unit time is given by 𝑧∗=1648.88, 𝑄∗=323.182 

and 𝐼𝑀∗=1325.698 

 

Example-3.2: Fuzzy Model  

 

𝐷  =50 000 units/year, 𝐶𝑘  =$100/cycle, 𝐶ℎ =$5=unit/year,

w  =1 unit/min (equivalently, w  =175 200 units/year), 

𝐶𝑠 =$0.5/unit, 𝐶𝑝  = $25/unit, 𝑆𝑔 = $50/unit and we consider 

that the defective rate is around 𝑝  =0.02 (i.e., the good-

quality rate is around 𝑞 = 1 − 𝑝 = 0.98). 

 

p =0.02, q = 1 − p  = 0.98, 1 =0.00550, 2 =0.00455 

 

The expected total profit per unit time 𝜋(𝑧, 𝐵)
∼

 and the 

optimal lot size z are evaluated to be 1230990/year and 

1666.83 units respectively. 

Q =326.528 and IM =1340.302 

 

 
 

Figure 2. 𝜋(𝑧, 𝐵)
∼

 vs 𝑧 

 

Table 2. For fuzzy model 
 

 

4. OBSERVATIONS 

 

From the above table we observed the following: 

i. To make the model more realistic it has been 

assumed the rate of defective to be a fuzzy number. 

Under this circumstance, it is observed that when 

there is an increase in the percentage of defectives, 

the optimum lot size increases both for increase or 

decrease in the percentage of defectives, but the 

total profit is becoming smaller in amount than the 

actual 𝜋(𝑧, 𝐵)
∼

, and vise-a-versa. 

ii. When the parameters 𝐷  and 𝑆𝑔  are increased by 

25% and 15%, there is an increase in both z and 

𝜋(𝑧, 𝐵)
∼

. Similarly, when 𝐷 and 𝑆𝑔 are decreased by 

15% and 25%, there is a decrease in both z and 

𝜋(𝑧, 𝐵)
∼

. 

iii. When the parameter 𝐶𝑘  is increased by 25% and 

15%, there is an increase in the value of 𝑧 and 

decrease in the value of𝜋(𝑧, 𝐵)
∼

. Similarly, when 𝐶𝑘 

is decreased by 15% and 25%, there is a decrease in 

the value of 𝑧 and increase in the value of 𝜋(𝑧, 𝐵)
∼

. 

When the parameters 𝐶𝑝 , 𝐶𝑠  and 𝐶ℎ  are increased 

by25% and 15%, there is decrease in both 𝑧 and 

𝜋(𝑧, 𝐵)
∼

. Similarly, when 𝐶𝑝, 𝐶𝑠 and 𝐶ℎ are decreased 

by 15% and 25%, there is an increase in both 𝑧 and 

𝜋(𝑧, 𝐵)
∼

. 

 

 

5. CONCLUSION 

 

In this paper, we have discussed a fuzzy EOQ inventory 

model for imperfect items with shortages. In both crisp and 

fuzzy type, allowable proportionate discounts have been 

introduced depending on the number of defective items 

present in each lot. It is observed that the rate of discount 

increases when the number of defectives decrease. A 100% 

screening of the received item are done in case of both crisp 

as well as fuzzy model and the defective items are sold as a 

single batch with the estimated proportionate discount.  It is 

observed that both the models reduce to the traditional 

backorder EOQ model formulae and the profits are found to 

be more or less same as that of the profits obtained in case of 

the Rezaei [18] and Chang [1]. For each model, it is found 

that the lot size of the models increases as the % of defectives 

increases. The optimum results with regard to the lot size and 

the total profit of fuzzy models are defuzzified by Signed 

distance method. Finally, we would like to point out on the 

results obtained out of the sensitivity analysis conducted with 

regard to the changes in percentages made for the different 

parameters involved in the fuzzy models. The changes made 

for the parameters, giving us the lot size and total profit to be 

mostly symmetric in nature. Also, the graphs are plotted for 

the total profit versus lot size and the difference of the profits 

of the (crisp/fuzzy) model versus the lot size.                   
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NOTATIONS AND ASSUMPTIONS  

 

Notations 

 

Crisp Notations 

 

z
 

size of the ordering quantity 

pC  unit cost of variable 

kC  ordering cost 

hC  holding cost 

p
 

% of defective items in z  

( )f p
 
p.d.f. of p  

gS  selling price of unit wise good quality item 

w  rate ofscreening  

sC  unit wise screening cost  

T  length of one cycle 

bC  unit wise shortage cost 

Q  expected shortage level 
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IM  maximum level of inventory 

 

 

Fuzzy Notations 

 

q   fuzzy defective rate  

( ),z B


 
 unit time wise total profit in fuzzy sense 

1( ,0 )d q
 

signed distance of fuzzy number q to 
10  

1

1
,0d

q

 
 
 

 signed distance of fuzzy number 
1

q
to 

10  

 

 

 

Assumptions 

CrispAssumptions 

 

1. constant demand rate. 

2. instantaneous delivery of lot size 

3. lead time is zero. 

4. shortages are permitted. 

5. imperfect quality items do exist in the lot. 

6. 100% screening process is conducted in each lot. 

 

Fuzzy Assumptions  

 

• Fuzzy defective rate 

• Triangular fuzzy number is considered for defective 

rate 

• Signed distance method is used for defuzzification.
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