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ABSTRACT 

The paper combines the logratio transformation method of compositional data with the 

partial least squares path analysis and puts forward the method of building the multiple 

linear regression model under the condition that dependent variables are compositional 

data and the relevant several independent variables are also compositional data. The 

modeling method can meet the fixed-sum constraint of compositional data, overcome the 

adverse effect of complete multi-collinearity on modeling in compositional data, and 

highlight the effect and significance of compositional data thematic meaning in modeling. 

As the application case, the paper used the suggested method and established the regression 

model among the employment demands of Beijing three industries, investments and GDP 

with the structural data of Beijing tertiary industry investments (including real estate), GDP 

and employment. 
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1. INTRODUCTION

In the data analysis on many fields such as society, economy 

and technology, compositional data is a kind of widely applied 

data type and can be used to reflect the investment structure, 

industry structure, resident consumption structure and other 

problems. According to the mathematical definition, 

compositional data refers to arbitrary nonnegative p-

dimension vector quantity X=(x1, x2, …, xp)', and the value of 

p components of X meets the following constraint conditions: 
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The formula (1) is also called the "fixed-sum constraint" and 

it is the basic feature of compositional data. The concept of 

compositional data was originated from the work of Ferrers 

(1866) in the nineteenth century at the earliest.  

In 1897, Pearson pointed out in an authoritative article 

discussing spurious correlation, "In the practical 

compositional data analysis, fixed-sum constraint is often 

intentionally or unintentionally neglected, and some statistical 

methods designed for data without restrictive conditions are 

often abused inappropriately, leading to disastrous 

consequences." In 1986, Aitchison first published the 

Compositional Data Statistical Analysis, put forward the log 

ratio transformation of compositional data and completely 

established the logical normal distribution theory of 

compositional data [1].  

The question to be discussed in the paper is if the dependent 

variable is a compositional data and the relevant several 

independent variables are also compositional data, how to 

build the multiple regression model among them. Generally 

speaking, when building multiple regression modeling for 

compositional data, there’re mainly several difficult issues as 

follows: 

(1) According to formula (1), compositional data features

"fixed-sum constraint". When designing models and analytical 

methods, the constraint that the sum of the components of 

every compositional data equal 1 must always be met; 

(2) The value of compositional data is between [0,1], so the

data value of components is often very small and the reflection 

of the variation features of data is very insensitive, which often 

brings great difficulties to modeling and analysis; 

(3) Due to the existence of "fixed-sum constraint", when the

components of compositional data are analyzed as variables, 

the completely related problem of variables must exist, which 

makes the application condition of the classic least square 

regression method completely destroyed [2]; 

(4) If the independent variable set consists of multiple

compositional data, the corresponding multiple regression 

analysis should include two levels. Each compositional data 

signifies a thematic meaning, and the compositional data 

consists of multiple components. Therefore, in the analysis 

process, the two levels should be analyzed after being divided 

clearly as much as possible, multiple components of 

compositional data cannot be briefly enumerated and 

processed with the analysis methods of common variables. 

To solve the above problem, the paper proposes to combine 

the symmetrical logratio transformation with the partial least 

squares path analysis to realize the linear regression modeling 

of multiple compositional data. As the empirical study, the 

paper will use the cases of analyzing Beijing fixed asset 

investments, GDP output and labor employment according to 

the industrial structure to explain the working process and 

application value of multiple compositional data regression 

modeling 
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2. COMPOSITIONAL DATA AND LOGRATIO 

TRANSFORMATION 

 

In Aitchison’s book Compositional Data Statistical 

Analysis, the logratio transformation method of compositional 

data was raised. The computational process of the method is 

simple and convenient, and it has very good mathematical 

property under some conditions. For compositional data X. 
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The following formula is normally used for Logratio 

transformation 
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Zhang Yaoting once used transformation (2) and gave a 

regression modeling method that the independent variable is a 

compositional data. He pointed out that using the Logratio 

transformation method as the analytical variable has many 

advantages. The method can overcome the "fixed-sum 

constraint" of compositional data and partially eliminate the 

complete correlation among components, so as to use the least 

square method. Meanwhile, due to the value of uj in (−∞, +∞), 

this will bring much inconvenience to the selection of the 

model. However, the regret of the model is that the 

explanatory of the model is not strong because the new 

variable transformed from (2) cannot be corresponding to the 

original variable, so it is hard to be applied in the practical 

work.  

To solve the problem, the paper proposed that the 

symmetrical Logratio transformation should be used 

according to the formula (3) in regression modeling: 
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Record: V=(v1, v2, …, vp)', 

Obviously: vj∈(−∞, +∞), j=1, 2, …, p 

As the definition of V=(v1, v2, …, vp)' is symmetrical to the 

components of the compositional vector X=(x1, x2, …, xp)', 

using it to conduct regression modeling can better reflect the 

features of each component, so the explanatory of the model is 

also stronger. However, as the data obtained from symmetrical 

logratio transformation are completely relevant, it needs to use 

the partial least squares regression method for modeling. 

On the other hand, the inverse transformation of the 

symmetrical Logratio transformation is expressed with 

formulas (4)-(6). Through the three formulas, the 

corresponding compositional data X=(x1, x2, …, xp)' can be 

computed in reverse according to V=(v1, v2, …, vp)'. 
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3. PLS PATH MODEL AND THE REGRESSION 

MODEL OF COMPOSITIONAL DATA 

 

Using symmetrical Logratio transformation can ensure 

"fixed-sum constraint" in the regression modeling process and 

solve the problem of too small value of compositional data. 

For the linear regression that the dependent variable and 

independent variable are both a a compositional data, the 

common partial least square regression model can be directly 

used, which can overcome the complete multiple correlation 

in the variable set [3]. But for the regression issue that the 

independent variable is a set of multiple compositional data, 

the modeling process should be hierarchical. First, generalize 

the thematic meaning expressed by each compositional data, 

obtain the corresponding thematic variable, and then analyze 

the functional relationship among these thematic variables.  

To clearly divide the two levels in the regression analysis 

process, the paper proposes the use of the PLS path model: 

First, extract the aggregate variable with the strongest 

explanatory to each compositional data – hidden variable 

(namely the thematic variable), then build the regression 

model of these hidden variables, analyze the causal 

relationship among compositional data, and reach a more 

accurate and reliable model [4]. 

 

3.1 PLS path model 

 

The section will first give a simple narration to the PLS path 

model. Suppose there’re j sets of variables Xj={xj1, xj2,…,xjk} 

for n observation sample points, variable xjh is called “manifest 

variable”, and suppose they are all centralized variables 

(namely the mean value of variables is zero)[5]. In addition, 

suppose each set of variables is roughly “unidimensional”, that 

is each manifest variable in the set is mainly influenced by the 

same standardized “hidden variable”j. The relationship of the 

manifest variable and the hidden variable is expressed by the 

simple regression model: 
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The mean value of j is 0, the standard deviation is 1, and 

the mean value of the error termjh is 0 and unrelated with the 

hidden variable j. 

On the other hand, the structural model can be used to 

describe the relationship among hidden variables, and the form 

is as follows: 
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The error term vj should meet the supposition that the mean 

value is 0 and unrelated with i(i≠j). The causal relationship 

described by the structural model can be generalized into a 0/1 

matrix, of which, the dimension is the number of hidden 

variables. If the hidden variable j explained the hidden variable 

i, the value of the element (i, j) in the matrix is 1; if not, it is 0. 

The matrix is called the internal design matrix. 

26



 

To estimate the hidden variable j, on the one hand, it is 

thought the hidden variable j can be estimated by the linear 

combination of the manifest variable xjh, recorded as Yj: 

 

j
h
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Xj is a matrix with j as the manifest variable and xjh as the 

column vector. 

On the other hand, if Yi is the estimated value of the hidden 

variable i related with j, Yi can be used to estimate the 

hidden variable j. The estimated value is recorded as Zj: 
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In the above formula, the meaning of the sign ∝ is: The left 

variable is the value of the right variable after being 

standardized. The internal weight of eji equals the sign function 

value of Yj and connected correlation coefficients of Yj, namely: 

 

( )( )=sign cor Y ,Yij j ie                                        (11) 

 

The two methods put forward by Wold can calculate the 

weight wjh in the formula (9). It is thought in the pattern A that 

wjh is the covariance coefficient of xjh about Zj: 
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In the pattern B, it is thought the weight vector wj is the 

regression coefficient vector of Zj about the manifest variable 

xjh of j: 
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So, the iterative algorithm steps of PLS path analysis are as 

follows: 

Step 1: The initial value of the vector Yj is xj1. By the 

formula (10), the estimated value of Zj can be reached; 

Step 2: According to the estimated value of Zj, the weight 

vector wj can be calculated by the formula (12) or (13); 

Step 3: For wj obtained through calculation, the new Yj can 

be got via the formula (9); again, back to the step 1, it is until 

the computed convergence. Yj got finally is taken as the 

estimated value ̂
𝑗
 of the hidden variable j; 

Step 4: At last, after using the estimated value ̂
𝑗
 to replace 

the hidden variable j, use the multiple regression method of 

the common least squares to estimate the coefficients in the 

model (8).  

 

3.2 The multiple regression modeling method of 

compositional data 

 

The multiple regression modeling method can be obtained 

as follows according to the above-mentioned method of 

compositional data logratio transformation and PLS path 

analysis: 

(1) For the dependent variable Y and independent variable 

X1, , Xp, the symmetrical logratio transformation is made for 

them according to the formula (3) first; the vectors after 

transformation are 𝐘 and 𝐗𝟏, …,  �̃�𝒑; 

(2) Use the PLS path analysis model to extract the hidden 

variable of 𝐘 and 𝐗𝟏, …,  𝐗𝒑 respectively; 

(3) Build the multiple regression model of hidden variables 

to analyze the correlation means among composition data; 

(4) In the prediction application, the symmetrical logratio 

transformation is made for the independent variables X1, , 

Xp of prediction time points to get 𝐗𝟏, …,  𝐗𝒑, and then it is 

put into the PLS path analysis model to get the predicted value 

of 𝐘. Then according to the inverse transformation formulas 

(4)-(6) of logarithm transformation, the predicted value of the 

original dependent variable Y can be got. 

 

3.3 The unidimensional guarantee of the variable set  

 

It is noteworthy that in apply the PLS path analysis model, 

it needs to verify that each variable set is unidimensional. In 

the application, the simplest verification method is to make the 

main component analysis on a variable set [6]. If only the first 

characteristic value is greater than 1 and other characteristic 

values are all less than 1, it is thought the variable set is 

roughly unidimensional.  

When a component vector cannot meet the condition, the 

components should be further grouped, making each group of 

variables unidimensional. For this end, the method of variable 

clustering analysis can be used. If more than one characteristic 

value of a set of variables is greater than 1, the variable set 

should be classified to make the sub-variable group of each 

category unidimensional. Then the variable group after being 

grouped is transformed to new compositional data and then the 

modeling method raised in the paper can be used. 

 

 

4. CASE ANALYSIS 

 

In the case, Beijing’s fixed asset investments (including real 

estate), output and employment status are taken as hidden 

variables, and the structural proportions of them in the three 

industries are taken as the manifest variables. The investments, 

output and employment proportion data of Beijing three 

industries are collected in the chronological order, and the 

causal relationship among hidden variables and between 

manifest variables and hidden variables is analyzed through 

building the PLS path model. 

 

Table 1. The meaning of hidden variables and their manifest 

variables 

 

Hidde

n 

variable 

Investment 

status (inv., 1) 

Output 

status 

(GDP,2) 

Employment 

status(emp.,3) 

Manif

est 

variable 

a) Primary 

industry 

investment 

proportion 

(inv1) 

b) Secondary 

industry 

investment 

proportion(inv2) 

c)Tertiary 

industry 

investment 

proportion(inv3) 

a) Primary 

industryoutput 

proportion(GD

P1) 

b) 

Secondary 

industry output 

proportion 

(GDP2) 

c)Tertiary 

industry output 

proportion 

(GDP3) 

a) Primary 

industryemploym

etn 

proportion(emp1

) 

b) Secondary 

industry 

employmetn 

proportion 

(emp2) 

c)Tertiary 

industryemploym

etn proportion 

(emp3) 
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According to the law of macroeconomic operation, the 

investment status directly influences output and the 

employment status and indirectly influences employment 

through output. It is thought that the investment status is the 

exogenous hidden variable and the employment status and 

output status are endogenous variables. The internal design 

matrix of the initially established structure model is: 

 

Table 2. Internal design matrix of structure model (1) 

 

 Investment Output Employment 

Investment 0 0 0 

Output 1 0 0 

Employment 1 1 0 

 

The corresponding path diagram is: 

 
 

Figure 1. The relationship diagram of investments, output 

and employment 

 

Table 3 is the proportion data of the investment, output and 

employment of three industries in Beijing from 2003 to 2015 

and the value through logratio transformation. The range of the 

data has been unfolded: 

 

 

Table 3. The logratio transformation data of Beijing investment, output and employment proportion 

 

Year 

Fixed asset investment proportion GDP proportion Employment proportion 

Primary 

industry (inv1) 

Secondary 

industry (inv2) 

Tertiary 

industry (inv3) 

Primary 

industry 

(GDP1) 

Secondary 

industry (GDP2) 

Tertiary 

industry 

(GDP3) 

Primary 

industry 

(emp1) 

Secondary 

industry (emp2) 

Tertiary 

industry 

(emp3) 

2003 -2.31 1.00 1.31 -1.09 0.70 0.40 -1.04 0.59 0.45 

2004 -2.28 1.05 1.23 -1.20 0.65 0.55 -1.05 0.57 0.48 
2005 -2.26 1.14 1.12 -1.28 0.69 0.59 -1.16 0.58 0.58 

2006 -2.99 1.61 1.38 -1.35 0.70 0.65 -1.41 0.69 0.71 

2007 -2.93 1.41 1.52 -1.27 0.63 0.65 -1.34 0.56 0.78 
2008 -3.21 1.89 1.31 -1.39 0.63 0.76 -1.38 0.56 0.82 

2009 -3.31 1.88 1.43 -1.47 0.63 0.85 -1.34 0.50 0.84 

2010 -4.14 2.24 1.90 -1.54 0.62 0.91 -1.36 0.50 0.85 
2011 -3.91 2.05 1.86 -1.59 0.61 0.98 -1.28 0.38 0.90 

2012 -3.83 2.04 1.79 -1.64 0.62 1.02 -1.22 0.31 0.91 
2013 -3.52 1.90 1.62 -1.71 0.64 1.07 -1.24 0.27 0.97 

2014 -3.95 2.28 1.68 -1.77 0.63 1.14 -1.29 0.31 0.98 

2015 -4.02 2.38 1.63 -1.82 0.62 1.20 -1.43 0.37 1.05 

Note: Data source before transformation: Beijing Statistical Yearbook, 2004-2015. 
 

According to the model of Figure 1, the PLS path analysis 

is used to analyze the data of Table 3 and the path coefficients 

of the hidden variables are shown in the following table: 

 

Table 4. The path coefficients of hidden variables (1) 

 

 Investment 
Outpu

t 
Employment 

Investment 0 0 0 

Output 0.914 0 0 

Employmen

t 
0.151 0.815 0 

 

The direct influence coefficient of investments on 

employment is 0.151, non-significant. Apart from the path, the 

additional internal design matrix is shown in Table 5. The PLS 

path analysis is again used for the model, and the path 

coefficients among hidden variables are shown in Table 6. 

It can be judged that the direct influence coefficient of 

Beijing investments for GDP output is 0.913 and the direct 

influence coefficient of the output status for the employment 

status is 0.965. The indirect influence coefficient of the 

investment status for the employment status through the GDP 

output is 0.913*0.965=0.881. The goodness of fit of 

endogenous hidden variables of the above model is 0.8345and 

0.9318, better fit the observation data. 

The corresponding path diagram is showin Figure 2. 

The paths shown in Figure 2 are all prominent and the 

endogenous hidden variables have very high goodness of fit, 

which indicates the model has very strong explanatory ability 

for original data. Meanwhile, the values of the yearly hidden 

variables of the model shown in Figure 2 are shown in the 

following Table 7. 

 

Table 5. Internal design matrix (2) 

 
 Investment Output Employment 

Investment 0 0 0 

Output 1 0 0 

Employment 0 1 0 

 

Table 6. Path coefficients of hidden variables (2) 

 
 Investment Output Employment 

Investment 0 0 0 

Output 0.913 0 0 

Employment 0 0.965 0 

 

 
 

Figure 2. Beijing investments, output and employment 

relationship diagram 
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Table 7. The hidden variables of the yearly investment, 

output and employment of Beijing 

 

Year 
Investment status 

(inv.,1) 

Output 

status 

(GDP, 2) 

Employment 

status (emp. ,3) 

2003 1.415 1.906 1.797 

2004 1.495 0.969 1.629 

2005 1.575 1.177 1.159 

2006 0.462 1.063 0.642 

2007 0.475 0.486 0.172 

2008 0.207 0.106 -0.021 

2009 0.005 -0.174 -0.189 

2010 -1.344 -0.491 -0.259 

2011 -1.014 -0.79 -0.621 

2012 -0.872 -0.838 -0.753 

2013 -0.371 -0.833 -1.09 

2014 -0.989 -1.149 -1.09 

2015 -1.043 -1.432 -1.378 

 

As there’s stronger pertinence between hidden variables and 

manifest variables, the PLS regression model of hidden 

variables for manifest variables can be built. With the hidden 

variables as the dependent variables and the manifest variables 

as the independent variables, PLS regression can be conducted, 

and the relationship between hidden variables and manifest 

variables can be reached: 

1 =0.3636 inv1 - 0.3661 inv2 - 0.3071 inv3 

2 =0.3764 GDP1 + 0.3111 GDP2 - 0.3826 GDP3 

3 =0.2666 emp1 + 0.4320 emp2 - 0.4786 emp3 

In addition, there’s a certain dependency among 

investments, output and employment, the regression model 

among components can be sought or built. For the case, the 

polynomial of hidden variables can be built. After conducting 

polynomial regression, the relationship of employment (3), 

investments (1) and output (2) can be got: 

3 =-0.2407 + 0.2406(1)2 + 0.88932  

t-statistical magnitude: (-2.61) (3.32) (14.47) 

p-value:0.02 0.008 0.000 

F-statistical magnitude=148.89, adjusted determination 

coefficient �̅�2=0.96. 

The model fits the data well and the coefficients and the 

overall model all passed the test, with the statistical 

significance. From another perspective, it indicated that 

Beijing employment status is influenced by the investment 

status, output status and the quantitative relation among the 

three factors. 

 

 

5. SUMMARY 

 

The paper puts forward a method of building the multiple 

regression models under the condition that dependent 

variables and independent variables are all compositional data. 

As the compositional data have the fixed-sum constraint, the 

application condition of the classic least square regression 

method is completely destroyed, so the classic regression 

method cannot be used for modeling. The paper spreads the 

compositional data to the whole real number field through 

logratio transformation, reduces the dimension and extracts 

new aggregate variables – hidden variable for the multi-

dimensional compositional data after transformation through 

building the PLS path model, and researches the multiple 

regression relationship among hidden variables. In the 

modeling process, the method can meet the fixed-sum 

constraint of compositional data, overcome the adverse effect 

of complete multicollinearity on modeling in the 

compositional data, and highlight the thematic meaning of 

compositional data and its effect and significance in modeling. 

To further specify the working process of the multiple 

compositional data regression modeling method, the paper 

applied the suggested method, used the structural data of the 

investments, GDP and employment of Beijing three industries, 

and built the regression model among the employment status, 

investment status and GDP of Beijing three industries. The 

case study indicated that the modeling method raised in the 

paper can provide an effective technological approach to solve 

such problems, with important application value.  
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