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This brief discusses a simple stabilization strategy for a class of Lipschitz nonlinear 

systems based on the transformation of nonlinear function to Linear Parameter Varying 

system. Due to the introduction of the Differential Mean Value Theorem (DMVT), the 

dynamic and output nonlinear functions are transformed into Linear Parameter Varying 

(LPV) functions. This allows to increase the number of decision variables in the constraint 

to be resolved and, then, get less conservative and more general Linear Matrix Inequality 

(LMI) conditions. The established sufficient stability conditions are in the form of LMI 

with the introduction of a cost control to ensure closed-loop stability. Finally, Real Time 

Implementation (RTI) using a DSP device (ARDUINO UNO R3) to a typical robot is 

given to illustrate the performances of the proposed method with a comparison to some 

existing results. 
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1. INTRODUCTION

The principle of supervision of nonlinear systems (control, 

state estimation, diagnosis ...) have been exploited in many 

monitoring areas and industrial control which they are based 

mostly on feedback principle using state or/and output-

feedback controllers [1-5].  

In recent years, the feedback stabilization, tracking and 

control problem [6-10] has attracted the attention of many 

researchers due to the importance of its applications. This area 

of research remains a field which knows a development and an 

important success. Special attention is devoted to Lipschitz 

nonlinear systems. 

Effectively, for nonlinear systems that verify the Lipchitz 

properties, different methods and solid approaches have been 

treated as: adaptive design [11-15], extended-state-observer 

with back-stepping [16, 17], finite-time control [18], neural 

network control [19, 20], H∞ fuzzy-logic [21], non-fragile 

passive controller [22] and Petri Nets [23].  

In spite of the important literature of the developed methods, 

several limitations still exist:  

i. Only linear case was considered in many previous

studies. However, large systems have provided

nonlinear output signals.

ii. The standard design methods were developed with

small Lipschitz constants. However, many systems

have a large value. For example, in electric power

systems of large dimensions, the non-linear function

(due to the different electrical components) has a large

value of Lipschitz constant.

In this brief, a strategy of observer-based control method for 

Lipschitz nonlinear systems with a guarantee cost control is 

proposed. The considered systems satisfy the Lipschitz 

property. This paper is based partially on the works of these 

papers [6, 24]. The main contribution lies in the use of DMVT 

on nonlinear functions terms which transformed to Linear 

Parameter Varying (LPV) functions. This allows introducing 

additional decision variables to enhance the constraint to be 

resolved. The convergence of the augmented error to zero is 

ensured by the use Lyapunov theory and the convexity 

principle (LMI) while optimizing a quadratic criterion taking 

into account the interconnection between the state and the 

control. This method can be extended to more general class of 

nonlinear systems verifying the Lipschitz properties (singular, 

distributed, decentralized).  

This brief is organized as follows: In the next part of this 

section, some useful preliminaries are presented. The second 

section introduces the problem formulation and the synthesis 

methodology of the proposed approach is detailed. This 

approach is based on the LMIs feasibility conditions. Finally, 

Real Time Implementation (RTI) using a DSP device 

(ARDUINO UNO R3) to a typical robot is given to illustrate 

the performances of the proposed method with a comparison 

to some existing results. 

Notations:  

We consider the following notations in this brief: 

- S is a square matrix then S > 0 (S < 0) means that this

matrix is positive definite (negative definite);

- ST is the transposed matrix of S;

- The notation (⋆) is used for the blocks induced by

symmetry;

- The set Co(x,y)={λx+(1−λ)y,0≤λ≤1} is the convex

hull of x,y;

0,...,0,1,0,...,0( )

th T
j

s
se j

s components

 
 
 = 
 
  −  , s≥1, is the vector of the 

canonical basis of s . 
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2. PROBLEM STATEMENT 

 

The set of equations of a general class of nonlinear system 

is given by: 

 

( , )

( , )

x g t x Bu

y h x u

= +


=
 (1) 

 

where, nx   the state vector, mu  : input and 

( ) py t   output. The matrix B is constant with adequate 

dimension. 

( , ) : n n ng t x  →  and ( , ) : n m ph x u  →  are 

nonlinear vectors fields (supposed differentiable to x).  

Considering the following assumptions and proposals: 

Assumption 1: The Jacobian matrices of g(.) and h(.) 

satisfy [25]: 

 

( , )

( , )

i
ij ij

j

i
ij ij

j

g t x
g g

x

h x u
h h

x


−     + 


−     +
 

 

(2) 

 

where, 

 

min ( ) ; max ( ) ;

min ( ) ; max ( )

n n n n

n m n m

i i
ij ij

F F
j j

i i
ij ij

F F
j j

g g
g F g F

x x

h h
h F h F

x x

   

   

    
= =          

    
= =          

 

 

Proposition 1. [24]: Let : n kf →  and 1 2, nx x  . If 

f  is differentiable in 1 2( , )Co x x , then, there are constant 

vectors 1 1 2,..., ( , )kr r Co x x , 1ir x , 2ir x  for 

1,...,i k=  with: 

 
,

1 2 1 2

, 1

( ) ( ) ( ) ( ) ( ) ( )
k n

T i
k n i

i j j

f
f x f x e i e j r x x

x=

 
− = −   

  (3) 

 

Proposition 2. [24]: Let the two sets ,n nD  and ,p nE  be 

defined as follows:  

 

, 11 1

, 11 1

{ ( ,..., ,..., )

: , 1,..., ; 1,..., ;}

{ ( ,..., ,..., )

: , 1,..., ; 1,..., ;}

n n n nn

ij ij ij

p n n pn

ij ij ij

D a a a a

g a g i n j n

b b b b

h b h i p j

E

n








= =

  = =

=

  =

=

=  

(4a) 

 

The sets of vertices of ,n nD  and ,p nE  (supposed a bounded 

convex domain) are given by: 

 

,

,

11 1

11 1

{ ( ,..., ,..., ) :

{ , }}

{ ( ,..., ,..., ) :

{ , }}

p n

n n

n pn

ij ij ij

n nn

ij ij ij

E

D

c c c c

c h h

d d d d

d g g








= =



= =


 

(4b) 

 

This gives  

 
,

, 1

,

, 1

( ) ( ) ( )

( ) ( ) ( )

n n
T

L ij n n

i j

p n
T

ij p n

i j

a a e i e j

b b e i e j

=

=

=

=



  

(5) 

 

where, ( )L a  and ( )b  are the affine matrices functions. 

In the next section, the proposed approach will be detailed 

to synthesis of observer / control gains that guarantee closed-

loop stability. 

 

 

3. FEEDBACK STABILIZATION DESIGN 

 

3.1 Method design 

 

The proposed observer for system (1) is described by: 

 

ˆ ˆ ˆ( ) ( , )

ˆ ˆ( , )

x Bu L y y g t x

y h x u

 = + − +


=
 (6) 

 

where, x̂  and L are the estimated state and the observation 

gain matrix respectively. 

Now, let’s define ˆx x = − as the variation of dynamic 

state estimation error. Using (6) and (1), we obtain: 

 
g L h =  − 

 
(7) 

 

and ˆ( , ) ( , )g g t x g t x = −  and ˆ( , ) ( , )h h x u h x u = − . Now, 

using Proposition 1 on g(.) and h(.) and knowing that there 

exists ˆ( ( ), ( )) ( , )i ir t r t Co x x , for all 1...i n= , we obtain: 

 
,

, 1

,

, 1

ˆ( , ) ( , ) ( ) ( ) ( )

ˆ( , ) ( , ) ( ) ( ) ( )

p n
T

p n i

i j j

n n
T

n n i

i j j

h
h h x u h x u e i e j r

x

g
g g t x g t x e i e j r

x





=

=

  
 = − =     


 
 = − =     



  

(8) 

 

Note: Let’s consider the notation: 

 

11 1

11 1

( ) ( ( ), ); ( ) ( ( ),.., ( ),.. ( ))

( ) ( ( )); ( ) ( ( ),.., ( ),.. ( ))

i
ij i n pn

j

i
ij i n nn

j

h
z t r t u z t z t z t z t

x

g
w t r t w t w t w t w t

x


= =



= =
  

 

Then, using (5) and (8) in (7), gives: 

 

( ( ( )) ( ( )))L w t L z t = −  
(9) 

 

Which leads to that the observer design of systems (1) is 

transformed into stability problem of LPV systems (9) which 

offered by the use of DMVT.  

In the next step we are interested in the development of 

control gain matrix. To do so, the following expression is a 

typical form of state feedback control: 

 
ˆu Kx= −

 
(10) 
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with m nK   is the control gain matrix. Including this 

control form (10) in the nonlinear system, we can obtain:  

 

( , )

( , )

x BKx BK g t x

y h x u

= − + +


=
 (11) 

 

Similarly, using Proposition 1, the function ( , )g t x  is 

equivalent to 0( , ) ( ,0)g t x g t−  assuming that 0( ,0) 0g t =

where: 

 
,

0

, 1

( , ) ( ,0) ( ) ( ) ( )
n n

T

n n i

i j j

g
g t x g t e i e j r x

x=

 
− =    

  

 

where, ( ,0)ir Co x  which allows to have: 

( , ) ( ( ))Cg t x w t x= . Therefore, including the overall 

system (11) and the dynamics observation error system (9), the 

augmented system is given by: 

 

( ( ))

0 ( ( )) ( ( ))

C

L

xx A

w t BK BKx x

w t L z t 

−    
=     −      

(12) 

 

The next section presents the synthesis method of different 

parameters through a transformation to a convex optimization 

algorithm (LMIs) with two steps. 

 

3.2 Stability analysis 

 

This part is devoted to the stability analysis while ensuring 

optimization of a cost control. The criterion to optimize is as 

follows: 

 

   
0

(
T

T

Q S
J x u x u dt

S R

  
=  

 
  (13) 

 

With 0TQ Q=  , 0S   and 0TR R=   are constant 

weighting matrices.  

Note: In contrary to standard methods, this cost control 

considers that the state and the control are interconnected. 

Now, using the form ˆu Kx= − , the cost control (13) is 

developed as follows: 

 

0

( )

( )

T T T

T

T T T

Q

Q K RK SK SK K RK SK
J x x dt

K RK SK K RK



 
  + − − − +
 =  
 − + 
 
 


 

(14) 

 

Based on Yang et al. [26], the state feedback control is 

explored to be a quadratic guaranteed cost control with a 

positive cost for the augmented system (12) using (13) if the 

closed loop system is stable. This is guaranteed if and only if 

J J  for all admissible nonlinearities.  

First, we define the candidate Lyapunov function ( )V x : 

 

( ) TV x x Px=
 

(15) 

 

With P is given by: 

0

0

0

cP
P

P

 
=  
 

 

where, T
c cP P=  and 0 0

TP P=  are Lyapunov SDP matrices. 

The aim is to satisfy this inequality: 

 

( ) 0Td
V x x Qx

dt
+   (16) 

 

From (15) and (16), we obtain: 

 

( ) ( ) 0T T TAx Px x P Ax x Qx+ + 
 

(17) 

 

Then, the condition for the asymptotic stability [26] with a 

guaranteed level of performance is given by: 

 

( ) 0T Tx A P PA Q x+ + 
 

(18) 

 

The main result is given by the following theorem: 

 

Theorem 1: 

The system (1) is stable by guaranteeing the cost control (13) 

in the sense of Lyapunov if there are matrices of appropriate 

dimensions P=PT, L and K where the following LMI has 

solution: 

 

,

,

1 1 2 2( ( , ),..., ( , )) 0,

  1,...,2

  1,...,2

( , ) ( , ) ( , )

qn pn

q n

p n

i qn

j pn

i j i j j

E

T i

D

blk diag G d c G d c

d for i

c for j

G d c A d c P PA d c Q

− 

 =

 =

= + +
 

(19) 

 

Proof: 

Eq. (19) can be rewritten in the form of the following block 

matrix:  

 

11 12

21 22

0
Z Z

Z Z

 
 

 
 (20) 

 

With: 

  

11

12

21 12

22 0 0 0 0

( ) ( )

( )

( ) ( ) ( ) ( )

T T T

C c c C c c

T T

T

c

T

T T T

L L

T

Z d P P d K B P P BK Q

K RK SK KS

Z P BK K RK KS

Z X

Z d P P d c L P P L c

K RK

 = + − − +


+ − +
 = − +


=
 = + − −


+
 

 

Now, let’s proceed to a resolution algorithm with two steps: 

- Introducing a new S-variable and pre- and post-

multiplying (20) by: 

 

1
0

, 0
0

T

c

M
M M P

I

− 
= =  

 
 (21) 

 

This leads to: 

 

11 12

21 22

0
T T

T T

 
 

 
 (22) 

 

Considering the change of variables: N=KM and V=P0L, 

the result will be: 
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11

12

21 12

22 0 0

( ) ( )

( ) ( ) ( ) ( )

T T T

C C

T T T

T

T

T T T

L L

T

T M d d M N B BN

MQM N RN N S W MSN

T BK N RK MSK

T T

T d P P d c V c

K RK

M

V

 = + − −


+ + + +
 = − +


=
 = + − −


+
 

Now, the resolution of the matrix inequality T11<0 allows 

direct deduction of the matrices M and N.  

Secondly, the application of the Schur complements [27], 

leads to: 

The resolution of (23) gives the control gain matrix by 

K=NM-1. 

 

1

1

( ) ( )

0 0 0

00 0 0

0 0 ( ) 0

0 0 0

T T T T T

C C

T

M d d M N B BN M N N M

Q

R

S

S

−

−

+

+

+ − −

−

−

−

−

 
 
 
 
 
 
 
 

 

(23) 

 

The next step of resolution and determination of the 

observer parameters (determination of P0 and V by the LMI 

(22)) is done by injecting the values of M and N (determined 

with the resolution of T11 <0). Thereafter, we will easily the 

observation gain L=P0
-1V. 

 

 

4. EXPERIMENTAL RESULTS  

 

In order to validate the approach presented in this brief, an 

example will be considered with a real-time implementation 

by the use of DSP board ARDUINO UNO-R3 device as a real-

time emulator (Hardware in the Loop) on a typical one-link 

flexible joint robot [28].  

The dynamic equation for the system is given as:  

 

( ) ( ) ( ) ( ( ))

( ) ( ( ), ( ))

x t Ax t Bu t g x t

y t h x t u t

= + +


=
 

 

where, all the parameters and their physical meanings are 

given by the paper [27]. 

 

10 1 0 0

48.6 1.26 48.6 0

0 0 22 1

1.95 0 19.5 6

A

− 
 
− −
 =
 −
 

− − 

;

0

1

0

0.5

B

 
 
 =
 
 
 

;

1

2

( , )
(2 )

x
h x u

sin x

 
=  
 

;

3

0

0
( ( ))

0

sin( )f

g x t

x

 
 
 =
 
 
 

 

 

Now, Applying the DMVT approach with Lipschitz 

constant 3.33f =  leads to:  

- ( , ) ( ( ))CAx g t x w t x+ =  

- 1 0jD =  for all 1,2,3j =  ; 14 3( )f cosD r= .  

- 
1,4D  can be reduced to 

1,4
{ , }fD f = − + .  

- For function ( , )h x u : 2,2 2h = −  and 2,2 2h = . 

- The initial conditions are:
Tx(0)=[0.5 0.5 0.5 0.5] ; 

Tx̂(0)=[-0.5 -0.5 -0.5 -0.5] . 

 

Now, the resolution of LMI (19) in Theorem 1, give: 

 40.0473 17.8391 6.6076 42.08K = − − − ; 

0.0495 1.8578

0.0385 21.3563

0.0259 3.0453

0.0505 3.0309

L

− 
 
 =
 − −
 
− − 

 

 

where, 40.001Q I= , 0.01R =  and 
TS=[0.1 0.1 0.1 0.1] . 

For the real time implementation using the DSP device 

"ARDUINO UNO R3 device", all technical details and 

configuration steps with MATLAB / Simulink are given in the 

papers [6-9]. 

Note: In all the figures, the real state will be symbolized by 

a solid line and that estimated by dashed line and all 

magnitudes are in Volts. 

The first step in this RTI consists in injecting a variable 

sinusoidal noise on the output of the system in terms of 

amplitude 10%  of y and frequency 140Hz.  

Figure 1 presents the variation of real x1 and its estimate 

( 1x̂ ). 

Figure 1 present clearly that the state is very well estimated 

(despite very small variations which are due to disturbances). 

This result is deduced from the use of the DMVT on the 

nonlinear function allowing a scanning of the entire range of 

variation (operation) from two limit points (from f− to f ). 

The second step in this RTI consists in interposing two 

additive sinusoidal noises variable in terms of frequency 

240Hz and amplitude 30% . These two noises will be injected 

respectively on the dynamics of the system and the output. 

Figure 2 presents the evolution real x4 and its estimate ( 4x̂ ) 

by the proposed design (dashed red line) and the method of 

[10] (dashed black line). 

From Figure 2 can directly deduce that the proposed 

approach ensures the stabilization of the overall system even 

with the presence of variable noise during the first transient 

mode when the method [10] presents a biased result. 

The third step in this RTI is to further amplify the two 

sinusoidal noises in terms of frequency (550Hz-3800Hz) and 

amplitude ±45%. These two noises will be injected as well as 

the second phase. 

Figure 3 presents the real 2x  and its estimate ( 2x̂ ). 

From Figure 3 we deduce in a clear way that the system 

remains stable and converges the point of origin even by 

further amplifying the extreme disturbances that can be 

simulated in several real industrial cases. 
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Figure 1. Evolution of x1 and its estimate 

 

 
 

Figure 2. Evolution of x4 and its estimate 

 

 
 

Figure 3. Evolution of x2 and its estimate 

 

The results provided in this section show clearly that the 

proposed approach ensures stabilization and convergence 

towards the equilibrium state even in the presence of 

disturbances of great value. This is guaranteed by the 

application of DMVT on the nonlinear dynamic and output 

functions. Indeed, this principle makes it possible to take into 

consideration the system transformed into LPV while 

scanning the different operating points in the interval of 

variation formed from two extreme limits of the Lipschitz 

constants. 

 

 

5. CONCLUSIONS 

 

In this paper, a simple stabilization approach for nonlinear 

systems which verify the Lipschitz condition is presented.  

The transformation from a nonlinear system to an easily 

treatable LPV class is ensured through the use of DMVT. This 

allowed having nonrestrictive sufficient conditions on 

nonlinear functions during the synthesis of LMIs guaranteeing 

convergence towards the point of origin. This while ensuring 

the optimization of a quadratic criterion implementing a direct 

correlation between the state vector and that of input/control. 

RTI with ARDUNO board which was used as an emulator 

confirms the high quality of stabilization offered by the 

proposed approach.  

A further question needs to be investigated:  

- The generalization of the proposed One-sided Lipschitz 

systems. 

- An extension to adaptive control in Reciprocal Space 

systems framework (considering nonlinear outputs expressed 

with derivatives of states).  

These extensions will be investigated (as part of a project) 

in the near future 
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