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 Although sliding mode control has many advantages such as stability and robustness but 

there are two important disadvantages as follow: Chattering phenomenon and 

mathematical nonlinear dynamic equivalent controller part. So, this paper presents a new 

method of adaptive sliding mode control based on general type-2 fuzzy logic to overcome 

on the mentioned problems. First, the longitudinal motion equations of a commercial 

aircraft and the upper limits of the unknown functions are introduced, which include the 

driving errors and uncertain parameters of the model. Then, a general type-2 fuzzy neural 

network (GT2FNNs), with adaptive rules, estimates these limits. Estimating the limits can 

reduce the computational load with less rules and weight than the dynamic matrix. The 

Boeing 747 is being studied and an attempt has been made to use a model very close to 

this aircraft. The stability of the control system has been proven. The simulation results 

show that by applying three models of faults to the aircraft system, the proposed type-2 

fuzzy-based sliding mode control has excellent performance, especially in controlling the 

Aileron and Rudder angles.  
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1. INTRODUCTION 

 

The Boeing 747 is one of the most popular commercial jets 

in the world. Given the high demand for the aircraft and the 

growing number of flights, researchers are thinking of 

designing more accurate and reliable control systems for these 

aircraft. It is a large passenger aircraft and therefore has 

complex nonlinear systems and many variables [1]. Flight 

parameters, including speed, altitude, and angle of attack, are 

constantly changing, leading to changes in aircraft dynamics. 

Unauthorized deviation of at least one of the variables may 

lead to a fault [2]. The faults may cause some systems to 

malfunction, or even some physical equipment to break, or 

eventually cause the aircraft to crash [3]. Therefore, it is 

necessary to quickly identify the faults and compensate them. 

This operation is one of the tasks of the control system. After 

detecting the faults, Fault-Tolerant Flight Control Systems 

(FTFCS) take the aircraft to the autopilot control mode and 

prevent the aircraft from crashing [4]. There are several ways 

to control a commercial plane, some of which are discussed 

below. The fractional order method is used to surface control 

of a commercial aircraft by compensating with PI controller 

[5]. In the mentioned paper, an aerial load is applied to 

challenge the control system, but the parameters have not any 

uncertainty. A model reference adaptive control (MRAC)-

based SMC has been proposed for the Boeing 747 [6]. The 

MRAC is basically depends on exact mathematical model of 

the aircraft, therefore if this model differs from the aircraft 

model, the controller will not work well. The MRAC-based 

SMC has been used for control of longitudinal motion of a 

Boeing 747 aircraft [7]. In the mentioned paper, the adaptation 

law is derived from Lyapunov stability theory, however, the 

linear model is still considered (MRAC) and the parameter 

uncertainty is not considered. To prevent multiple switching 

[8], a controller approach based on the H2 multivariate control 

/ regulator theory is presented to control the aircraft. A control 

method based on feedback linearization design for aircraft 

multi-variable nonlinear dynamics with unknown excitation 

faults and unknown disturbances has been presented [9]. In the 

mentioned paper, a direct adaptive controller is generated to 

monitor the faults from parameters uncertainty, and then an 

integrated comparator with adaptive weight can provide 

effective compensation for the effect on the faults. Complexity 

and difficult implementation are the disadvantages of the 

presented method in the paper [9]. Unfortunately, most of the 

above methods have used the linear mathematical model of the 

aircraft to design the controller, while the nature of the 

dynamic behavior of flight systems is nonlinear. The 

difference between a linear model and a non-linear model is 

sometimes huge and unavoidable. So, we have to fill this gap 

somehow. One way is to use tools based on computational 

intelligence. 

Computational intelligence tools in complex systems have 

performed well in terms of modeling and system identification 

[10-13], control and regulation [14-17], and so on [18-20]. 

Neural networks, fuzzy logic, and evolutionary algorithms 

have been very efficient in combining model-based methods 

(control theory) in aerospace systems [21, 22]. A neural 

network with lyapunov-based adaptation law is used to robust 

control of an airplane [23]. The tracking control scheme with 

a radial base function neural network compensator for a 

commercial aircraft has been proposed [24]. In the mentioned 

paper, the saturation of the actuators and the uncertainty of the 

aerodynamic parameters are considered. The uncertainty of 

aerodynamic parameters is online regulated by neural 

networks and allocation control law. A sliding mode control 
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(SMC)-based fault tolerant for aircraft system control has been 

presented [25]. In the mentioned paper, a neural network is 

used to detect faults and eliminate them with the Lyapunov -

based learning algorithm. The disadvantages of the proposed 

method in the paper [25] are that the equations are very general 

and there are no restrictions. A control system consists of three 

internal loops has been proposed [26]. In the mentioned paper, 

the inner ring is responsible for controlling the actuation force 

by a PI controller, the middle ring controls the position of the 

body by a fuzzy controller similar to PD, and the outer ring is 

the impedance control ring. A type-1 fuzzy sliding mode 

control has been used as fault-tolerant control of a commercial 

aircraft [27]. In the papers reviewed above, either only one 

fault factor is considered (several sources of fault have not 

been analyzed) or the difference between the linearized model 

and the nonlinear model has not been compensated, therefore, 

present paper has been written to eliminate these problems. 

Another innovation of this paper is reduction the effect of 

chattering phenomenon, which is one of the challenges of the 

sliding model control method, by using general type-2 fuzzy 

logic as soft switching. 

In this paper firstly a mathematical model to describe the 

longitudinal behavior of a commercial aircraft is presented. 

Then the general type-2 fuzzy system is expressed. In the 

following, the sliding mode adaptive control method based on 

the general type-2 fuzzy system is presented and finally 

simulation and conclusion are expressed.  

 

 

2. THE LONGITUDINAL MODEL OF THE AIRCRAFT 

 

In aircraft dynamics, although the analysis and design 

approaches in this study are not limited to the specific type of 

aircraft, it is better to pay attention to a special aircraft system 

to explain the concepts and validate the design process. The 

Boeing 747 Series 200/100 is used as one of the most famous 

and widely used commercial jet aircraft, for example, in this 

research to explain the design process of SMC. The 

longitudinal motion of the Boeing 747's body axes can be 

presented as follows [28], regardless of its flexible effects: 

 

�̇� = 𝐶7𝑀𝑦
̇ , (1) 

 

�̇� =
𝐹𝑋 cos 𝛼 + 𝐹𝑧 sin 𝛼

𝑚

̇
 (2) 

 

where, q is dynamic pressure, C7 is inertia coefficient, 𝛼 is 

angle of attack, V is airspeed and m are aircraft mass. The 

dynamic axis-body forces and torques are explained as follows: 

 

𝐹𝑥 = −�̅�𝑆𝑟(𝐶𝐷 cos 𝛼 − 𝐶𝐿 sin 𝛼) + 𝑇 − 𝑚𝑔 sin 𝜃 (3) 
  

𝐹𝑍 = −�̅�𝑆𝑟(𝐶𝐷 sin 𝛼+𝐶𝐿 cos 𝛼)− 0.0436𝑇 −
𝑚𝑔 cos 𝜃, 

(4) 

 

𝑀𝑦 = �̅�𝑆𝑟𝐶̅[𝐶𝑚 −
1

𝐶̅
(𝐶𝐷 sin 𝛼 + 𝐶𝐿 cos 𝛼)𝑥𝑐𝑔̅̅ ̅̅  

−
1

𝐶̅
(𝐶𝐷 cos 𝛼 − 𝐶𝐿 sin 𝛼) 𝑧𝑐𝑔̅̅ ̅̅ +

𝑐 �̇�̅̅ ̅̅

𝑉
(𝐶𝑚𝛼

−
�̅�𝑐𝑔

𝐶̅
𝐶𝐿𝛼 cos 𝛼 )] + 𝑍𝑒𝑛𝑔𝑇 

(5) 

 

where, Sr is reference surface area, CD, CL and Cm are the drag, 

the lift and pitching moment coefficients, respectively. The 

trust force is shown by T, xcg is center of gravity in x-axis and 

Zeng is engine position in z-axis. The aerodynamic coefficients 

for longitudinal motion can be expressed as follows: 

 

𝐶𝐿 = 𝐶𝐿0 +
𝑐̅

2𝑉
(1.45 − 1.8�̅�𝐶𝑔)

𝑑𝐶𝐿
𝑑𝑞

𝑞

+ 𝐾𝛼 (
𝑑𝐶𝐿
𝑑𝛿𝑡𝑒

𝛿𝑖𝑒 +
𝑑𝐶𝐿
𝑑𝛿𝑜𝑒

𝛿𝑜𝑒), 

(6) 

 

𝐶𝐷 = 𝐶𝐷𝑀𝑎𝑐ℎ  , (7) 

 

𝐶𝑚 = 𝐶𝑚0 +
𝑐̅

2𝑉

𝑑𝐶𝑚
𝑑𝑞

𝑞 + 𝐾𝛼
𝑑𝐶𝑚
𝑑𝛿𝑠

𝛿𝑠

+ 𝐾𝛼 (
𝑑𝐶𝑚
𝑑𝛿𝑡𝑒

𝛿𝑖𝑒 +
𝑑𝐶𝑚
𝑑𝛿𝑜𝑒

𝛿𝑜𝑒). 
(8) 

 

where, the inner elevator deflection and outer elevator 

deflection are shown by 𝛿𝑖𝑒  and 𝛿𝑜𝑒 , respectively. 𝐶𝐷𝑀𝑎𝑐ℎ 

drag coefficient at a fixed Mach number and 𝐾𝛼  effective 

factor of the elevator. 

In addition, aerodynamic coefficients can be as follows: 

 

𝐶𝐷𝑀𝑎𝑐ℎ=𝑘20𝛼
2 + 𝑘10𝑉 + 𝑘01𝑉 + 𝑘00  (9) 

 
𝑑𝑐𝐿
𝑑𝛿𝑡𝑒

=
𝑑𝑐𝐿
𝑑𝛿𝑜𝑒

= 𝜏02𝑉
2 + 𝜏01𝑉 + 𝜏00 (10) 

 

𝐶𝐿𝑂 = 𝜂10𝛼 + 𝜂01𝑉 + 𝜂00 , (11) 

 

𝐶𝑚𝑜 = 𝜉20𝛼
2 + 𝜉10𝛼 + 𝜉01𝑉 + 𝜉00, (12) 

 
𝑑𝐶𝑚
𝑑𝛿𝑡𝑒

=
𝑑𝐶𝑚
𝐷𝛿𝑜𝑒

= 𝜁02𝑉
2 + 𝜁01𝑉 + 𝜁00 (13) 

 

where, in the paper [29]: 

 

{
 
 

 
 
𝑘20 = 3.67,𝐾10 = 3.48 × 10

−2, 𝐾01 = 4.45 × 10
−5, 𝐾00 = 9.92 × 10

−3

𝜏02 = −0.72 × 10
−7, 𝜏01 = 2.13 × 10

−5, 𝜏00 = 1.61 × 10
−3                       

𝜂10 = 5.15, 𝜂01 = 1.21 × 10
−3, 𝜂00 = 6.15 × 10

−3                                         

𝜉20 = 2.39, 𝜉10 = −1.46, 𝜉01 = −3.20 × 10
−4, 𝜉00 = 0.12                            

𝜁02 = 2.18 × 10
−7, 𝜁01 = −0.58 × 10

−4, 𝜁00 = 0.88 × 10
−2                        

 (14) 

 

Note 1: It is clear from Eq. (6) that the CL increase 

coefficient is based on the acute effects of peak angles, lift 

deviations, and the basic CLO component, respectively. 

Relationship (7) shows that the traction coefficient of CD is 

largely based on the effect of Mach number. As can be seen 

from Eq. (8), the fundamental factors affecting the Cm 

transverse torque coefficient actually include the peak angular 

velocity, the internal elevation deviation, the external 

elevation deviation, the stabilizing deviation, and the basic Cmo 

component, respectively. By substituting relationships (3)-(8) 

for relationships (1) - (3) we get that: 
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𝑞 =
𝐶7�̅�𝑆𝑟𝐶̅

2𝑉

̇
[𝐶̅
𝑑𝑐𝑚
𝑑𝑞

− (1.45 − 1.8�̅�𝑐𝑔)(�̅�𝑐𝑔 cos 𝛼 + 𝑧�̅�𝑔 sin 𝛼 )]𝑞 

+𝑐7�̅�𝑆𝑟𝑐̅𝐶𝑚𝑜 + 𝑐7�̅�𝑆𝑟[𝐶𝐷𝑀𝑎𝑐ℎ(𝑧�̅�𝑔 cos 𝛼 − �̅�𝑐𝑔 sin 𝛼) 

−𝐶𝐿𝐷(�̅�𝑐𝑔 cos 𝛼 + 𝑧�̅�𝑔 sin 𝛼)] 

+𝑐7�̅�𝑆𝑟𝐾𝛼 [𝑐̅
𝑑𝑐𝑚
𝑑𝛿𝐿𝑒

− (𝑥𝑐𝑔 cos 𝛼 + 𝑧�̅�𝑔 sin 𝛼)𝑐̅
𝑑𝑐𝐿
𝑑𝛿𝐿𝑒

]𝛿𝑖𝑒 

+𝑐7�̅�𝑆𝑟𝐾𝛼[𝑐̅
𝑑𝑐𝑚
𝑑𝛿𝑜𝑒

− (�̅�𝑐𝑔 cos 𝛼 + 𝑧�̅�𝑔 sin 𝛼)𝑐̅
𝑑𝑐𝐿
𝑑𝛿𝑜𝑒

]𝛿𝑜𝑒 

+𝑐7�̅�𝑆𝑟𝐾𝛼𝑐̅
𝑑𝑐𝑚
𝑑𝛿𝑠

𝛿𝑠 + 𝑐7𝑧𝑒𝑛𝑔𝑇. 

(15) 

 

�̇� = −𝑔 sin 𝛾 −
�̅�𝑠𝑟
𝑚
𝐶𝐷𝑀𝑎𝑐ℎ

+
4(cos 𝛼 − 0.0436 sin 𝛼)

𝑚
 

(16) 

 

The parameters of aircraft cannot be accurately obtained, 

this leads to challenges in designing flight control. Usually, 

there are incremental parameters (∆∗) in nominal values: 

 

{
  
 

  
 
𝑚 = 𝑚0(1 + ∆𝑚)  
𝑠𝑟= 𝑆𝑟𝑜(1+∆𝑆𝑟)           

𝐼𝑦𝑦=𝐼𝑦𝑦𝑜 (1 + ∆𝐼𝑦𝑦).  

𝑐̅ = 𝑐�̅�(1 + ∆𝜉)        

�̅� = �̅�𝑜(1 + Δ�̅�)      

 (17) 

 

If we define x = [q, V]T , as well u =  [δie, δoe, δs]
T , the 

equations of longitudinal motion can be facilitated as follows: 

 

�̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢

= ( 𝑓𝑜(𝑥) + Δ𝑓)

+ (𝑔𝑜(𝑥) + ∆𝑔)𝑢  

(18) 

 

where, f(x) ∈ R2, g(x) ∈ R2×3  are nonlinear functions of x. 

f0(x) and g0(x) represent the nominal phrases f(x), g(x), while 

∆f, ∆g  on uncertainty phrases (modeling errors / parameters 

uncertainties) related to f(x), g(x) respectively. Therefore, the 

phrase corresponding to the longitudinal motion of the aircraft 

can be represented by the relation (18) by calculating the 

impulse defects as follows: 

 

�̇� = (𝑓𝑜(𝑥) + ∆𝑓 ) + (𝑔𝑜(𝑥) + ∆𝑔)( Λ𝑢 + 𝜏) (19) 

 

Assumption 1: Suppose that the following inequalities are 

concluded: 

 

‖∆𝑓 + (𝑔𝑜 + ∆𝑔)𝜏‖ ≤ 𝑟1   �̇� = 𝐶7𝑀𝑦
̇ , (20) 

 

‖𝑔𝑜(Λ − 𝐼)𝑔𝑜
+ + ∆𝑔Λ𝑔𝑜

+‖ ≤ 𝑟2 < 1 (21) 

 

where, g0
+  is the pseudo inverse of go and r1, r2 are the 

unknown positive parameters.   
 

 

3. GENERAL TYPE-2 FUZZY NEURAL NETWORK  
 

The ability to learn neural networks is used to regulate the 

shape of fuzzy membership functions and output weights. In 

this paper, the purposed GT2FNN is to provide online upper 

limits (p1, p2) as a criterion for unknown expressions. It should 

be noted that the estimation process p1, p2 is variable from 

every time. A general type-2 fuzzy sets that used in this paper 

is shown in Figure 1. 

 

 
 

Figure 1. General type-2 fuzzy set 

 

The mathematical definition of a general type-2 fuzzy set is 

as follows: 

 

�̃̃� = {((𝑥, 𝑢), 𝜇𝐴(𝑥, 𝑢)|∀𝑥 ∈ 𝑋, ∀𝑢 ∈ 𝐽𝑥 ⊆ [0,1])} (22) 

 

where, x is input, u is primary membership function and 

𝜇𝐴(𝑥, 𝑢) is secondary membership function. Note that 𝐽𝑥 is an 

interval set as: 𝐽𝑥 = {(𝑥, 𝑢): 𝑢 ∈ [𝜇𝐴, 𝜇𝐴]} . A triangular 

interval type-2 fuzzy can be showed as: �̃� =

([𝑙𝐴, 𝑙𝐴], 𝑚𝐴, [𝑟𝐴, 𝑟𝐴]) . The upper and lower membership 

function are as: 

 

𝑈𝑝𝑝𝑒𝑟 𝜇𝐴(𝑥, 𝑢)

=

{
 
 

 
 
𝑥 − 𝑙𝐴
𝑚𝐴 − 𝑙𝐴

                𝑙𝐴 < 𝑥 < 𝑚𝐴

1                              𝑥 = 𝑚𝐴 

𝑥 − 𝑟𝐴
𝑚𝐴 − 𝑟𝐴

                 𝑚𝐴 < 𝑥 < 𝑟𝐴

  �̇� = 𝐶7𝑀𝑦
̇ , 

(23) 

 

𝐿𝑜𝑤𝑒𝑟 𝜇𝐴(𝑥, 𝑢) =

{
 
 

 
 𝑥 − 𝑙𝐴

𝑚𝐴 − 𝑙𝐴
                𝑙𝐴 < 𝑥 < 𝑚𝐴

1                              𝑥 = 𝑚𝐴 
𝑥 − 𝑟𝐴
𝑚𝐴 − 𝑟𝐴

                 𝑚𝐴 < 𝑥 < 𝑟𝐴

  (24) 

 

For simplicity we show �̃̃� as 𝐴. A fuzzy rule is as follows: 

 

𝑖𝑓     𝑥𝑖  𝑖𝑠  𝐴𝑖
𝑙 ,   𝑇𝐻𝐸𝑁 𝜌1(𝑥) = 𝑊𝑙  (25) 

 

where, i = 1,2, … ,m, l = 1,2, … , N,   ρ1 = Uu ∈ R
m → R and 

Ai
l  indicates the fuzzy membership value of the input variable 

i in the l rule, and Wl is the output power associated with the l 

rule. The type 2 fuzzy neural network shown in Figure 2 

consists of 4 layers. 
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Figure 2. Structure of type-2 fuzzy neural network 

 

Layer (1) receives the input variables. The membership 

values in layer (2) are calculated in such a way that the degree 

to which the input value is coordinated with a fuzzy set can be 

determined. Prerequisite coordination is done in layer (3). 

Prerequisites for fuzzy rules are identified by the links before 

layer (3), while the results are explained by the following links. 

Layer (4) is considered as the output layer. Therefore, the 

output of GT2FNN with N fuzzy rule is explained by Eq. (26): 

 

𝑟1(𝑥) = 𝑊
𝑇 �̃̃�{((𝑥, 𝑢), 𝜇𝐴(𝑥, 𝑢)|∀𝑥 ∈ 𝑋, ∀𝑢 ∈ 𝐽𝑥

⊆ [0,1])} 

= �̅�𝑇 �̃̃�{((𝑥, 𝑢), 𝜇𝐴(𝑥, 𝑢)|∀𝑥 ∈ 𝑋, ∀𝑢 ∈ 𝐽𝑥 ⊆ [0,1])}

+ 𝜀1, 

(26) 

 

where, 𝜀1 is approximation error that It should be less and less 

and tend to be zero. Using GT2FNN, ρ2 can be approximated 

in a manner similar to that described for ρ1. 

 

 

4. SLIDING MODE CONTROL DESIGN BASED ON 

GT2FNN  

 

As shown in Figure 3, the control system described here is 

essentially GT2FNN and SMC. 

 

 
 

Figure 3. Proposed control system structure 

 

In the proposed method, GT2FNN has adaptive techniques 

used to obtain online values of r̂1, r̂2. In this proposed structure, 

the role of GT2FNN is very important because it must be able 

to calculate the parameters r̂1, r̂2 online and by estimation. So 

we've tried to design a very good approximator so that it has 

good accuracy and low calculation time. 

The vector defines the error as e=x-xd in which xd represents 

the command vector. In order to access the sliding mode in the 

whole response of the general system, the sliding surface is 

created as follows: 

 

𝑠 = 𝑒 + 𝜇∫ (‖𝑒‖𝑟𝑒/‖𝑒‖)𝑑𝜏
𝑡

0

 (27) 

That μ is a positive constant and is 0 < r < 1. The purpose 

of the sliding mode control mentioned in this paper is to guide 

the tracking error vector towards the origin during S = 0 in a 

limited time under the faults and model uncertainties. 

According to the defective model of the aircraft in relation to 

(20), the SMC law is created as follows: 

 

𝑢 = −𝑔0
+ [𝐹 + (�̂�1 + �̂�2‖𝐹‖ + 𝜂)

𝑠

‖𝑠‖
] (28) 

 

wherein, 

 

𝐹 = 𝑓0 − �̇�𝑑 + 𝜇 (
‖𝑒‖𝑟𝑒

‖𝑒‖
)   , 

𝜂 ≥ 
(�̂�1�̂�2+�̂�1𝜏2

0+𝜏1
0)+(�̂�2𝑟2+�̂�2𝜏2

0+𝜏2
0)‖𝐹‖

1−𝜕2−𝜏2
0 + 𝜀𝜂, 

�̂�1 = �̂�𝑇�̂�, 𝑟2 = �̂�
𝑇�̂�, 

εη > 0 

 

In addition, the adaptation laws are as follows: 

 

�̂� = �̂�  (29) 

 

�̇̂�𝑙,𝑖 = 𝜙𝑖𝑐𝑙
�̂�𝑙

𝑇    (30) 

 

�̇̂�𝑙,𝑖 = 𝜙𝑖𝜎𝑙
�̂�𝑙

𝑇 (31) 

 

�̇̂� = �̂�1�̂� + �̂�‖𝐹‖ + �̂�2�̂�‖𝐹‖ + 𝜂�̂�,   (32) 

 

�̇̂�𝑙,𝑖 = 𝜓𝑖,𝑃𝑙�̂�𝑙
𝑇‖𝐹‖ + �̂�1𝜓𝑖,𝑃𝑙�̂�𝑙

𝑇 + 2𝜓𝑖,𝑃𝑙�̂�𝑙
𝑇‖𝐹‖

+ 𝜂𝜓𝑖,𝑃𝑙�̂�𝑙
𝑇 

(33) 

 

�̇̂�𝑙,𝑖 = 𝜓𝑖,𝑞𝑙�̂�𝑙
𝑇‖𝐹‖ + �̂�1𝜓𝑖,𝑞𝑙�̂�𝑙

𝑇 + 2𝜓𝑖,𝑞𝑙�̂�𝑙
𝑇‖𝐹‖

+ 𝜂𝜓𝑖,𝑞𝑙�̂�𝑙
𝑇   

(34) 

 

where, i = 1,2, … ,m ,   l = 1,2, … , N , therefore, the sliding 

mode control-designed rule ensures that the tracking error e 

can be traced to the origin during S = 0 in a limited time, even 

if there is an error in the operators and uncertainty in the model. 

 

 

5. SIMULATION  

 

The following are the automatic flight conditions: 

 

αtrim = 0.752°, qtrim = 0 , Vtrim = 210 m s⁄ , htrim =
6000m , θtrim = 0.740°, δe,trim = 0.650° , Ttrim = 40000N  

μ = 10,     η = 3 

 

Factors including model uncertainties, drive defects, and the 

size of measurement channels in simulations are considered. 

 

⚫ Factor 1: The mass of the aircraft is disturbed by up to 

15% of its nominal value. Iyy confusion is actually 15% 

of the nominal value. There is a maximum of 15% 

mismatch in c̅, q̅, sr    
⚫ Factor 2: The faults of gain and bias for the thrust and the 

elevator are as follows: 

 

𝜆1 = {
1,   0 ≤ 𝑡 < 7
0,          𝑡 ≥ 7

, 𝜎1 = {
1,   0 ≤ 𝑡 < 7
6,          𝑡 ≥ 7

 (35) 
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𝜆2 = {
1,   0 ≤ 𝑡 < 7
0.5,          𝑡 ≥ 7

, 𝜎2 = {
1,   0 ≤ 𝑡 < 7
2,          𝑡 ≥ 7

 (36) 

 

⚫ Factor 3: The white noise is injected into each of the 

measuring channels with an average of zero and a 

coefficient of 0.01. In addition, in order to evaluate 

quantitative tracking performance, we define.: 

 

{
 
 

 
 
𝑒𝜃 = √

1

𝑡1 − 𝑡0
∫ |𝜃 − 𝜃𝑑|

2𝑑𝜏
𝑡1

𝑡0

𝑒𝑉 = √
1

𝑡1 − 𝑡0
∫ |𝑉 − 𝑉𝑑|

2𝑑𝜏
𝑡1

𝑡0

 (37) 

 

where, [t0, t1] covers the time frame of the general simulation. 

𝜃𝑑, 𝑉𝑑 indicate the reference angles of altitude and velocity, 

respectively. For comparison, three control methods of general 

type-2 fuzzy neural network (T2FNN), type-1 fuzzy neural 

network-based control (T1FNN) and traditional sliding mode 

control (SMC) in simulations have been investigated. Figure 3 

shows the control of the roll angle, in which three all three 

control systems can ensure the safety of the aircraft in the 

event of driving defects and model uncertainties. Closed loop 

behavior remains satisfactory, although error tracking displays 

a slightly worse transient behavior. As can be seen in Figure 4, 

the T2FNN-based SMC has a better response than other SMC 

designs. The root means square error (RMSE) in Figure 3 for 

T2FNN-based SMC, T1FNN-based SMC and alone SMC are 

0.144, 0.387, and 0.435, respectively. 

 

 
 

Figure 4. Roll angle control in three ways 

 

 
 

Figure 5. The changes in the side slip angle with all three 

methods 

Figure 5 shows the changes in the side slip angle with all 

three methods. 

Side slip angle changes during flight indicate aircraft 

vibrations (left and right), so the smaller the angle changes, the 

more comfortable passengers will be. As can be seen in Figure 

4, in the T2FNN-based SMC method, the angle changes softer 

and less. Figure 6 shows the control angle of the roll and the 

maximum faults due to uncertainty of the model and of the 

parameters and finally the faults of the operators (factors 1,2 

and 3), with all three control methods. 

As can be seen in Figure 5, the best performance among all 

three control methods is related to the T2FNN method. Figure 

7 shows the Side slip angle changes with all three methods and 

with maximum faults (all three factors 1, 2 and 3). 
 

 
 

Figure 6. Roll angle control by three methods and with 

maximum faults 
 

 
 

Figure 7. Side slip angle changes with all three control 

methods and maximum faults 
 

 
 

Figure 8. The aileron angle position for the T2FNN-based 

SMC 
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Figure 9. The position of the rudder angle for the T2FNN-

based SMC 

 

 
 

Figure 10. Performance of all three control systems on the 

aileron angle by applying a fault 

 

 
 

Figure 11. The performance of all three control systems on 

the rudder angle by applying a fault 

 

The aileron angle position for the T2FNN controller form 

Figure 4 is shown in Figure 8. 

The position of the rudder angle for the T2FNN-based SMC 

for Figure 4 is shown in Figure 9. 

We now consider the state of the aileron and rudder angles 

by applying a fault and comparing the performance of all three 

control methods. Suppose that at time t = 25s an actuator fault 

occurs in the system. Figure 10 shows the performance of all 

three control systems on the aileron angle by applying the fault. 

As can be seen in Figure 10, a fault occurs in t = 25s after 

two seconds, i.e. in t = 27s, when a shake enters the aircraft it 

causes the aileron actuator to react. Figure 10 show that the 

best response is for T2FNN, as it has the least changes and 

overshoots, and quickly restores the system to its original state. 

Figure 11 shows the performance of all three control systems 

on the rudder angle by applying a fault. 

At the rudder angle, which is responsible for directing the 

left and right in the direction of the horizon, as can be seen in 

Figure 11. A fault occurs in t = 25s after two seconds, i.e. in t 

= 27s, when a shake enters the aircraft it causes the rudder 

actuator to react. Due to the fact that the rudder has direct 

relation with the side slip angle control and the desired side 

slip angle is zero, the rudder should try to keep its position in 

presence of the inserted fault. Figure 11 show that the best 

response is for T2FNN, as it has the least changes and 

overshoots, and quickly restores the system to its original state. 

 

 

6. CONCLUSIONS 

 

In this paper, a new method of sliding mode control (SMC) 

based on the general type-2 fuzzy system for the longitudinal 

parameters of the Boeing 747 aircraft is presented. Faults due 

to parameters uncertainty, actuators, and noise can challenged 

the control system. The reaction of the control system may 

cause shocks on the plane and upset the passengers. Therefore, 

the control system must respond to the fault and make the least 

shocks to the aircraft and passengers while reacting in a 

quickly manner. The proposed T2FNN-based SMC has all the 

features mentioned above. Comparison of the proposed 

method with type-1 fuzzy-based SMC as well as the typical 

sliding model control (SMC) shows the superiority and 

efficiency of the proposed method. In this paper, we 

investigated the faults caused by the actuators, which for 

future research can also consider and analyze the faults caused 

by the sensors. We will also discuss the convergence and 

stability of the proposed control system in the next paper. 
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