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Particle Swarm Optimization (PSO) is an evolutionary algorithm widely used in 

optimization problems. It is characterized by a fast convergence, which can lead the 

algorithm to stagnate in local optima. In the present paper, a new Multi-PSO algorithm for 

the design of two-dimensional infinite impulse response (IIR) filters is built. It is based on 

the standard PSO and uses a new initialization strategy. This strategy is relayed to two 

types of swarms: a principal and auxiliaries. To improve the performance of the algorithm, 

the search space is divided into several areas, which allows a best covering and leading to 

a better exploration in each zone separately. This solved the problem of fast convergence 

in standard PSO. The results obtained demonstrate the effectiveness of the Multi-PSO 

algorithm in the filter coefficients optimization.  
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1. INTRODUCTION

The applications of two-dimensional (2-D) digital signal 

processing have been developed rapidly in recent decades. 

This led to a growing interest in the design of 2-D filters due 

to a variety of applications in different domains such as digital 

image, medical data, artificial vision, radar and sensor data 

processing [1]. 

The main functions of the filter are to remove unwanted 

parts of a signal, such as random noise, or to extract useful 

parts. For example, an image degraded by wideband noise, can 

be improved without blurring its edges. The magnetic record 

can be made more readable by suppressing certain signal of 

large amplitude and low frequency [2].  

The digital filters are typically classified into two groups: 

infinite impulse response (IIR) or recursive filter and finite 

impulse response (FIR) or non-recursive filter [3]. The FIR 

filters are generally easier to implement because they are non-

recursive and always stable (by definition). On the other hand, 

it is much more difficult to obtain linear phase responses and 

to control overall frequency responses with IIR filters. 

However, very sharp and narrow transition band frequency 

responses can be easily realized with IIR filters. this feature 

makes them suitable for a broad range of applications. 

Generally, the IIR filters are capable of having more accurate 

responses than those yielded by FIR filters [4]. But the IIR 

filters suffer from their instability problem. To remedy this 

problem, some researchers have adopted certain solutions as 

revealed in literature [5-8]. 

To solve the instability problem in any IIR design, 

important optimization-based methods have been emerged 

especially, those based on evolutionary techniques (ETs), [4, 

9-11], where the main idea of optimization-based methods is

the design of the two-dimensional digital IIR filters considered

as a constrained minimization problem.

Among these methods, the particle swarm optimization 

(PSO) appears as a powerful tool in optimization problems. It 

uses only two mathematical equations with primitive operators 

and is conceptually very simple. Inspired from the animal 

social behavior evolving in swarms like fishes and flights [12], 

PSO shows an ease of implementation in comparison with the 

genetic algorithm (GA), and it has fewer parameters to adjust. 

It has already been applied successfully in many application 

areas, including function optimization [13, 14]. However, 

several studies [15] showed some problems in controlling the 

balance between exploration (global investigation of the 

search place) and exploitation (the fine search a round a local 

optimum). This is why, considerable efforts have addressed 

this problem [4, 10, 11]. 

In this paper, a novel Multi-PSO algorithm is utilized for the 

design of two-dimensional IIR filters. it is based on Standard 

PSO and characterized by the diversity of particles without 

decreasing the convergence speed and it uses a new 

initialization strategy. This strategy is relayed to two types of 

swarms: the main swarm denoted by S1, and s auxiliary ones 

denoted by S2i, where  1 ≤ 𝑖 ≤ 𝑠 . To enhance the 

performance of the algorithm, the search space is partitioned 

into several zones. Then, each initialization of S2i is 

performed in one of these zones. This partitioning allows a 

best covering of the search space, thus leading to a better 

exploration in each zone separately. The final table with all the 

best auxiliary swarm positions will compose the initial 

population of the main swarm. Once the main swarm is 

initialized, the auxiliary swarms are no longer used. The main 

swarm takes over and continues the search in the same way as 

the standard PSO algorithm until a stop criterion is reached.  

2. FORMULATION OF THE DESIGN PROBLEM

Consider a two-dimensional IIR filter with its transfer 

function, H(z1, z2) being in the form [6]: 
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𝐻(𝑧1, 𝑧2) = 𝐴 ∏
∑ ∑ 𝑏𝑖𝑗

(𝑘)
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−𝑖𝑧2
−𝑗𝐽1

(𝑘)

𝑖=0
𝐽2

(𝑘)

𝑗=0

∑ ∑ 𝑑𝑖𝑗
(𝑘)

𝑧1
−𝑖𝑧2

−𝑗𝐼1
(𝑘)

𝑖=0
𝐼2

(𝑘)

𝑗=0

𝐾

𝑘=1

 (1) 

 

where, 

• H(z1, z2): consists of a cascade of K filter sections, 

• 𝑏𝑖𝑗
(𝑘)

 and 𝑑𝑖𝑗
(𝑘)

, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅: are the unknown coefficients 

of each section,  

• A is a constant gain that may be left arbitrary during 

the design procedure, 

• 𝐽1
(𝑘), 𝐽2

(𝑘), 𝐼1
(𝑘)𝑎𝑛𝑑 𝐼2

(𝑘)
 are integers, they must be 

chosen between 0 and 2 in order insure the stability. 

 

The design task of 2-D filters is to find the transfer function 

coefficients H(z1, z2) as in Eq. (1), such that the magnitude 

function 𝑀(𝜔1, 𝜔2) = |𝐻(𝑒−𝑗𝜔1 , 𝑒−𝑗𝜔2)|  approximates the 

desired amplitude response Md(w1,w2) in some optimum sense 

[4]. 

Thus, the design of a 2-D recursive filter is equivalent to the 

following constrained minimization problem [1]: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑒𝑟𝑟𝑜𝑟 = ∑ ∑ (𝑀(𝜔1, 𝜔2)

𝑁2−1

𝑛2=0

𝑁1−1

𝑛1=0

− 𝑀𝑑(𝜔1, 𝜔2))2 

(2) 

 

where, 

• N1 and N2 are sampling numbers of the signal on two 

axes  

• 𝜔𝑖 = 𝑛𝑖
𝜋

𝑁𝑖
 (𝑖 = 1,2). 

 

In this study, the model filter is defined as: 

 

𝑀𝑑(𝜔1, 𝜔2)

=

{
 
 

 
 1        𝑖𝑓          √𝜔1

2 + 𝜔2
2   ≤ 0.08𝜋

0.5  𝑖𝑓  0.08𝜋 ≤ √𝜔1
2 + 𝜔2

2   ≤ 0.12𝜋

0                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 
(3) 

 

with N1=N2 =50 [4, 5]. 

 
 

Figure 1. Desired amplitude response Md of the 2-D filter 

 
To solve the stability problem the work in [5] is exploited 

and a polynomial of the following form is used 

𝐷(𝑠1, 𝑠2) = ∑ ∑ 𝑑𝑖𝑗𝑠1
𝑖

𝐼1

𝑖=0

𝐼2

𝑗=0

𝑠2
𝑗
 (4) 

 

where, 

(s1,s2) are two variables of the Laplace transform and (I2, I1) 

are two integers equal to 1 or 2. The coefficients dij are 

expressed by nonzero real variables [ql]. The relationship 

between the terms dij and the parameters [ql] is expressed by 

the analog network (Contains n1 capacitors c1=s1 and n2 

capacitors c2=s2) as show in Figure 2 [16]. 

 

 
 

Figure 2. Lossless and frequency-independent network 

 

If the network is lossless and independent of frequency, its 

admittance Y is real and can be expressed as [5]: 

 

𝑌

=

[
 
 
 
 
 

0  | 𝑦12

− − −  | − − −
−𝑦12  | 0

𝑦13 ⋯ 𝑦1𝑛

− − − − − − − − −
𝑦23 ⋯ 𝑦2𝑛

−𝑦13  | −𝑦23

⋮  | ⋮
−𝑦1𝑛  | −𝑦2𝑛

0    ⋯        𝑦3𝑛

⋮               ⋯
−𝑦3𝑛   ⋯        0 ]

 
 
 
 
 

     

= [

𝑌11  | 𝑌12

− − −  | − − −

−𝑌12
𝑇  | 𝑌22

] 

(5) 

 

The network admittance, which terminate by a resistor on 

one end, and n1+n2 capacitors on the other, can be expressed 

as follows [5]: 

 

�̂�(𝑠1, 𝑠2, 𝑦𝑘𝑙)

= 𝑌 +   𝑑𝑖𝑎𝑔 [1
𝑛1 𝑛2

𝑠1 ⋯ 𝑠1 ⃡                     𝑠2 ⋯ 𝑠2 ⃡                     
] 

 

(6) 

 

According to the network’s theory, the input admittance can 

be deduced as: 

 

𝑌𝑖𝑛(𝑠1, 𝑠2, 𝑦𝑘𝑙) = 1 +
𝑌12𝑎𝑑𝑗[�̂�22(𝑠1, 𝑠2, 𝑦𝑘𝑙)]𝑌12

𝑇

𝑑𝑒𝑡[�̂�22(𝑠1, 𝑠2, 𝑦𝑘𝑙)]
 (7) 

 

The determinant of the admittance matrix [Yin(s1,s2,ykl)] is 

the polynomial D(s1,s2,ykl) Because of the lossless network 

terminated by a resistor, the D(s1,s2,ykl) is a strictly Hurwitz 

polynomial of two variables s1 and s2 , for any set of real 
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parameters  values: Yin(s1,s2,ykl); 1 < 𝑘 < 𝑙 ≤ 𝑛 .It means that 

the obtained polynomial D(s1,s2,ykl) is the determinant of the 

admittance matrix of a lossless and frequency-independent 

network terminated by capacitors s1, s2 and an input resistor 

which satisfies the condition: 

 

𝐷(𝑠1, 𝑠2, 𝑦𝑘𝑙) ≠ 0 For 𝑅𝑒(𝑠1) ≥ 0 and 𝑅𝑒(𝑠2) ≥ 0. 
 

The obtained above result is illustrated in the network of 

three terminals, which ends with a capacitor s1, capacitor s2 

and resistor R = 1 Ohm, as shown in Figure 3. The admittance 

matrix is [16]: 

 

�̂�(𝑠1, 𝑠2, 𝑦𝑘𝑙) = [
1 𝑦12 𝑦13

−𝑦12 𝑠1 𝑦23

−𝑦13 −𝑦23 𝑠2

] (8) 

 

 
 

Figure 3. Network of three terminals 

 

The determinant of �̂�(𝑠1, 𝑠2, 𝑦𝑘𝑙) is [12]: 

 

det (�̂�(𝑠1, 𝑠2, 𝑦𝑘𝑙)) = 𝑦23
2 + 𝑦13

2 𝑠1 + 𝑦12
2 𝑠2 + 𝑠1𝑠2 (9) 

 

and also: 

 

𝐷(𝑠1, 𝑠2) = ∑ ∑ 𝑑𝑖𝑗𝑠1
𝑖

𝐼1

𝑖=0

𝐼2

𝑗=0

𝑠2
𝑗

= 𝑑00 + 𝑑10𝑠1 + 𝑑01𝑠2 + 𝑑11𝑠1𝑠2 

(10) 

 

By comparing (9) and (10), the following result is obtained: 

 

𝑑00 = 𝑦23
2  , 𝑑10 = 𝑦13

2  , 𝑑01 = 𝑦12
2  et 𝑑11 = 1. 

 

Put y23=q1; y13=q2; and y12=q3. 

The coefficients dij are expressed by the parameters qi.  

Case I: I1=I2=1, thus, 

𝑑00 = 𝑞1
2, 

𝑑10 = 𝑞2
2; 

𝑑01 = 𝑞3
2, 

𝑑11 = 1. 

 

Let’s consider a lossless network terminated by two 

capacitors s1, one capacitor s2, and one input resistor (n1=2, 

n2=1) [16]. 

 

�̂�(𝑠1, 𝑠2, 𝑦𝑘𝑙) = [

1 𝑦12

−𝑦12 𝑠1

𝑦13 𝑦14

𝑦23 𝑦24

−𝑦13 𝑦23

−𝑦14 −𝑦24

𝑠1 𝑦34

−𝑦34 𝑠2

] (11) 

By taking: 

y12=q1, y13=q2, y14=q3, y23=q4, y24=q5 and y34=q6, the 

coefficients dij can be deduced as: 

Case II (I1=2 and I2=1), thus, 

 

𝑑00 = (𝑞1𝑞6 − 𝑞2𝑞5 + 𝑞3𝑞4)2 

𝑑10 = 𝑞5
2 + 𝑞6

2 

𝑑20 = 𝑞3
2 

𝑑01 = 𝑞4
2 

𝑑11 = 𝑞1
2 + 𝑞2

2 

𝑑21 = 1 

 

Similarly, when I1=2 and I2=2, we have [16]: 

 

𝑑00 = (𝑞5𝑞10 + 𝑞6𝑞9 + 𝑞7𝑞8)2, 

𝑑10 = (𝑞1𝑞10 − 𝑞3𝑞7 + 𝑞4𝑞6)2 + (𝑞2𝑞10 − 𝑞3𝑞9 + 𝑞4𝑞8)2, 

𝑑20 = 𝑞10
2 , 

𝑑01 = (𝑞1𝑞8 − 𝑞2𝑞6 + 𝑞3𝑞5)2 + (𝑞1𝑞9 − 𝑞2𝑞7 + 𝑞4𝑞5)2, 
𝑑11 = 𝑞6

2 + 𝑞7
2+𝑞8

2 + 𝑞9
2, 

𝑑21 = 𝑞3
2 + 𝑞4

2, 

𝑑02 = 𝑞5
2, 

𝑑12 = 𝑞1
2 + 𝑞2

2, 

𝑑22 = 1, 

 

It is worth noting, that when D(s1, s2) satisfies the stability 

conditions, the D(z1, z2), deduced by the bilinear 

transformation, satisfies the stability conditions [16]: 

 

𝐷(𝑠1, 𝑠2)|
𝑠1=

(1−𝑧1
−1)

(1+𝑧1
−1)

,𝑠2=
(1−𝑧2

−1)

(1+𝑧2
−1)

= 𝐷(𝑧1, 𝑧2) ≠ 0 

𝑓𝑜𝑟   |𝑧1| ≥ 1   𝑒𝑡   |𝑧2| ≥ 1. 
(12) 

 

This means that [16], the polynomial D(z1, z2) has not zeros 

outside the region: 

 
{|𝑧1| ∪|𝑧2|; |𝑧1| < 1   𝑎𝑛𝑑 |𝑧2| <  1}. (13) 

 

For this investigation, two types of transfer function H(z1,z2) 

will be studied: 

 

2.1 General transfer function of the form 

 
𝐻(𝑧1, 𝑧2)

= ℎ0( 
𝑎00 + 𝑎01𝑍2 + 𝑎02𝑍2

2 + 𝑎10𝑍1 + 𝑎20𝑍1
2

(1 + 𝑏1𝑍1 + 𝐶1𝑍2 + 𝑑1𝑍1𝑍2)(1 + 𝑏2𝑍1 + 𝐶2𝑍2 + 𝑑2𝑍1𝑍2)

+
𝑎11𝑍1𝑍2 + 𝑎12𝑍1𝑍2

2 + 𝑎21𝑍1
2𝑍2 + 𝑎22𝑍1

2𝑍2
2

(1 + 𝑏1𝑍1 + 𝐶1𝑍2 + 𝑑1𝑍1𝑍2)(1 + 𝑏2𝑍1 + 𝐶2𝑍2 + 𝑑2𝑍1𝑍2)
) 

(14) 

 

the magnitude 𝑀(𝜔1, 𝜔2) is given as: 

 

𝑀(𝜔1, 𝜔2) = |𝐻(𝑧1, 𝑧2)| (15) 

 

with: 𝑧1 = 𝑒−𝑗𝜔1  et 𝑧2 = 𝑒−𝑗𝜔2   

then   

 

𝑀(𝜔1, 𝜔2) = 𝐻0 |
𝐴𝑅 − 𝑗𝐴𝐼

(𝐵1𝑅 − 𝑗𝐵1𝐼)(𝐵2𝑅 − 𝑗𝐵2𝐼)
| (16) 

 

with: 

 

𝐴𝑅 = 𝑎00 + 𝑎01cos (𝜔2) + 𝑎02cos (2𝜔2) + 𝑎10cos (𝜔1)
+ 𝑎20cos (2𝜔1) + 𝑎11cos (𝜔1 + 𝜔2)
+ 𝑎12cos (𝜔1 + 2𝜔2) + 𝑎21cos (2𝜔1

+ 𝜔2) + 𝑎22cos (2𝜔1 + 2𝜔2) 
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𝐴𝐼 = 𝑎01sin (𝜔2) + 𝑎02cos (2𝜔2) + 𝑎10sin (𝜔1)

+ 𝑎20sin (2𝜔1) + 𝑎11sin (𝜔1 + 𝜔2)

+ 𝑎12sin (𝜔1 + 2𝜔2) + 𝑎21sin (2𝜔1

+ 𝜔2) + 𝑎22sin (2𝜔1 + 2𝜔2) 

𝐵1𝑅 = 1 + 𝑏1 cos(𝜔) + 𝑐1𝑐𝑜𝑠(𝜔2) + 𝑑1𝑐𝑜𝑠(𝜔1 + 𝜔2) 

𝐵1𝐼 = 𝑏1 sin(𝜔1) + 𝑐1𝑠𝑖𝑛(𝜔2) + 𝑑1𝑠𝑖𝑛(𝜔1 + 𝜔
2
) 

𝐵2𝑅 = 1 + 𝑏2 cos(𝜔1) + 𝑐2𝑐𝑜𝑠(𝜔2) + 𝑑2𝑐𝑜𝑠(𝜔1 + 𝜔2) 

𝐵2𝐼 = 𝑏2 sin(𝜔1) + 𝑐2𝑠𝑖𝑛(𝜔2) + 𝑑2𝑠𝑖𝑛(𝜔1 + 𝜔
2
) 

 

The optimized vector x given as: 

 

𝑥( 𝑎01 𝑎02 𝑎10 𝑎11 𝑎12 𝑎20  𝑎21 𝑎22 𝑏1 𝑐1 𝑑1 𝑏2 𝑐2𝑑2 𝐻0). 
 

2.2 Transfer function with numerator as mirror image 

polynomial 

 

A two-dimensional filter given by its transfer function:  

 

𝐻(𝑧1, 𝑧2) =
𝑁(𝑧1, 𝑧2)

𝐷(𝑧1, 𝑧2)
 (17) 

 

The polynomial N(z1, z2) is expressed by the form [16]: 

 

𝑁(𝑧1, 𝑧2)

= [1 𝑧1
−1 𝑧1

−2] [

𝑏00
(𝑘)

𝑏01
(𝑘)

𝑏02
(𝑘)

𝑏10
(𝑘)

𝑏11
(𝑘)

𝑏10
(𝑘)

𝑏02
(𝑘)

𝑏01
(𝑘)

𝑏00
(𝑘)

] [

1
𝑧2

−1

𝑧2
−2

] 
(18) 

 

It satisfies the conditions: 
 

𝑏𝑖,𝑗 = 𝑏−𝑖,−𝑗 and 𝑏−𝑖,𝑗 = 𝑏𝑖,−𝑗. 

 

In this case of J1=J2=2: 
 

𝐻(𝑧1, 𝑧2)

= 𝐻0(
𝑧1

−1𝑧2
−1(𝑏11 + 𝑏01(𝑧1 + 𝑧2

−1) + 𝑏10(𝑧2 + 𝑧2
−1))

𝐷1 ∙ 𝐷2

+
𝑧1

−1𝑧2
−1(𝑏02(𝑧1𝑧2

−1 + 𝑧2𝑧1
−1) + 𝑏00(𝑧1𝑧2 + 𝑧1

−1𝑧2
−1))

𝐷1 ∙ 𝐷2
) 

(19) 

 

where, 
 

𝐷1 = 1 + 𝑏1𝑧1
−1 + 𝐶1𝑧2

−1 + 𝑑1𝑧1
−1𝑧2

−1 

𝐷2 = 1 + 𝑏2𝑧1
−1 + 𝐶2𝑧2

−1 + 𝑑2𝑧1
−1𝑧2

−1 
 

The magnitude 𝑀(𝜔1, 𝜔2) is given as: 

 

𝑀(𝜔1, 𝜔2) = 𝐻0 |
𝐴𝑟

(𝐵1𝑟 + 𝑗𝐵1𝑖)(𝐵2𝑟 + 𝑗𝐵2𝑖)
| (20) 

 

with: 

𝐴𝑟 = 𝑏11 + 2𝑏01 cos(𝜔1) + 2𝑏10 cos(𝜔2) + 2𝑏02 cos(𝜔1 −
𝜔2) + 2𝑏00𝑐𝑜𝑠(𝜔1 + 𝜔2), 

𝐵1𝑟 = 1 + 𝑏1 cos(𝜔1) + 𝑐1 cos(𝜔2) + 𝑑1cos (𝜔1 + 𝜔2), 

𝐵1𝑖 = 𝑏1 sin(𝜔1) + 𝑐1 sin(𝜔2) + 𝑑1sin (𝜔1 + 𝜔2), 

𝐵2𝑟 = 1 + 𝑏2 cos(𝜔1) + 𝑐2 cos(𝜔2) + 𝑑2cos (𝜔1 + 𝜔2), 

𝐵2𝑖 = 𝑏2 sin(𝜔1) + 𝑐2 sin(𝜔2) + 𝑑2sin (𝜔1 + 𝜔2). 
 

The optimized vector x is then [16] 
 

𝑥(𝑏00   𝑏01   𝑏02  𝑏10   𝑏11   𝑏1   𝑐1   𝑑1   𝑏2   𝑐2   𝑑2  𝐻0). 

3. PSO ALGORITHM  

 
Particle Swarm Optimization (PSO) is an evolutionary 

algorithm that uses a population of candidate particles, to 

develop an optimal solution to the problem.  

Proposed in 1995 by Eberhart and Kennedy [12, 17]. It was 

inspired from the social behavior of the animals evolving in 

swarms such as fish and birds. In fact, these animals have 

relatively complex displacement dynamics, whereas each 

individual has a limited "intelligence" and only a local 

knowledge of its position in the swarm. The local information 

and the memory of each individual are used to decide its 

displacement. 

At the beginning of the algorithm, the swarm particles are 

randomly initialized in the searching space of the problem. 

Then, at each iteration, every particle moves with combining 

of the two linear components cited below. At the iteration t + 

1, the velocity and position vectors are calculated from Eqns. 

(21) and (22), respectively: 

 

𝑣𝑖,𝑗
𝑡+1 = 𝑤 ∗ 𝑣𝑖,𝑗

𝑡 + 𝐶1 ∗ 𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 )  + 𝐶2

∗ 𝑟2(𝑔𝑏𝑒𝑠𝑡𝑖,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ) 
(21) 

 

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 + 𝑣𝑖,𝑗
𝑡+1              𝑗 ∈ {1,2,3, … , 𝐷} (22) 

 

where, 

w: a constant, called the inertia coefficient. 

C1 and C2: two constants, called acceleration coefficients. 

r1 and r2: two random numbers, chosen uniformly from the 

interval [0,1]. 

 

In a searching space of dimension D, the particle i of the 

swarm is modelled by its position vector 

𝑥𝑖     (𝑥𝑖1 , 𝑥𝑖2, 𝑥𝑖3, 𝑥𝑖4, … … … , 𝑥𝑖𝐷)  and its velocity 

vector  𝑣𝑖     (𝑣𝑖1, 𝑣𝑖2, 𝑣𝑖3, 𝑣𝑖4 , … … … , 𝑣𝑖𝐷) . The quality of its 

position is determined by the value of the objective function at 

this point. The particle remembers the best local position, by 

which it has already passed, is denoted by 

 𝑃  𝑏𝑒𝑠𝑡(𝑝𝑏𝑒𝑠𝑡𝑖1, 𝑝𝑏𝑒𝑠𝑡𝑖2, … , 𝑝𝑏𝑒𝑠𝑡𝑖𝐷).  

The best global position [18], reached by the swarm's 

particles, is denoted by: 𝐺 𝑏𝑒𝑠𝑡(𝑔𝑏𝑒𝑠𝑡𝑖1, 𝑔𝑏𝑒𝑠𝑡𝑖2, … , 𝑔𝑏𝑒𝑠𝑡𝑖𝐷), 

referring to the general version of PSO, where all of the 

particles in the swarm are considered to be neighbors to the 

particle i. 

Some improvements have been made to the basic algorithm, 

especially in terms of divergence control. In particular, the 

inclusion of the Vmax parameter that makes it able to limit the 

divergence of the particles. In addition, other studies have been 

conducted on the dynamics of particles, attempted to analyze 

the algorithm when the convergence conditions of the swarm 

are insured [19, 20]. 

The combination between the parameters w, c1 and c2 

adjusts the balance between the diversification phases and 

intensification of the searching process [14]. Clerc and 

Kennedy [21] have shown that good convergence can be 

obtained by making these parameters dependent. The use of a 

constriction coefficient χ (or constriction factor) makes it 

possible to better control the divergence of the swarm and to 

get rid of the definition of Vmax. This variant of PSO, which 

has been widely used in the literature, is known as the 

canonical PSO. Using the constriction coefficient, Eq. (21) 

becomes: 
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𝑣𝑖,𝑗(𝑡 + 1) = 𝜒 ∗ (𝑤 ∗ 𝑣𝑖,𝑗(𝑡) + 𝜙1 ∗ 𝑟1

∗ (𝑝𝑏𝑒𝑠𝑡𝑖,𝑗 − 𝑥𝑖,𝑗(𝑡)) + 𝜙1 ∗ 𝑟1

∗ (𝑔𝑏𝑒𝑠𝑡𝑖,𝑗 − 𝑥𝑖,𝑗(𝑡))) 

(23) 

 

with: 𝜒 =
2

∅−2+√∅2−4∅
 and ∅ = ∅1 + ∅2  , ∅ > 4 

 

3.1 The Multi-PSO algorithm  

 

Multi-PSO is a new variant of the original Particle Swarm 

Optimization algorithm, in which two ideas were added; The 

first idea is to use two types of swarms, a principal and 

auxiliaries. The second idea is the partition of the search space 

into several zones. in another meaning, the algorithm is based 

on Standard PSO with a new initialization strategy. This 

strategy is based on the use of two kinds of swarms: the main 

swarm denoted by S1, and s auxiliary ones denoted by S2i, 

where 1 ≤ i ≤ s [18]. In the Multi-PSO algorithm, every 

auxiliary swarm is intended to discover an area in the search 

space by performing a number of iterations, its role ends when 

the best position of the zone is reached. More precisely, the 

populations of the auxiliary swarms are initialized randomly 

in the different zones, according to a partition already made in 

the searching space. Then, the particles of each swarm perform 

n predefined generations in their area and, at the end, the best-

found position is saved in a vector array. The best obtained 

positions by all auxiliary swarms are therefore grouped in a 

vector of size equal to the number of swarms initialized and 

also to the number of zones. The all best positions will then 

compose the initial population of the main swarm. Once the 

main swarm is initialized, the auxiliary swarms are no longer 

used. The main swarm continues the search by the same way 

as the standard PSO algorithm until a stop criterion is reached. 

 

3.2 Flowchart of the used program  

 

 

3.3 Proposed algorithm 

 

1: Input model filter (Md) as given in (3). 

2: Start the program and load the initial global settings. 

3: Generation of the initial population of the auxiliary 

swarm(i). 

4: Execution of auxiliary PSO with K iterative periods 

(update of velocity 𝑣𝑖     and position 𝑥𝑖     vectors in Eqns. (21) and 

(22) respectively and take the best global position). 

5: Save the best position of auxiliary swarm(i) in gbest (i). 

6: If the auxiliary swarm(i) is not the last one then increases 

i and go to 3.   

7: Initialization of the main swarm by all best positions of 

auxiliary swarms. 

8: Execution of the main PSO (update of velocity 𝑣𝑖     and 

position 𝑥𝑖     vectors in Eqns. (21) and (22) respectively and take 

the best global position). 

9: Save the global best position. 

10: Output the coefficients and show frequency magnitude 

response of the optimized filter.  

 

 

4. RESULTS OF SIMULATION AND DISCUSSION   

 

For the simulation of the program. The Multi-PSO 

algorithm parameters are presented in the Table 1: 

 

Table 1. Parameters of the Multi-PSO algorithm 

 
 Parameters Value 

Number of auxiliary swarms 10 

Population size of auxiliary swarm 150 

Iterative periods of auxiliary PSO 100 

Iterative periods of main PSO 100 

Inertia coefficient w 0.4 to 0.9 

Acceleration coefficients C1=C2=2.05 

 

4.1 The general transfer function 

 
𝐻(𝑧2, 𝑧2) = ℎ0 

 
1+𝑎01𝑧2+𝑎02𝑧2

2+𝑎10𝑧1+𝑎20𝑧1
2+𝑎11𝑧1𝑧2+𝑎12𝑧1𝑍2

2+𝑎21𝑧1
2𝑍2+𝑎22𝑧1

2𝑧2
2

(1+𝑏1𝑧1+𝑐1𝑧2+𝑑1𝑧1𝑧2)(1+𝑏2𝑧1+𝑐2𝑧2+𝑑2𝑧1𝑧2)
 

(24) 

 

The optimized vector x: 

 

𝑥( 𝑎01 𝑎02 𝑎10 𝑎11 𝑎12 𝑎20  𝑎21 𝑎22 𝑏1 𝑐1 𝑑1 𝑏2 𝑐2 𝑑2 ℎ0) 

x(0.4083-0.3521  0.2272 0.3112-0.7478-1.114  0.7196 

1.7258 -0.9279-0.9274  0.8765-0.4518-0.4249-0.0175 0.001) 

 

Minimum error obtained after optimization is:  

Error1 = 1.2216 

 

4.2 Transfer function with a mirror image polynomial 

numerator  

 
𝐻(𝑧1, 𝑧2)

= 𝐻0(
𝑧1

−1𝑧2
−1(𝑏11 + 𝑏01(𝑧1 + 𝑧2

−1) + 𝑏10(𝑧2 + 𝑧2
−1))

𝐷1 ∙ 𝐷2

+
𝑧1

−1𝑧2
−1(𝑏02(𝑧1𝑧2

−1 + 𝑧2𝑧1
−1) + 𝑏00(𝑧1𝑧2 + 𝑧1

−1𝑧2
−1))

𝐷1 ∙ 𝐷2
) 

(25) 

 

where, 

𝐷1 = 1 + 𝑏1𝑧1
−1 + 𝐶1𝑧2

−1 + 𝑑1𝑧1
−1𝑧2

−1 
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𝐷2 = 1 + 𝑏2𝑧1
−1 + 𝐶2𝑧2

−1 + 𝑑2𝑧1
−1𝑧2

−1 
 

The amplitude is: 

 

𝑀(𝜔1, 𝜔2) = 𝐻0 |
𝐴𝑟

(𝐵1𝑟 + 𝑗𝐵1𝑖)(𝐵2𝑟 + 𝑗𝐵2𝑖)
| 

 

(26) 

Minimum error obtained after optimization:  

Error2 = 1.1428 

the vector:  

x(b00  b01  b10  b11  b1  c1  d1  b2  c2  d2  H0) 

x(0.2444 -0.9507 -0.3804 -1.4545 -0.1707 -0.0008 -0.1742 -

0.6908 -0.3747  0.1565 -0.5511  0.0065) 

 
(a) HMAPSO 

 
(b) Proposed algorithm (equation N° 24) 

 
(c) MEPSO 

 
(d) SA-PSO 

 
(e) Proposed algorithm (equation N° 25) 

 
(f) BBO–PSO 

 

Figure 4. Comparison of amplitude responses M(w1, w2) by 

using different algorithm (MEPSO, HMAPSO, SA-PSO, 

BBO–PSO and proposed algorithm) 
Note: in Figure 4 Fx = 𝜔1 and Fy = 𝜔2 

 

4.3 Discussion  

 

In order to prove the efficiency of our proposed algorithm, 

it is compared to some important works: MEPSO [4], 

HMAPSO [11], BBO–PSO [22] and SA-PSO [10] dealing 

with the PSO algorithm and proving their good performance 

compared to other algorithms. 
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Table 2. Final results (filter coefficients and minimum error) with different algorithms 

 
Coefficients BBO–PSO SA-PSO  MEPSO  HMAPSO Proposed Algorithm 

𝑎01 0.3840 0.3069 0.3061 0.5815 0.4083 

𝑎02 − 0.8816 -0.9806 0.9949 0.2207 -0.3521 

𝑎10 − 0.4478 0.1681 0.3935 0.4387 0.2272 

𝑎11 − 0.7609 -0.0431 -0.0338 0.4045 0.3112 

𝑎12 1.1371 -0.1820 0.6481 -1.4084 -0.7478 

𝑎20  − 0.1803 -0.7270 1.2345 -0.5720 -1.1144 

𝑎21 0.2938 -0.3249 0.5030 -0.8418 0.7196 

𝑎22 0.2473 1.6358 0.4481 2.277 1.7258 

b1 -0.1249 -1.4201 -1.0239 -0.9078 -0.9279 

b2 -1.0553 -0.9178 0.0342 -0.9058 -0.9274 

c1 -0.1890 -0.6530 -0.9605 0.8373 0.8765 

c2 -1.0594 -0.9127 -0.0371 -0.9075 -0.4518 

d1 -0.8986 1.0081 0.9523 -0.9101 -0.4249 

d2 1.1366 0.8545 -0.9056 0.8406 -0.0175 

h0 0.0013 0.0022 0.00034 0.00024 0.001 

Minimum Error 2.8518 2.629 9.0005 1.58657 1,221 

 

• Checking the Stability condition [4, 10, 11, 22]:  

 
|𝑏𝑘 + 𝑐𝑘| − 1 < 𝑑𝑘 < 1 − |𝑏𝑘 − 𝑐𝑘| 

 

In order to verified stability of the filters resulted by 

MEPSO, HMAPSO, BBO–PSO and SA-PSO, we use the 

values of bk, ck, and dk (k=1, 2) in Table 2 

 

Table 3. Stability checking table 

 
ALGORITHM filter resulted 

MEPSO unstable 

SA-PSO unstable 

BBO–PSO stable 

HMAPSO stable 

Proposed Algorithm (Multi-PSO) stable 

 

From Table 2 it can be easily verified that our proposed 

algorithm (Multi-PSO) is classified in better in terms of good 

optimization quantified by the minimum error value (error 

=1.2216), in second rank, comes the HMAPSO with an error 

value (error =1.586576) and the lastly BBO–PSO with 

MEPSO.  

We can point out that for the SA-PSO and MEPSO 

algorithms, the instability problem is solved by good 

optimization that guarantees the stability, whereas their 

resulted filters are unstable when checking the stability 

condition (Table 3). On other hand our proposed algorithm 

always ensures filter stability. 

According to the obtaining results it is clear that the 

frequency Magnitude responses in the two methods (equation 

(24) and (25)) of our proposed algorithm (see Figure 4) are 

very close to the model filter (see Figure 1). 

In addition, the Minimum error obtained by our model after 

optimization (error1 and error2) are very small compared to 

the results given by the HMAPSO, SA-PSO, BBO–PSO and 

MEPSO algorithms. More than that, our model is always 

stable. 

 

 

5. CONCLUSION  

 

In this study, a new Multi-PSO algorithm for the two-

dimensional recursive digital IIR filter design is investigated. 

It is characterized by the diversity of the particles and the use 

of two ideas. The first consists of using two types of swarms, 

a principal and auxiliaries. The second idea is the partition of 

the search space into several zones. Thus, leading to a better 

exploration of the problem. The results obtained with Multi-

PSO are compared with other algorithms previously reported. 

They indicate that Multi-PSO based methods exhibit better 

performance in all experiments and provide best optimum 

solution during search mechanism. In conclusion, these new 

ideas presented above opened the gate to new methods that 

could be applied to other optimization algorithms, such as 

evolutionary algorithms. but the proposed Multi-PSO takes a 

long time in simulation which is disadvantage.   
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NOMENCLATURE 

 

2-D  two-dimensional 

ETs evolutionary techniques 

FIR finite impulse response 

GA genetic algorithm 

HMAPSO Hybrid Multiagent Particle Swarm 

Optimization 

IIR infinite impulse response 

MEPSO modified particle swarm optimizer 

Min. Err Minimum error 

PSO particle swarm optimization 
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