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Abstract 

Propagation of spherical shock wave with azimuthal magnetic field and radiation heat flux in 

self-gravitating perfect gas is investigated. The azimuthal magnetic field and the initial density 

are assumed to vary according to power law. An exact similarity solution is reported when loss of 

energy due to radiation escape is notable and radiation pressure is non-zero. The entire energy of 

the shock wave is varying and increases with time. The effects of variation of the radiation 

pressure number, the initial density variation index, the Alfven-Mach number, the gravitational 

parameter and the adiabatic exponent are workout in detail. The shock strength increases with an 

increase in the initial density variation index. On the other hand, presence of magnetic field or an 

increment in the value of the radiation pressure number or the ratio of specific heats or 

gravitational parameter the shock strength decreases. It is obtained that increase in the radiation 

pressure number and gravitational parameter has same behavior on the flow variables. Also, it is 

observed that an increase in the value of gravitational parameter and the adiabatic exponent have 

same behavior on the fluid velocity, the material pressure, the radiation pressure, the mass and the 

radiation flux and azimuthal magnetic field. 
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1. Introduction 

For the first time independently Sedov [1] and Taylor [2, 3] has presented the numerical 

solutions for shock wave problem. The numerical solutions for self-similar flow in adiabatic case 

in self-gravitating gas were obtained in [1, 4]. In a self-gravitating gas many authors have 

investigated the self-similar flows behind a shock wave (see [5-7] and many others). In a variable 

density medium shock wave has been studied in ([1, 8-14], and others). Their results are more 

relevant to the shock in the deep interior of stars. Several authors extended the classical self-

similar approach of Sedov [1] for blast wave problems by taking radiation into account (see, [15-

20] and many others). The majority of research works on radiation gasdynamics are related to the 

radiative heat flux only and little research has been done under the consideration of radiation 

energy and radiation pressure in the presence or absence of gravitational field. A detailed study 

towards gaining a better understanding of the interaction between gasdynamic motion of an 

electrically conducting medium and magnetic field within the context of hyperbolic system has 

been carried out by many investigators such as (Shang [21], Lock and Mestel [22]). A detailed 

review in the field of magnetogasdynamic flows can be seen in the paper (Shang [21]). Lock and 

Mestel [22] analyzed the annular self-similar solutions in ideal magnetogasdynamics by casting 

the ideal magnetogasdynamic equations to a three-dimensional autonomous system in which 

either the magnetic pressure or the fluid pressure vanishes. 

In the present study the problem discussed by Vishwakarma et al. [23] (also, see Ashraf and 

Sachdev [18]) is extended by considering the gravitational effects in spherical geometry. The 

medium is taken to be inviscid thermally perfect gas and the pressure ahead of the shock is taken 

into account. The density and the azimuthal magnetic field in the undisturbed medium are 

assumed to vary as some power of the distance from the point of symmetry. 

The exact similarity solutions are derived for isothermal shock with the general shock 

conditions instead of strong shock conditions. As in [18] we have taken the similarity form for 

radiation pressure, energy and radiative heat flux, and the ‘Product Solutions’ of Mc. Vittie [24] 

is used to evaluate them. Radiation flux is obtained from conservation equations. 

The effects of variation of Alfven-Mach number, the gravitational parameter, initial density 

variation index, radiation pressure number and the specific heat ratio of gas on shock strength and 

the flow variables are discussed in details. The shock strength decreases with the grow in the 

strength of the surrounding magnetic field strength or the radiation pressure number or the ratio 
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of the specific heat of the gas or the parameter of gravitational effect. On the other hand, initial 

density variation index has opposite behavior on shock strength.  

 

2. Fundamental Equations of Motions and Boundary Conditions 

In Eulerian co-ordinate, the basic equations governing spherically symmetric unsteady motion 

of an inviscid and perfectly conducting self-gravitating perfect gas under the considerable effects 

of the radiation heat flux, magnetic field, radiation energy and radiation pressure may be written 

as (Vishwakarma et al. [23], Whitham [25], Nath et al. [26], Vishwakarma and Singh [27], Nath 

and Sinha [7]) 
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where independent space and time coordinates are denoted by r and t, u ,  , p , Rp , h ,  , E , 

RE
 
and F are the fluid velocity, density, material pressure, radiation pressure,  azimuthal 

magnetic field,  magnetic permeability, internal energy per unit mass, radiation energy and 

radiation flux respectively; G  is the gravitational constant and m  is the mass contained in a 

sphere of radius r .  

We have considered an ideal gas behavior of the medium, so that (Vishwakarma et al. [23], 

Verma and Vishwakarma [19]) 

;p T=   ( 1)

p
E

 
=

−
,

   

       (6)  

where   is the ratio of specific heats and    is the gas constant.

 

 

The radiation energy RE
 
and the radiation pressure Rp  are expressed as 

43 ,R RE p T = =              (7)
 

where   is the Stephen’s Boltzmann constant. 
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The flow variables immediately ahead of shock front are as follows  

1
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where 
0

 , w , 
0

h
 
and   are constants,

11 1 Rp p p = + , ( )3 1, 1 ,w w−   − = − + subscript 1 

refers the conditions just ahead of the shock front and  R  is the shock radius given by 

2 2U A R
−

=  ,               (9)

 

where A  and   being constants and 
dR

U
dt

 
= 
 

denotes the velocity of shock front. The flow 

configuration is shown in figure - A  

 

 The Rankine-Hugonite conditions across an isothermal shock wave in an electrically 

conducting and radiating gas are given by (Vishwakarma et al. [20], Singh [28], Nath and Sinha 

[7]) 
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where the subscript 2 refers the condition just behind the shock front,  
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and the density ratio )10(   across the 

shock front is obtained by the quadratic relation 
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where 
1

1
R

P

p

R
p

=  is the radiation pressure number ahead of the shock front. 

 

3. Self-similarity Transformations 

To obtain the similarity solutions, the unknown variables may be written in the form (c.f. [7, 

23, 29-31]) 
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where X , D , RP , P , H , 
RE , E , F and N are the function of    only, 

r

R
 =

 
is the 

dimensionless quantity. 

The shock Mach number M and Alfven-Mach number 
A

M should be constants for existence 

of similarity solutions, therefore,  

2 0w + + = , and 2w = +              (13) 

 

Thus, 
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where 

2
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0
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
=  is the gravitational parameter. 

By using similarity transformations from equation (12), equations (1)-(5) can be transformed 

into a system of ODEs  
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Applying similarity transformations (12) on shock conditions (10), we get
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The product solution of the ‘progressive wave’ is assumed to be (cf. Mc. Vittie [24]) 
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Equations (32) - (33) identically satisfy the equations (1) to (3). On converting this solution 

to a similarity one, a  is obtained as constant given by
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conditions (20) - (25) in equations (26) - (31), we obtain 
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The expressions (34) to (39) identically satisfy equations (15)–(17), and hence they represent 

a solution of equations (15) – (19) in closed form. 

Substituting equations (6)–(7), (9) and (34)–(39) in equation (18), we evaluate the value 

of ( )F  as given below 
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Substituting equations (34)–(39) into equations (15)–(16), we obtain 

( )
1

1 1 2 1 ,w 


= + + + −  
                                 (41) 

' 2
2 20

2

4
( 1) (1 ) (1 ) (1 ) ( 1) 0,

2 ( 3) 2

A
P

G M
R

w M

  
      

 

−
−− − − − + + + + + =

+
                        (42) 

Total energy TE  behind the shock front in the flow-field is given as
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Using equations (12) and (34-39), equation (43) becomes
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and B  is 

constant. Equation (44) conveys that the entire energy of the shock front rises with time. Similar 

rise can be achieved from the time-dependent energy release from an explosive material across 

the symmetry axis (or point of symmetry).     

Equations (34)–(40) give the analytical solution of our considered problem. The solution we 

obtained is example of exact solution in radiation magnetogasdynamics in presence of 

gravitational field and similar to ordinary gas dynamics exact solutions obtained by Mc Vittie 

[24], Ashraf and Sachdev [18] solutions in radiation gas dynamics and Vishwakarma et al. [23] 

solutions in magnetogasdynamics with radiative heat flux. 

 

4. Results and Discussion 

For the radiative heat flux to be positive everywhere and the density to be finite at the center, 

the inequalities obtained from equations (35) and (40) should satisfy: 

3 3 0w + −  ,                                (45) 

( ) ( ) ( ) ( )( ) 2 22 6 3 1 3 1 1 0p pM L R M L R        + + + − + − − +  .        (46) 
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In addition to a necessary condition for the density to remain finite at the center inequality 

(45) must also satisfy ( . . 0 1)i e    the condition for the existence of shock wave. 

We have calculated the values of the the density ( )D  , the material pressure ( )P  , fluid 

velocity ( )X  , the radiation pressure ( )RP  , azimuthal magnetic field ( )H  ,the mass ( )N   

and the radiation flux ( )F  for the values of physical parameters 
4 5

, ;
3 3

 =
 

2 0.06, 0.07,0.1;
A

M −
=

 

1.6, 1.7;w = − − 0 0, 0.02;G =
 
and 0.5, 1;PR = (Pai [32], Vishwakarma et al. [23], Rosenau and 

Frankenthal [10]). The value  2 0
A

M − =
  

in non-magnetic case. The value 0 0G =
 
in non-

gravitating case (the solution obtained in [23]). The present study is the extension of the work of 

Vishwakarma et al. [23] by taking into account the gravitational effect in both cylindrical and 

spherical geometry. 

Table 1 shows the density ratio  variation across the shock for different values of 

2
A

M − , w , 0G  and pR  with 
5

3
 = . Table-2 shows the density ratio   variation across the shock 

for different values of   and 2
A

M − with 1.6,w = − 0 0.02G =  and 1pR = . 

 

Table 1. Variations of the density ratio β across the shock for different values of  , , 0G and 

pR with 
5

3
 =  

 
    

0.06 - 1.6 0.02 0.5 0.3597 

1 0.3814 

0  0.5 0.3537 

1 0.3726 

- 1.7 0.02 0.5 0.3441 

1 0.3587 

0  0.5 0.3385 

1 0.3506 

0.07 - 1.6 0.02 0.5 0.3769 

1 0.4021 

0  0.5 0.3699 
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1 0.3919 

-1.7 0.02 0.5 0.3588 

1 0.3757 

0  0.5 0.3523 

1 0.3663 

0.1 - 1.6 0.02 0.5 0.4274 

1 0.4632 

0  0.5 0.4174 

1 0.4486 

-1.7 0.02 0.5 0.4017 

1 0.4257 

0  0.5 0.3925 

1 0.4124 

 

Table 2. Variation of density ratio across the shock   for different values of  and    with 

 - 1.6,  and  . 

   
  

0.06 
 

0.2887 

 
0.3814 

0.07 
 

0.3086 

 
0.4021 

0.1 
 

0.3652 

 
0.4632 

 

In Figs. 1 we plotted the values of the flow variables ( )X  , ( )D  , ( )P  , ( )RP  , ( )H  , 

( )N  and ( )F  for 
5

3
 = ; 2 0.06

A
M =

− ; 1.6, 1.7;w = − − 0 0.02G = ; and 1pR =  as   varies from 

zero to unity.  In Figs. 2 we plotted the values of the flow variables ( )X  , ( )D  , ( ),P  ( )H  , 

( )N  and ( )F  for  
5

3
 = ; 0.07

2
A

M =
− ; 1.6;w = − 0 0.02G = ; and 1pR =  as   varies from zero to 
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unity. In Fig. 3 we plotted the values of ( )X  , ( )D  , ( )P  , ( )RP  , ( )H  , ( )N  and ( )F  for 

4 5
, ;

3 3
 =  with  2 0.06

A
M =

− 1.6;w = − 0 0.02G = ; and 1pR =  as   varies from zero to unity. 
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Fig. 1. Variation of the flow variables with the distance in the region behind the shock front 

at   and  (a) fluid velocity , (b) the density , (c) the material pressure 

, (d) the radiation pressure  (e) the azimuthal magnetic field , (f) the mass , 

(g)  the radiation flux : 
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1. ,  - 1.6, ;  2. ,  - 1.6, ;   3.  

,   - 1.7, ;   4. ,  - 1.7, ;   5.  ,   

- 1.6,  ;    6. ,   - 1.6,  ;    7.  ,   - 1.7, ;  8.  

,     - 1.7, . 
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It is shown that the pressure, fluid velocity, azimuthal magnetic field, density, radiation 

pressure, radiation flux and mass approaches to zero at the point of symmetry. The values of all 

physical variables increase from the zero at the point of symmetry to the highest at the shock. The 

shock strength increases with an increase in  2
A

M −  or  b  or 0G  or PR  or  ; whereas the initial 

density variation index w  (which ultimately decreases the value of    ) has reverse effect on 

shock strength (see Tables 1& 2). The flow variables the fluid velocity ( )X  , the azimuthal 

magnetic field ( )H  decreases; whereas the radiation flux ( )F  , the radiation pressure ( )RP  , 

the mass ( )N   increases with an increases in 2
AM − or 0G  or PR  (see Figure 1 (a, d-g) and 2 (a, 

d-g)). Also, the density ( )D   decreases near shock; whereas it increases near inner boundary 

with increase in 2
AM − or 0G  or PR  (see Fig. 1 (b) and Fig. 2 (b)), and the  material pressure ( )P   

increases anywhere in the flow field with increase in 0G  or PR ; but it decreases near shock and 

increases near inner boundary surface with increase in 2
AM −  (see Figures 1(c) and 2(c)).

 
The flow 

variables ( )D  , ( )P  , ( )RP  , ( )H  , ( )N  and ( )F   increases at any point in the flow field 

behind the shock (see curve 2,3, 5-7 respectively in Fig. 3), but the  fluid velocity ( )X   decreases 

everywhere in the flow-field behind the shock (see curve 1 in Fig. 3) with an increase in the value 

of adiabatic exponent  . Also, the radiation pressure ( )RP 
 
is almost unaffected with an 

increase in   (see, curve 4 in Fig. 3). The flow variables ( )X  , ( )D  , ( )H  increases; whereas 

( )P   , ( )RP   decreases with increase in the density variation index w   (Figs 1(a, b, c, d)). Also, 

In the flow-field behind the shock the mass ( )N    and the radiation flux ( )F   increases for 

2 0.06AM − =  whereas these flow variables decrease for 2 0.01AM − = with an increase in w  (see 

Figs.1 (f, g)). 
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Figure 2. Variation of the flow variables with the distance in the region behind the shock 

front at  and - 1.6(a) fluid velocity ,  (b) the density , (c) the material 

pressure ,  (d) the radiation pressure   (e) the azimuthal magnetic field , (f)  the 

mass , (g)  the radiation flux : 
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Figure 3. Variation of the flow variables with the distance in the region behind the shock 

front for   ; - 1.6, : 1. the fluid velocity ,   2. 

the density ,  3. the material pressure , 4. the radiation pressure  5. the azimuthal 

magnetic field , 6. the mass , 7. the radiation flux . 

 

Conclusion  

In the present problem the flow behind the magnetogasdynamics shock waves with or 

without self-gravitating effects and radiation heat flux in a non-uniform perfect gas have been 

discussed. On the basis of result obtained in the present study, we may conclude the following: 

(i)  An increase in the strength of the surrounding magnetic field or the adiabatic exponent or 

the radiation pressure number or the parameter of gravitation the shock strength decreases; 

whereas it increases with increase in the variation index of initial density. 
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(ii) An increase in the parameter of the gravitational effect 0G , fluid velocity and the 

magnetic field decreases; whereas the material pressure, the radiation pressure, the mass and the 

radiation flux increases. The density increases near inner boundary surface but it decreases near 

shock with increase in the gravitational parameter 0G . 

(iii) There is a same effect on the fluid velocity, the material pressure, the density, the 

radiation pressure, the mass, the magnetic field and the radiation flux with an increase in the 

gravitational parameter
 0G   and the radiation pressure number pR  . 

(iv) An increase in the value of the gravitational parameter
 0G  and initial density variation 

index w  have opposite behavior on the material pressure, the fluid velocity, the radiation 

pressure, the mass, the magnetic field, and the radiation flux for  2 0.01AM − = . 

(v) same effect on the density, radiation pressure, fluid velocity, magnetic field, the mass and 

radiation flux with an increase  in the gravitational parameter
 0G

 
and  2

AM − . 

(vi) an increase in the value of the gravitational parameter 0G  and the ratio of specific heats 

  have same behavior on the fluid velocity, the material pressure, the mass and the radiation flux. 
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Nomenclature 

A  constant 

a
      

function of  t
  

B  constant 

b       function of  t 

c        function of  t  

D       non-dimensional density 
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E        internal energy per unit mass  

E      non-dimensional internal energy per unit mass 

RE      radiation energy 

RE      non-dimensional radiation energy 

TE
  
 total energy of the flow-field behind shock front 

F      radiation flux 

F   non-dimensional radiation flux 

f       function of t 

G      the gravitational constant 

0
G      the gravitational parameter 

H      non-dimensional azimuthal magnetic field 

h      azimuthal magnetic field 

0
h     constant 

J     abbreviation 

L     abbreviation 

M      shock Mach number 

A
M     Alfven- Mach number 

m       mass contained in a unit cylinder of radius r or in a sphere of radius r   

N       non dimensional mass 

P      non-dimensional fluid pressure 

RP      non-dimensional  radiation  pressure 

p

    

 material pressure 

Rp       radiation pressure 

ap     Sum of partial pressure and radiation pressure ahead of shock front 

R     Shock radius 

pR     radiation pressure number 

r         independent space coordinate  

T      temperature of the gas 

t          independent time coordinate 

U  shock velocity 

u

 

fluid velocity 
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X        non-dimensional fluid velocity 

w         density variation index

Greek Letters 

 the fluid density 

0 constant 

 shock radius variation index 

 magnetic field variation index 

  gas constant 

 ratio of specific heats 

 Stephen’s Boltzmann constant. 

  ratio of density across the shock front 

  magnetic permeability 

 arbitrary function of r and t 

 constant

 constant

 similarity variable

Subscripts 

1 immediately ahead the shock 

2 immediately behind the shock 

Superscript 

' derivative with respect to t 
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