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Abstract 

The problem of flow of fluid with charged suspended particulate matter through a jet is 

studied. The particles are allowed to diffuse through the carrier fluid and the random motion of 

the particles has been taken into consideration, as the size of the particles is very small.  The 

terms related to the heat added to the system, to slip-energy flux in the energy equation of 

particle phase is considered. The governing systems of nonlinear partial differential equations 

are solved by perturbation methods followed by similarity transformation and finite difference 

technique using non-uniform grid. The effects of volume fraction on skin friction, heat transfer 

and other boundary layer characteristics have been studied. The effects of electrification on the 

velocity and temperature are analyzed and presented graphically. Variation of Nusselt number 

and Skin-friction coefficient for various values of physical parameter are presented through 

tables. It is observed that the electrification of particles reduces the velocity and temperature 

gradient, leading to reduction of skin friction and heat transfer. 
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1. Introduction  

Jets are a common configuration used in many mixing and thrusts producing devices. The 

enhancement of jet flow mixing is frequently desirable in a broad range of engineering 

applications. Considerable literature has been published on the study of jet behavior. Bansal [8], 

Bansal and Tak(7) had derived approximate solutions of heat and momentum transfer in laminar 

plane wall jet for clear fluid. The topic of two-phase flows has, in a wide variety of engineering 

systems, become increasingly important for optimal design and safe operations. Gas-particle 

flows, dusty fluid flows and the flow of suspensions have received considerable attention due to 

the importance of these types of flow in various engineering applications. It is well known that 

many organic or metallic powders like cornstarch, coal, aluminum and magnesium are 

suspended in air form explosive mixtures due to huge specific surface area of fine dispersed 

particles. However, the particles may be aerodynamically entrained into the air flow, which can 

be induced by a primary gaseous explosion, propagates over the deposit layer. This leads in the 

formation of dust cloud and increase the air temperature. In all these applications, a basic 

understanding of how particles interact with the fluid flows is necessary to allow the use of 

computational fluid dynamics (CFD) models in the optimization and performance improvement 

of existing equipment and processes, the identification and solution of operating problems, the 

evolution of retrofit options, and the design of new equipment systems and plant, including 

process scale-up. Soo [10] had developed the mathematical approach to multiphase flows. A 

detailed derivation of the momentum equations for disperse two-phase systems was studied by 

Rietema and van der Akker [6]. Palani and Ganesan [5] have used the implicit finite difference 

method to the study the heat transfer effects and velocity profiles on the dusty-gas flow past on 

a semi-infinite isothermal inclined plate. Matsusake et.al (2) have studied the measurement and 

control of particle charging. Xie et.al. (1) have studied the electrification of homogeneous 

particles in contact and collision. Mishra S.K. et.al. (3) have studied  two phase  flow problem 

using non uniform grid. Panda J.P et.al (4) have studied heat transfer through viscous fluid. To 

date there is insufficient published information about the two-phase jet flow with charged 

suspended particulate matter. In the Present analysis, the particles will be allowed to diffuse 

through the carrier fluid i.e. the random motion of the particles shall be taken into account 

because of the small size of the particles. This can be done by applying the kinetic theory of 

gases and pressure diffusion.  

As a general statement, any volume element of charge species, with charge “e” experiences 

an instantaneous force given by the Lorentz force law given by  where  is the 

magnetic flux density. The current densities in corona discharge are so low that the magnetic 
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force term  can be omitted, as this term is many orders of magnitude smaller than the 

coulomb term . The ion drift motion arises from the interaction+ of ions, constantly subject to 

the Lorentz force with the dense neutral fluid medium. This interaction produces an effective 

drag force on the ions. The drag force is in equilibrium with the Lorentz force so that the ion 

velocity in a field  is limited to , where  is the mobility of the ion species. The drag 

force on the ions has an equal and opposite reaction force acting on the neutral fluid molecules 

via this ion-neutral molecules interaction, the force on the ions is transmitted directly to the 

fluid medium, so the force on the fluid particles is also given by , Soo [12 ] 

 

2. Mathematical Modeling 

 

 

Fig. 1. Plane wall jet 

 

Let an incompressible fluid with SPM be discharged through a narrow slit in the half space 

along a plane wall and mixed with the same surrounding fluid being initially at rest having 

temperature . The wall is also maintained at the same constant temperature .Taking the 

origin in the slit and the co-ordinate axis  and  along and normal to the plane wall 

respectively, the boundary layer equations for the continuity, momentum and energy are given 

by considering electrification of particles.  

Introducing the non-dimensional quantities like  

   ,    ,    ,  ,            

   ,    ,                                                                      (1) 

And dropping stars the governing equations can be given by,  

                                                                                                        (2)   

                                               (3) 
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                                                       (4) 

                                                           (5) 

  

                                                                         (6) 

  

                                                                             (7) 

                                                                               (8)   

             Subjected to the boundary conditions 

   

                                 (9) 

and the integral conditions   

                                                                                             (10) 

    

           

                                                                                     (11)   

Where u and v are velocity components of fluid phase and  , are velocity components of 

particle phase along the x and y co-ordinates respectively,  and   are the mass density of 

fluid and particle phase respectively,  is the volume fraction of suspended particulate 

matter(SPM),F is the friction parameter between fluid and particle, L is the reference length , U 

is free stream velocity,  is the loading ratio,  is the diffusion parameter , M is the 

electrification parameter , T and  are the temperature of fluid and particle phase. 

 

3. Method of Solution 

Solution for the velocity distribution 

By taking a perturbation on the Schlichting [9] model by writing 
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                                              (12) 

Where , , and  are perturbation quantities and substituting in equations (2) to (5), 

we get two sets of equations as follows. 

1st set and its solution: 

                                                                                                                         (13) 

                              (14) 

                                      (15) 

                                            (16)  

                                                                                               (17) 

Subjected to the boundary conditions 

   

                                          (18) 

Together with the integral condition 

  

                                                                         (19) 

Since we are considering the case of a dilute suspension of particles, following Soo [11], 

the velocity distribution in the fluid is not significantly affected by the presence of the particles. 

Therefore, the drag force term [i.e. 2nd term in the R.H.S. of equation (15)] in equation (15) is 

dropped. But for the submicron particles, Brownian motion can be significant, the concentration 

distribution equation (14) above   will then be modified by Brownian diffusion equation (17). 

With the above consideration the equations (15) and (19) become 

                                    (20) 

                      

Or,                                          (21) 

A similar solution of the equation (20) under the present boundary and integral conditions 

is possible if we take 

                                                       (22) 
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                                   (23) 

Where a prime denotes differentiation w.r.t. ‘η’, and the equation of continuity is satisfied 

identically. 

Substituting in the equation (20), we get 

                                                                                                      (24) 

and the boundary conditions are 

                                                                                (25)  

and integral condition  

                                                                                                       (26) 

Multiplying by   throughout and integrating the equation   (24) gives,  

4                                                                                                    (27) 

Where the constant of integration is zero by using boundary condition (25). 

The differential equation (27) can be linearized if we substitute   , and considering 

the function  as the independent variable, we get    and the linearized form of the 

equation (27) is 

   , as                                                                     (28)   

The solution of (28) is given by  

                                                                                                          (29) 

Where C is arbitrary constant to be determined. 

Assuming at  then in view of boundary condition (25) we get 

                         (30) 

The value of    is yet to be determined and for this we use the integral condition (26) 

which may be written as     

                                                                                                         (31) 

From (31) , we get   

  

Or,                                                                                    (32) 
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Now to solve the differential equation (28) we substitute  

F                                 (33)  

So that it becomes    

Solving we get   

                                                                                 (34) 

        To develop a computational algorithm with non-uniform-grid, finite difference 

expressions are introduced for the various terms in equations (16) and (17/14) as,                       

                                       

                                                        (35) 

                                                                  (36) 

                                                             (37)    

                                                                                                         (38) 

and                                                                         (39) 

Where W stands for either   . 

Now the equations (16) and (17/14) reduced to  

                                                               (40)         

Where                                                  

                  

               

  

 ,         

and for diffusion equation (17)  

                                              (41) 

Where        
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  ,        

  ,   

For continuity equation for particle phase (14)  

   

  

 ,     

 

  

  

  ,  

2nd set and its solution: 

                                                            (42) 

  

                                                                                     (43) 

  

                 (44) 

                                   (45) 

                                                              (46) 

Subjected to the boundary condition 

   

                                           (47) 

and the integral condition 
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 (48)                                                                                                                                                

is identically satisfied 

Using equations (35) to (39) in (42) and (44) to (46), we get 

                             (49) 

                              (50) 

                                           (51) 

                                (52) 

Where    

   

   

     

 ,                       
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 ,    ,   

 ,  

 

 ,                     

                     

Solution for the temperature distribution 

By taking a perturbation on the Schlichting [9] model by writing   

, ,  

,   

Where ,   and  are perturbation quantities,   

and substituting in equations (6) and (7) we get the following two sets of equations.   

Set-1 and its solution 

  

                                              (53) 

  

                                                          (54) 

Subjected to the boundary condition 

 ;                                       (55) 

and the integral condition 
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                                                             (56) 

 

Since we are considering the case of a dilute suspension of particles, following Soo [11], 

the temperature distribution in the fluid is not significantly affected by the presence of the 

particles. Therefore, the 2nd, 4th and 5th term in the R.H.S. of equation (53), and 1st and 2nd term 

of R.H.S. in equation (56) are dropped.  

Hence equation (53) and (56) reduces to, 

 

                               (57) 

And                                    (58) 

The equation (57) is a linear differential equation in . So we can solve the equation by 

the principle of superposition of solutions  and  such that  is the solution of the 

equation  

                                                                         (59) 

And  is the solution of the equation 

 

                                                          (60)  

So that                                  (61) 

 

 and  satisfies the boundary and the integral conditions are given by 

 

 ;                                             (62) 

And                                                               (63) 

Furthermore,           (64) 

is identically satisfied. 

It implies the constancy of the product of volume and heat flux, for a given prandtl number, 

through any cross-section of the boundary layer perpendicular to the wall.  

For arbitrary value of , it is assumed that  

895



                                                                                                          (65) 

Substituting  and  from (23) and  from (65) in equation (59), the function  

satisfies the differential equation 

 

4                                                                                               (66) 

With the boundary conditions 

 

η=0;  h=0;       η                                                                                              (67)  

and the Integral condition                                                                      (68) 

Introducing the transformation   and  in the equation (66). 

 

The transformed equation is  

                                                 (69) 

 

With the boundary condition                          (70) 

and the integral condition                                                                    (71) 

Equation (69) is a hyper-geometric equation, whose solution is given by 

 

                      (72) 

Where                                                            (73)  

 

And 2F1 (a,b,c;s)   .         

Since the Prandtl number  of a fluid is always positive integer so the series is absolutely 

converges. 

Now by boundary condition (62), for  , A= 0                                                  (74) 

and   H(s)=  2F1(                                                        (75) 

In (67) ‘ ’ is still an unknown constant which will be determined by the integral condition 

(63) which is given by 
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                                             (76) 

The solution of the equation (60) can be obtained by using finite difference technique as 

follow. 

 

                                                         (77) 

 

Where  

  ,           

  

   and     

 

The solution of the equation (54) is obtained by using finite difference technique. 

Using equations (35) to (39) in equation (54), we get 

 

                                    (78) 

 

Where   

 ,  

      

 

2nd set and its solution: 
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                                                                       (79)         

    

                                                        

                                                     (80) 

 

Using equations (35) to (39) in equation (79) and (80), we get   

                                                                                  

                                                                  (81) 

                                            (82) 

Where   

   

  

   

 ,  ,   ,    

 

 ,     
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 , 

 

And   

             ,        

            

   

 

4. Discussion of the Results 

We choose the following parameters involved 

; ; ;   , 

   

   kg/m sec;   

Fig -2 Shows the perturbed velocity ( ) distribution against y for different value of M. 

The figure is Blasius type near the plate. The magnitude of  increases with the increase of M. 

Fig- 3(a) and 3(b) shows the perturbed velocity profile  without and with electrification 

of particles respectively. In both the cases the velocity distribution near the plate is of Blasius 

type and away from the plate it resembles with the distribution of plane free jet. It is observed 

that the numerical value of  is greater in case of electrification of particles. 

Fig-4 and 5(a), 5 (b) show the temperature distribution T for initial and viscous heating 

with and without charged SPM respectively. In all the cases the distribution near the plate is of 

Blasius type and of free jet type away from the plate. Further, the numerical value of T1 with 

electrification is less than that of the value without electrification. 

 

FIGURES: 
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TABLES: 

Table 1. Variation of  with  for different Prandtl Number  

 Initial Heating Viscous Heating 

       

1.20 -4.56E+01 -6.38E+01 -1.90E+03 -4.56E+01 -6.38E+01 -1.90E+03 

1.40 -4.22E+01 -5.91E+01 -1.76E+03 -4.22E+01 -5.91E+01 -1.76E+03 

1.60 -3.95E+01 -5.52E+01 -1.65E+03 -3.95E+01 -5.52E+01 -1.65E+03 

1.80 -3.72E+01 -5.21E+01 -1.55E+03 -3.72E+01 -5.21E+01 -1.55E+03 

2.00 -3.53E+01 -4.94E+01 -1.47E+03 -3.53E+01 -4.94E+01 -1.47E+03 

2.40 -3.23E+01 -4.51E+01 -1.35E+03 -3.23E+01 -4.51E+01 -1.35E+03 

2.80 -2.99E+01 -4.18E+01 -1.25E+03 -2.99E+01 -4.18E+01 -1.25E+03 

3.20 -2.79E+01 -3.91E+01 -1.16E+03 -2.79E+01 -3.91E+01 -1.16E+03 

3.60 -2.63E+01 -3.68E+01 -1.10E+03 -2.63E+01 -3.68E+01 -1.10E+03 

4.00 -2.50E+01 -3.49E+01 -1.04E+03 -2.50E+01 -3.49E+01 -1.04E+03 

4.40 -2.38E+01 -3.33E+01 -9.93E+02 -2.38E+01 -3.33E+01 -9.93E+02 

4.80 -2.28E+01 -3.19E+01 -9.51E+02 -2.28E+01 -3.19E+01 -9.51E+02 

5.00 -2.23E+01 -3.13E+01 -9.32E+02 -2.23E+01 -3.13E+01 -9.32E+02 

 

 

Table 2. Variation of with  for different Prandtl number  

 Initial Heating Viscous Heating 

       

1.20 3.00E+00 3.03E+00 3.69E+00 -1.19E+08 -1.20E+08 -1.54E+08 

1.40 9.80E+03 8.54E+03 3.38E+03 -2.60E+07 -2.63E+07 -3.29E+07 
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1.60 5.41E+03 4.75E+03 1.75E+03 -1.20E+06 -1.18E+06 -7.43E+05 

1.80 1.19E+03 1.04E+03 4.66E+02 -9.08E+05 -9.03E+05 -8.12E+05 

2.00 -6.05E+02 -4.96E+02 -1.68E+02 -1.85E+05 -1.85E+05 -1.89E+05 

2.40 -6.52E+02 -5.38E+02 -1.88E+02 -1.66E+06 -1.66E+06 -1.67E+06 

2.80 -6.50E+02 -5.36E+02 -1.87E+02 -1.66E+06 -1.66E+06 -1.67E+06 

3.20 -6.50E+02 -5.36E+02 -1.87E+02 -1.66E+06 -1.66E+06 -1.67E+06 

 

Table 3. Variation of with    for different size of particles 

 Initial Heating Viscous Heating 

       

1.2 1.35E+03 3.57E+01 1.61E+01 2.61E+03 2.61E+03 2.24E+02 

1.4 2.30E+02 1.28E+01 1.42E+01 2.41E+02 2.41E+02 8.74E+01 

1.6 8.46E+00 5.80E+00 1.26E+01 2.91E+01 2.91E+01 8.33E+00 

1.8 3.09E+00 5.63E+00 1.03E+01 1.28E+01 1.28E+01 1.96E+00 

2.0 2.31E+00 5.56E+00 1.02E+01 3.17E+00 3.17E+00 1.84E+00 

2.4 1.12E+00 5.31E+00 2.60E-01 9.54E-01 9.54E-01 1.54E+00 

2.8 1.12E+00 5.10E+00 7.19E-02 8.99E-01 8.99E-01 1.53E+00 

3.2 1.12E+00 4.97E+00 8.13E-02 8.99E-01 8.99E-01 1.53E+00 

3.6 1.12E+00 4.94E+00 8.13E-02 8.99E-01 8.99E-01 1.53E+00 

4.0 1.12E+00 4.93E+00 8.11E-02 8.99E-01 8.99E-01 1.53E+00 

4.4 1.12E+00 4.93E+00 8.09E-02 8.99E-01 8.99E-01 1.53E+00 

4.8 1.12E+00 4.93E+00 8.07E-02 8.99E-01 8.99E-01 1.53E+00 

5.0 1.12E+00 4.93E+00 8.06E-02 8.99E-01 8.99E-01 1.53E+00 

Table 4. Variation of with   for different material density of particles  

 Initial Heating Viscous Heating 

       

1.20 1.35E+03 3.53E+02 3.24E+02 2.61E+03 2.17E+02 1.97E+02 

1.40 2.30E+02 1.27E+02 8.90E+01 2.41E+02 8.38E+01 5.90E+01 

1.60 8.46E+01 1.16E+01 2.58E+01 2.91E+01 7.66E+00 1.86E+01 

1.80 3.09E+01 2.82E+00 5.49E+00 1.28E+01 2.52E+00 3.46E+00 

2.00 2.31E+00 2.65E+00 5.31E+00 3.17E+00 1.93E+00 3.43E+00 

2.40 1.12E+00 2.54E+00 5.25E+00 8.98E-01 1.66E+00 3.37E+00 

2.80 1.12E+00 2.54E+00 5.24E+00 8.98E-01 1.66E+00 3.37E+00 
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3.20 1.12E+00 2.54E+00 5.24E+00 8.99E-01 1.66E+00 3.37E+00 

 

Table 5. Variation of with    for different diffusion parameter  

 Initial Heating Viscous Heating 

       

1.20 1.35E+03 5.39E+02 5.39E+02 2.61E+03 3.59E+02 2.81E+02 

1.40 2.30E+02 1.86E+02 1.86E+02 2.41E+02 1.23E+02 1.20E+02 

1.60 8.46E+01 2.16E+01 2.16E+01 2.91E+01 1.36E+01 1.55E+01 

1.80 3.09E+00 3.30E+00 3.30E+00 1.28E+01 1.60E+00 6.56E+00 

2.00 2.31E+00 5.89E-01 5.89E-01 3.17E+00 9.96E-01 7.13E-01 

2.40 1.12E+00 5.58E-01 5.58E-01 9.54E-01 4.45E-01 2.18E-01 

2.80 1.12E+00 5.45E-01 5.45E-01 9.18E-01 4.37E-01 2.08E-01 

3.20 1.12E+00 5.45E-01 5.45E-01 8.99E-01 4.37E-01 2.08E-01 

3.60 1.12E+00 5.45E-01 5.45E-01 8.99E-01 4.37E-01 2.08E-01 

       

 

Table 6: Variation of with  

x 

Without 

electrification 

With 

electrification 

1.2 7.80E+03 1.35E+03 

1.4 6.30E+02 2.30E+02 

1.6 6.25E+02 8.46E+01 

1.8 5.83E+02 3.09E+01 

2.0 3.66E+02 2.31E+00 

2.4 3.19E+02 1.12E+00 

2.8 9.56E+01 1.12E+00 

3.2 9.24E+01 1.12E+00 

3.6 9.24E+01 1.12E+00 

   

 

Table 7. Variation of  with  Initial Heating Viscous Heating 

x 

Without 

electrification 

With 

electrification 

Without 

electrification 

With 

electrification 
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1.2 1.18E+04 3.00E+00 -1.89E+05 -1.19E+08 

1.4 3.04E+05 9.80E+03 -4.22E+05 -2.60E+07 

1.6 2.02E+06 5.41E+03 -1.21E+06 -1.20E+06 

1.0 4.49E+06 -1.19E+03 -9.49E+05 -9.08E+06 

2.0 1.57E+06 -6.05E+02 -6.95E+05 -1.85E+06 

2.4 8.98E+03 -6.52E+02 1.13E+05 -1.66E+06 

2.8 -1.03E+01 -6.50E+02 7.94E+03 -1.66E+06 

3.2 -8.41E+01 -6.50E+02 7.20E+04 -1.66E+06 

3.6 -4.79E+01 -6.50E+02 8.92E+04 -1.66E+06 

4.0 -2.86E+01 -6.50E+02 1.03E+05 -1.66E+06 

4.4 -1.78E+01 -6.50E+02 1.18E+05 -1.66E+06 

4.8 -1.13E+01 -6.50E+02 1.32E+05 -1.66E+06 

5.0 -9.12E+00 -6.50E+02 1.39E+05 -1.66E+06 

 

 

Fig- 6(a) and 6(b) depicts particle phase temperature  having viscous heating with and 

without charged SPM. It is concluded from both the figure that both profile are Blasius type 

near the plate and free jet type away from the plate. 

Thus we conclude that the electrification of particles reduces the numerical value of   

, . 

To show the heat transfer in the wall jet, the Nusselts number is calculated for the case of 

initial heating and viscous heating without and with electrification. The value of 

, where  is the Nusselts number not effected by electrification and  is 

calculated based on perturbation temperature . In Table-1 values of   for initial heating 

and viscous heating for different values of Pr is calculated. Similarly, Table-2 shows the 

dependence of  on Pr. From Table-1 it can be observed that  is increasing in both for 

initial heating and for viscous heating. Further from Table-2, it can be observed that is 

increasing and then decreasing towards the downstream and assuming a constant value towards 

the downstream of the plate. 

Table-3, Table-4 and Table-5 represents variation of with x for the parameters, size, 

material density and diffusion of the particles. It can be observed that  decreases and then 

remain constant towards downstream in both the cases of Initial and Viscous heating. Table-6 

and Table-7 represents variation of  and  with x for without and with electrification 
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respectively. It is observed that the electrification of particles reduces the velocity and 

temperature gradient leading to reduction of skin friction and heat transfer. 

 

Conclusion 

In this paper the effects of electrification of suspended particulate matter on fluid flow and 

heat transfer is studied. It is concluded that electrification of particles reduces the numerical 

value of velocity of fluid and temperature of fluid and particles. So it reduces skin friction and 

heat transfer. Further the increase of Prandtl number (Pr) results in the decrease in temperature 

distribution. Physically heat is diffused away from the heated surface rapidly then for higher 

value of Pr as smaller value of Pr indicates an increase in thermal conductivity. Thus 

temperature falls more rapidly for water (Pr =7.0) then that of air (Pr = 0.71) and electrolyte 

solution (Pr =1.0).   
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