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Abstract

The problem of flow of fluid with charged suspended particulate matter through a jet is
studied. The particles are allowed to diffuse through the carrier fluid and the random motion of
the particles has been taken into consideration, as the size of the particles is very small. The
terms related to the heat added to the system, to slip-energy flux in the energy equation of
particle phase is considered. The governing systems of nonlinear partial differential equations
are solved by perturbation methods followed by similarity transformation and finite difference
technique using non-uniform grid. The effects of volume fraction on skin friction, heat transfer
and other boundary layer characteristics have been studied. The effects of electrification on the
velocity and temperature are analyzed and presented graphically. Variation of Nusselt number
and Skin-friction coefficient for various values of physical parameter are presented through
tables. It is observed that the electrification of particles reduces the velocity and temperature
gradient, leading to reduction of skin friction and heat transfer.
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1. Introduction

Jets are a common configuration used in many mixing and thrusts producing devices. The
enhancement of jet flow mixing is frequently desirable in a broad range of engineering
applications. Considerable literature has been published on the study of jet behavior. Bansal [8],
Bansal and Tak(7) had derived approximate solutions of heat and momentum transfer in laminar
plane wall jet for clear fluid. The topic of two-phase flows has, in a wide variety of engineering
systems, become increasingly important for optimal design and safe operations. Gas-particle
flows, dusty fluid flows and the flow of suspensions have received considerable attention due to
the importance of these types of flow in various engineering applications. It is well known that
many organic or metallic powders like cornstarch, coal, aluminum and magnesium are
suspended in air form explosive mixtures due to huge specific surface area of fine dispersed
particles. However, the particles may be aerodynamically entrained into the air flow, which can
be induced by a primary gaseous explosion, propagates over the deposit layer. This leads in the
formation of dust cloud and increase the air temperature. In all these applications, a basic
understanding of how particles interact with the fluid flows is necessary to allow the use of
computational fluid dynamics (CFD) models in the optimization and performance improvement
of existing equipment and processes, the identification and solution of operating problems, the
evolution of retrofit options, and the design of new equipment systems and plant, including
process scale-up. Soo [10] had developed the mathematical approach to multiphase flows. A
detailed derivation of the momentum equations for disperse two-phase systems was studied by
Rietema and van der Akker [6]. Palani and Ganesan [5] have used the implicit finite difference
method to the study the heat transfer effects and velocity profiles on the dusty-gas flow past on
a semi-infinite isothermal inclined plate. Matsusake et.al (2) have studied the measurement and
control of particle charging. Xie et.al. (1) have studied the electrification of homogeneous
particles in contact and collision. Mishra S.K. et.al. (3) have studied two phase flow problem
using non uniform grid. Panda J.P et.al (4) have studied heat transfer through viscous fluid. To
date there is insufficient published information about the two-phase jet flow with charged
suspended particulate matter. In the Present analysis, the particles will be allowed to diffuse
through the carrier fluid i.e. the random motion of the particles shall be taken into account
because of the small size of the particles. This can be done by applying the kinetic theory of
gases and pressure diffusion.

As a general statement, any volume element of charge species, with charge “e¢” experiences
f = ¢eE +,T % B

an instantaneous force given by the Lorentz force law given by where B is the

magnetic flux density. The current densities in corona discharge are so low that the magnetic
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force term /7 % F can be omitted, as this term is many orders of magnitude smaller than the

coulomb term®E . The ion drift motion arises from the interaction+ of ions, constantly subject to
the Lorentz force with the dense neutral fluid medium. This interaction produces an effective
drag force on the ions. The drag force is in equilibrium with the Lorentz force so that the ion

k, E

velocity in a field E'is limited to , Where K is the mobility of the ion species. The drag

force on the ions has an equal and opposite reaction force acting on the neutral fluid molecules
via this ion-neutral molecules interaction, the force on the ions is transmitted directly to the

fluid medium, so the force on the fluid particles is also given by f= EE, Soo[12]

2. Mathematical Modeling

Fig. 1. Plane wall jet

Let an incompressible fluid with SPM be discharged through a narrow slit in the half space

along a plane wall and mixed with the same surrounding fluid being initially at rest having
temperatureT*. The wall is also maintained at the same constant temperature T‘*.Taking the

origin in the slit and the co-ordinate axis * and * along and normal to the plane wall
respectively, the boundary layer equations for the continuity, momentum and energy are given
by considering electrification of particles.

Introducing the non-dimensional quantities like

x*=%,}r*—ifﬂe, u*=§,tﬂ*=%fﬁ, u;=1—y"—, v, = VRe,

pp= g TIRTE T =R @)
And dropping stars the governing equations can be given by,

et o= (2)

:_x[p?:u?ﬂ) + aiy[p?’y?:) =0 (3)
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a z-|
u_—+v 5 %1 Up?,[u u?,)-l-—a:Mp?, (4)
iy, Jur, 8%,
u?’?+vﬂﬁ=6? [u u,)+ M (5)
aT 8T _ 1 8T | 2a 1 2
RE_F B} _E dy2 +3Pr‘ 1-g@ Up?"[T —T)+E€( )
1 FL 21
+E?cx£'cpp[u—uﬂ) +Ea EcMp,u, (6)
T, 8T, & 8°T, FL 3 Fuy\ 2 8% uy,
Uy 5o Tv P ;a_yf_?[T?’ — T) + EPT.EEC [(B_}E) + u, ﬁ]
— %PrE’c %[u—u,p)z-l-%PrEcMu?, @)
3oy 3pp 3o,
uw??‘"’”*p a_jfi:'fﬁ'-t (8)
Subjected to the boundary conditions
=0:u=0 u,= Up, Pp = Pp, r=0 T,= T?,“_
}r=m:u=u?=ﬂ,pﬂ=ﬂ,T=D,Tp=ﬂ (9)
and the integral conditions — ”{u (f7 udy)}dy + 1@‘” af; {u f:p,p (u —uﬂ)d}r} dy —
1 oo oo _
oM fy (] pdy)dy =0 (10)
FL
—_r uT[_IrJ udv)dv—gasr - { f pp[T T]d}r}d}r
1 FL 2 du\?
— e ke Iy {u f;: py(u—u,) dy }r:i}r +Ec [ {u _Ir: (i) d}r} dy
1 oo oo
+EcxMEc fu u(f} £yl d}r) dy (11)

Where u and v are velocity components of fluid phase and u,, ,u,are velocity components of
particle phase along the x and y co-ordinates respectively, p and p, are the mass density of

fluid and particle phase respectively, @ is the volume fraction of suspended particulate

matter(SPM),F is the friction parameter between fluid and particle, L is the reference length , U
is free stream velocity, « is the loading ratio, € is the diffusion parameter , M is the

electrification parameter , T and T, are the temperature of fluid and particle phase.

3. Method of Solution

Solution for the velocity distribution
By taking a perturbation on the Schlichting [9] model by writing
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U=ugtuy, U, = Uy + Uy, Pp= Py, + Py (12)
Where uy,u, ,p, ,T;andT,_are perturbation quantities and substituting in equations (2) to (5),

we get two sets of equations as follows.

15t set and its solution:

du,  Avy

ax Tay 0 (13)
2 (rtr) + 2 (o) =0 1
dx Poy e, ay Po,Vp, ( )
Bug L, Bup_ Puy 1 FL L)l
o dzx + Yo Ay o Ay 1-p U @ J|j?’l:' [u'} u?’n) + 1—maMp?’n (15)
du du 8%u FL
B Po B
Uy, axn o Byn — E_ﬂyﬂn + = [uD — upn) + M (16)
apFn apFn —_ BEPFD
‘Lf,,pn Bx + v?’l:- By - € dy2 (17)

Subjected to the boundary conditions

y=0: u,=0, u, =u P, = Pps

Po Pup,

y=:uy=u, =0, p, =0 (18)

Together with the integral condition

~ [ )}y + 55 @ 7 {uo [ by, (w0 =y, )dy} dy

——
1—@ U

1 oo oo
— oM [ uo() pp,dy)dy =0 (19)

Since we are considering the case of a dilute suspension of particles, following Soo [11],
the velocity distribution in the fluid is not significantly affected by the presence of the particles.
Therefore, the drag force term [i.e. 2nd term in the R.H.S. of equation (15)] in equation (15) is
dropped. But for the submicron particles, Brownian motion can be significant, the concentration
distribution equation (14) above will then be modified by Brownian diffusion equation (17).

With the above consideration the equations (15) and (19) become

duy

dx

dupy E'Eun

i
o a}.z

2 [ (7 (up)dy)}dy = 0

Oor, [ {ud([] (ug)dy)}dy = A(say) (21)

A similar solution of the equation (20) under the present boundary and integral conditions
is possible if we take

W = (Ax)Vaf () = (&) Yayx s (22)
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aw

and uy =22 = (2% £ (n),vo = 2% = L)+ {3nf' () — F ()} (23)

3 bl

Where a prime denotes differentiation w.r.t. ‘n’, and the equation of continuity is satisfied
identically.
Substituting in the equation (20), we get

af" L FfTE2F% =0 (24)
and the boundary conditions are

n=0;f=0,f"=0; n=o0:f" =0 (25)
and integral condition

[ Ffrdn=1 (26)

Multiplying by f(Integrating factor) w000t and integrating the equation (24) gives,

Aff" —2f7+ff =0 (27)
Where the constant of integration is zero by using boundary condition (25).

The differential equation (27) can be linearized if we substitute =29 , and considering

L é

fr=0%
the function/ as the independent variable, we get 4 and the linearized form of the
equation (27) is
dp 1 . _ _F
Ty $T T $F0 )

The solution of (28) is given by

¢=f'= Cff—:f (29)

Where C is arbitrary constant to be determined.

Assuming atn = @@, f = f.. then in view of boundary condition (25) we get

=i (30)
The value of f. is yet to be determined and for this we use the integral condition (26)

which may be written as

[l ffrdf =1 (31)
From (31) , we get

o f(evr-5)ar =1

Or, f, = 405 = 2.515 (32)
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Now to solve the differential equation (28) we substitute

=L
F - (33)
So that it becomes <= == (\/F - F?)
dn 1

Solving we get

n=

= fi(l LHEHF + 2+/3arctg J3F ) (34)

|:1 —'\.'?:'z 2+F

To develop a computational algorithm with non-uniform-grid, finite difference

expressions are introduced for the various terms in equations (16) and (17/14) as,

aw _ 15W —owl + osw]?

- 2

dx A +a [:.-ﬁx :] (35)
aw _ Ht.':‘l::_‘_ - |:1 - r; :Il;ttl_:'l +1_ ?,.;': H:_:‘l_-i:_‘_ ,

ay ry (ry+ 1) Ay + a(Ay®) (36)
8w Lti:_?l+’:_‘- _ |:1 4 ’"J-‘:""’?"L +1y ry H?_-i:‘l—-t_‘- .

3yt 2 ry I:r'},+ 1) ay® + o(Ay®) (37)

+1 -1

Wit = 2w —wy (38)
o 30 3,7 1, 05 %) = 70 "

Where W stands for either u, Or g, .

Now the equations (16) and (17/14) reduced to

aiu, "1+ biu, "t + ciu, "= d; (40)
J P 1 Poj 7 T Pojeq 1

- - FL
dr = - [(Eu?m: — IZI..'Em',?,E,,;_2 1} (Eu?m; —u?m;_’ 1) t+ - u[,;”lﬂx + M Ax ]

= ntl n_ gy ml Ax —_24x
Pug, = ¥mg i {Ev?’nj v?’n}- ) (147 )ay’ 4 (147 )ay®
and for diffusion equation (17)
| +1 ] +1 u +1 u
ISI.}- p’l’-’n;_j_ + b}' p’l’-’n; + C}' J|:l'l‘-i'|:|_:"!.|.:|_ - d}. (41)

[ meizal
Where a; —[ Vo, Ty Ay Zer}_]
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1.5*;:. Up "__1+‘_
bR = l—ﬁ”J——v o7 (1 )Ay +2¢(1 +7 )] D’Hlﬂ}r—ze]
o Fl
2ppy; ~05Pp, T 2
; =p" “wﬁfﬂ( i ) ’ p" =rn,(1+1,)ay’

For continuity equation for particle phase (14)

ﬂpﬂnn+1+b pp n+1+cppnn+1_ d

5
n i |: ]
7 Ax Vop ¥

by = |15, 4, (5 = 2) + Uk + VPN, o = L[]

. 1
— ntl no__ n—1
d; = [u (Eppnj_ 0.5,0%}_ )]

Axl Foj
. +1 . . +__: _ _ -1
DUPX = (BJFD)H _ 15u Ugy, +0.5u o
dx i Ax
du, AP+l 15w, Ti-2e, Mi0.5e, T
pvpY = (ZB) = :
dy J. Ax
i
 vpg A _ 2ax
Pug, (rp+1)ay d (rp+1)ay®
2" set and its solution:
By B,
o Ty 0 )
Pon g, Py, Bug, dog,
Us ae T Pro T T %eo o T Pria: T Vn. gy
vy, Aoy g
4 2 o —
+pp, _La;,- tv, —"-a}_ tp,, By 0 (43)
H’D a + 1 2. +v|} By + 1 By
8%u, 1 FL i FL 1
Tt 1-g v p?’:[u[’ T Up) T @ o %Py, [14',1 ?’:) + 1-g aMP"”‘— (44)
Au, duy, Au,, u 8w FL
. Fo B o — el i —
u?’n dzx +u?’: dx +v?’|:u dy +v?"_ dy € ay= t u [ui u?’:) (45)
L2 e Ly, my g, ZPme Top (46)
Po Ax P12 Po dy P1 ay ay*
Subjected to the boundary condition
y=0: U = 0. Up, = upw:_ Pp, = Ppy,
y=w uy=u, =0, p, =0 (47)

and the integral condition

892



= L3 ([ (uy)dy)} dy + = 2 {2uguy ([ (w,)dy)} dy
7 (o7 oy, (w1 —,, ey} dy
R N O W IR E e M [Tuy([[ by, dy)dy -
+ [ S, (wo =, )y} dy
’ s = 0 (48)

is identically satisfied
Using equations (35) to (39) in (42) and (44) to (46), we get

+1 -1
o A BN
1j-1 1j—-1 . 1j—1
a}-ulj_’jli + b}-ulj’_”i + c}-ulj’_“:li = d; (50)
@ up, M+ b, M 4t T = 4 (51)
rx}‘*,ﬂp n+1_|_ b**pp n+l g c F‘p n+l _ d;s (52)

i1j-

1
Where a; = — [_p%r}_ — q]
J D pl, ?"_1.‘ q ?"}. 1-@ p ol D_;I j
1L _
c—’. Y |:r'}, [pvn Q)]

-uu,;”l (21;[1; - 0.514:1;’_1) - (21:11;’ — 1:11;’.’_1) (%)?_ﬁl Ax

dy j
no__ n—1 ntl _ n+l
d. = i 1 FL (zp'pij -p',’.:ll ] }(ul}}- uﬂ”}' )
T T ae| —— —alx +
1-g U n+1(2u R 1)
‘D‘Pn} Pl Pl
& - n—1
L 1—g M (2}1‘51}_ .p-pj_}. )ﬂx i
_ . ont1l_ Ax __ 2Ax
Py, O (14ry)ay q (147, )ay®
BEE 1 [ ]
L; =—|—P, T —E
7 ax| Prp, & T €4
[ ntl n+l hx 1
1.5u +DUFX&::‘C+E? i 0 ] N\
bfess — L .i' |__1+r'}, Ay Ty
J Ax 2Ax FL
e——— |1+ — — Ax
] + (147, )ay® +7 ry t U
c —\P,. —E€
1 Az |7y Ps q
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d_;:ss — L[u ntl (Euw ” — [I_Eu,p‘_j ) 5 DUPY Ax —|——u1-;‘?+1axi|

Ax 'F'D}- ‘__;|
_ _ +1 Ax _ 2Ax
S =2p "—p "l p =y " I— g=——
Yoy Baj Byj - Foj |__1+r}.:|.’_'.}' ! |._1+?*'_!_,:If_'._';z
. ntl | 15wy MHi-2u, T40.5u, T
DUPX = (‘“Fn) LY Y i
dx i Ax !
. nt+l Uy, '_H"—Il relu, Tt —ply, T
DUPY _ (BJFD} — FD_|'+4_ }:I FDJ' ¥ FDJ'_J_
) i ry I__1 Ty :Iﬂ ¥
1 1 1 1
e — [_ _ o ntl _ = -
a; . [ TyPy, Eq] b; = [1.5141?,[,}_ + Pug (T}. r}.) + eq (1 + ry)]
(zp 1?! _0.5}3 1?!—1}u nt+l
1 [1 1 pl; Ply; Po;
wE o
Ci = —|—\p,. —€Eq P = n+l n+l
J Ax r.( ¥'p ) 1 Ax 8oy da
¥ Fo —u nt+l Fo Ax — v1n+1 Fo Ax
p‘_}' Bx i By i

Solution for the temperature distribution
By taking a perturbation on the Schlichting [9] model by writing

U= Uyt Uy, T = vD+v1,up—upD+up‘_, v, —*1:1?,[:'+'1ﬂ'?,1,,|:-?J =Py, +p?,1,

T=T,+T,, T

7 = T’FD—I_ T,p:

Where u,,14 U Py iPp o Ty and T,_are perturbation quantities,

and substituting in equations (6) and (7) we get the following two sets of equations.

Set-1 and its solution

-

E E a* 2 Buy 2
W n e AT S ) () s ()

0 a 8y Prdy: 31— U Pr
+$%ﬂ Ec F‘pn[un - uwn)z + ia EcMp, u,, (53)
uwnaafn vﬂn% _PE_:" aa:“n +H (T T, )_i EPTEC[“D Up )
+%pr.5c _ [“wn 5y “rg (Eun ) ] + %Pr Ec Mu,,_ (54)

Subjected to the boundary condition

y=0:T,=0, T, =T, ;y=u I,=0,T, =0 (55)

and the integral condition

_r {ugT _r Uy dv}dv—n ;;?_ F:: { DJ’ Py, [T —TD)dF} dy

b v [ ug (7, (w0 — ) day + Eef fuo [7(22) ay)ay
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1 w0 w0
+EerE.'c fu Uy (_I'; Py Uy, d}r) dy (56)

Since we are considering the case of a dilute suspension of particles, following Soo [11],
the temperature distribution in the fluid is not significantly affected by the presence of the
particles. Therefore, the 2", 4th and 5th term in the R.H.S. of equation (53), and 1% and 2" term
of R.H.S. in equation (56) are dropped.

Hence equation (53) and (56) reduces to,

-

ar, ar, _ 181, Buy )2
o Bx tv Yo B} Pr B} Ec [E) (57)
And {uDTD_r uy dyldy = E.'c_l" {'U»u.f (Eun) dv} dy (58)

The equation (57) is a linear differential equation in T,. So we can solve the equation by
the principle of superposition of solutions T, and Ty, such that T, is the solution of the

equation

ar aT, 18°T
oo _I_ v, op . = oD (59)

dy Br ay®

And Ty, is the solution of the equation

arn 8Ty, _ 1 8Ty, By
tv Yo oy " pr ay? tEc (ﬂ_}) (60)

So that Ty = Ty + Ty (61)
Ty and Ty, satisfies the boundary and the integral conditions are given by

Y= 0Ty =0, Ty =0 ; y=o0:Tyy =0, Tyy =0 (62)
And _Ir; Tuuuu(f;uud}r] dy = const = I (say) (63)

a .
Furthermore, - J* Tosuo(J; wody) dy = Ec [ {uﬁ f:

(aﬁ} d}f} dy (64)

is identically satisfied.
It implies the constancy of the product of volume and heat flux, for a given prandtl number,

through any cross-section of the boundary layer perpendicular to the wall.

For arbitrary value of ©7 it is assumed that
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Top = é(f)lﬁ h() (65)

Substituting %o and ¥ from (23) and o0 from (65) in equation (59), the function ()

satisfies the differential equation

4n" + Pr(fh + 2fh) =0 (66)
With the boundary conditions

n=0; h=0; n—=w,h=0 (67)

and the Integral condition [ hff dn = 1 (68)

= (P, HE) =52 R0

Introducing the transformation © in the equation (66).

The transformed equation is

s[l—s]i_j+{§—@—Pr+ 1)5}%+§P1‘H=D (69)
With the boundary condition s = 0: H=0 ; s 1: H=10 (70)
and the integral condition fﬂl Hs'/s ds =1 (71)

Equation (69) is a hyper-geometric equation, whose solution is given by

H(s) = A ,F(a,b,cs) + —I-Eslf'rﬂ ,Fla—c+1L,b—c+1;2 —c;5) (72)

+5b =E—F*r,ab=—§Pr, and c=§

s
Where 3 (73)

And oF1 (ab,cis)= T, 2r = fele S mm s

=0 ¢ £y e,

Since the Prandtl number Pr of a fluid is always positive integer so the series is absolutely

converges.
Now by boundary condition (62), for s = 0, A=0 (74)
and H(S):J’;'ﬁ‘.'::lf'rEl Fila—c+1L,b—c+1;2—¢c;5) (75)

In (67) ‘B’ is still an unknown constant which will be determined by the integral condition

(63) which is given by
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5=§{ EF’:(a—c+1,b—c+1,§,2—c,§;1)}_1 (76)

The solution of the equation (60) can be obtained by using finite difference technique as

follow.
@Tl}ln'l'l + b@TD n+l + CEBTMH_:' — d+ (77)
n+1
® _ ¥ 2 :L[_ 1 ]
Where a; (147, )ay © pr(1+ rp)ay®  Ax PrTy — 3.4
@ __-1 nil iyt S 2 __ 1|1 _r
b_i" T Ax |:1'5uD}' tPr (T}' r}.) t Pr q (1 + r}.):| ! % Ax |:r'}. (pr Pr q)]
1 3 D.'1+'__ I:l.'1+'_ Z
& _ j+1 i n+1l
d® =—|E (—;4—) Ax + uy™? (27,7 — 05T, )]
M+
vp; A& 2 Ax
— 0 —
Pr |1+r'}:|ﬂ.} and q (147, )ay*®

The solution of the equation (54) is obtained by using finite difference technique.
Using equations (35) to (39) in equation (54), we get

am +1 anm +1 am +1 an
aft Tyt + BT, + T, = ) (78)

Where a'® = = [—r}. Poo ~5n q]

1 1 1 1\eq | FL 1 f1 eq
pre =1 _1.5(%[,; )+ (T}.—r—y)pm +(1 +r—y);+?&x] cmm _E[r_},(pvﬂ _;)]

'(ETPE’? - IZI.STPD:"l) (upﬁ:“) + 2T, A

3 FL
—=—PrEc|u ntl g 1 &x
U I}_;, -p[!l}.

== °
1 Ax 3 Byt 2 8%,
+EPTEC.E{{—B;_—D} +u*pDT;_D Ax

—FrEcMu ”+1ﬂx
Py

2"d set and its solution:

T, ar:, ar, _ 1 é'r
Uy—— T U Ty — ==
0 a + 13 + “' By + Y1 fy  DPray®
2 @ 1 FL Eun Buy
t31me 7 o Pro(To, = T1) + 0pa (Tp, — To)} + 2Bc 2%



+ 15 e {py, (o — uy,)” + 26, (100 — 1, (1 — )}

1 1
+Ea EcMp, u, + s EcMp, U, (79)
aT,, 8Ty, aT,, py _ & 8T, _
u'pn dx +u'p‘_ dx v'pD dy +EJ'F"_ dy _P‘r ay? [T 1)
3 B, 3up, Buy Bu,
+PrEc E.(upDT}_;‘r-l-u,pi 3yt +2 3y a}_)
— 32 prEc(ug—u, Yuy —u, ) +>PrEcM 80
o PrEc(ug —u, J(uy —u, )+ PrEcMu, (80)

Using equations (35) to (39) in equation (79) and (80), we get

T ?‘H‘l _|_ b+T ?‘H‘l _|_ C+T1?‘!:'j:-|. —_ d'l' (81)
++T ntl _|_ b++T nt+l +C++T ntl _ d++ (82)
G ey Pl; 7 TPl ]

7 Ax 1%g ,2 & 1 FL ntl
_+(1+r},)Pr +- —p Ax

3 1—gpr Ul Pl
=21 1&, q)
J Ax ¥ By

_ n+l T
(2r,— 0517 )u,  -u,"*'DTXAx—S, DTYAx+
J B
Z =@ 1 FL n+l n+l n+l
31-g Pr U {‘G?’n ST +3, (T T“}' )} Ax
+ - 1 +1 +1)?
d; Ax 1 FL SPF_ (uﬂ'n u?’n: )
+1— - & Ec Ax
@ n+l n+l _ nt+l ntl _
+2p?=n}- (uD}, Up,: )(ulj S ”F-_)
1 +1 +1
_+2£’c DUY.DUY1Ax +E e EcM (ppnf Sup‘_ + sﬂp-_ upD: )ﬁx_
_ -1 _ -1 — n__ n—1
51"_ - 2'151-:! - '191-::! ’ Sup: - zu‘.ﬂa_; —T.!-,p‘_; ! STF‘_ - ET"E‘_}' T'p'_}'
— n n—1
Sp . Z‘G'P-__;.- ~ Py,
DT¥ — (ar )n+1 _ 1.5rnj}+'-—zrnj_.‘+u.5rnj}"- DTY = (ar )”*1 _ [Tn?:f":l""?]Tn}”"""yzfn}‘ff]
dx Ax ' 8y J ?"}.l__1+r'},:|!_'.y
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4. Discussion of the Results

We choose the following parameters involved
p =0913 kg/m® . p, =8010kg/m® g =0.1. D = 50um, 100um ; U = 0.45m/sec
L = 0.044 m;

Ec=01; Pr=0.71,1.0,7.0; p = 2226 X 107° =2.43 X 107 m? /sec

kg/m sec; ¥
Fig -2 Shows the perturbed velocity (*1) distribution against y for different value of M.
The figure is Blasius type near the plate. The magnitude of “1 increases with the increase of M.

Fig- 3(a) and 3(b) shows the perturbed velocity profile “1 without and with electrification
of particles respectively. In both the cases the velocity distribution near the plate is of Blasius

type and away from the plate it resembles with the distribution of plane free jet. It is observed

that the numerical value of ™1 is greater in case of electrification of particles.

Fig-4 and 5(a), 5 (b) show the temperature distribution T for initial and viscous heating
with and without charged SPM respectively. In all the cases the distribution near the plate is of
Blasius type and of free jet type away from the plate. Further, the numerical value of T1 with

electrification is less than that of the value without electrification.

FIGURES:
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Table 1. Variation of Nu, with x for different Prandtl Number (Pr)

Initial Heating

Viscous Heating

Pr=071

Pr=1.0

Pr=7.0

Pr=071

Pr=1.0

Pr=7.0

1.20
1.40
1.60
1.80
2.00
2.40
2.80
3.20
3.60
4.00
4.40
4.80
5.00

-4.56E+01
-4.22E+01
-3.95E+01
-3.72E+01
-3.53E+01
-3.23E+01
-2.99E+01
-2.79E+01
-2.63E+01
-2.50E+01
-2.38E+01
-2.28E+01
-2.23E+01

-6.38E+01
-5.91E+01
-5.52E+01
-5.21E+01
-4 94E+01
-4.51E+01
-4.18E+01
-3.91E+01
-3.68E+01
-3.49E+01
-3.33E+01
-3.19E+01
-3.13E+01

-1.90E+03
-1.76E+03
-1.65E+03
-1.55E+03
-1.47E+03
-1.35E+03
-1.25E+03
-1.16E+03
-1.10E+03
-1.04E+03
-9.93E+02
-9.51E+02
-9.32E+02

-4.56E+01
-4.22E+01
-3.95E+01
-3.72E+01
-3.53E+01
-3.23E+01
-2.99E+01
-2.79E+01
-2.63E+01
-2.50E+01
-2.38E+01
-2.28E+01
-2.23E+01

-6.38E+01
-5.91E+01
-5.52E+01
-5.21E+01
-4.94E+01
-4.51E+01
-4.18E+01
-3.91E+01
-3.68E+01
-3.49E+01
-3.33E+01
-3.19E+01
-3.13E+01

-1.90E+03
-1.76E+03
-1.65E+03
-1.55E+03
-1.47E+03
-1.35E+03
-1.25E+03
-1.16E+03
-1.10E+03
-1.04E+03
-9.93E+02
-9.51E+02
-9.32E+02

Table 2. Variation of N, with x for different Prandtl number (Pr)

Initial Heating

Viscous Heating

Pr=1071

Pr=1.0

Pr=7.0

Pr=1071

Fr=1.0

Pr=17.0

1.20
1.40

3.00E+00
9.80E+03

3.03E+00
8.54E+03

3.69E+00
3.38E+03

-1.19E+08
-2.60E+07

-1.20E+08
-2.63E+07

-1.54E+08
-3.29E+07
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1.60
1.80
2.00
2.40
2.80
3.20

5.41E+03
1.19E+03
-6.05E+02
-6.52E+02
-6.50E+02
-6.50E+02

4.75E+03
1.04E+03
-4.96E+02
-5.38E+02
-5.36E+02
-5.36E+02

1.75E+03
4.66E+02
-1.68E+02
-1.88E+02
-1.87E+02
-1.87E+02

-1.20E+06
-9.08E+05
-1.85E+05
-1.66E+06
-1.66E+06
-1.66E+06

-1.18E+06
-9.03E+05
-1.85E+05
-1.66E+06
-1.66E+06
-1.66E+06

-7.43E+05
-8.12E+05
-1.89E+05
-1.67E+06
-1.67E+06
-1.67E+06

Table 3. Variation of ¢z, with x for different size of particles

Initial Heating

Viscous Heating

D=05um D=50um D=100um

D=05um D=50um D=100um
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1.2 | 1.35E+03  3.57E+01 1.61E+01 2.61E+03  2.61E+03  2.24E+02
1.4 | 230E+02  1.28E+01 1.42E+01 2.41E+02  2.41E+02 8.74E+01
1.6 | 846E+00 5.80E+00 1.26E+01 2.91E+01  2.91E+01  8.33E+00
1.8 | 3.09E+00 5.63E+00 1.03E+01 1.28E+01  1.28E+01  1.96E+00
2.0 | 2.31E+00  5.56E+00 1.02E+01 3.17E+00  3.17E+00  1.84E+00
2.4 | 1.12E+00 5.31E+00 2.60E-01 9.54E-01 9.54E-01 1.54E+00
2.8 | 1.12E+00  5.10E+00  7.19E-02 8.99E-01 8.99E-01  1.53E+00
3.2 | 1L.12E+00  4.97E+00  8.13E-02 8.99E-01 8.99E-01  1.53E+00
3.6 | 1L.12E+00  4.94E+00 8.13E-02 8.99E-01 8.99E-01  1.53E+00
40| 112E+00 4.93E+00 8.11E-02 8.99E-01 8.99E-01  1.53E+00
44| 112E+00 4.93E+00  8.09E-02 8.99E-01 8.99E-01  1.53E+00
48| 1.12E+00  4.93E+00 8.07E-02 8.99E-01 8.99E-01  1.53E+00
5.0 |1.12E+00 4.93E+00 8.06E-02 8.99E-01 8.99E-01  1.53E+00
Table 4. Variation of ¢z, with x for different material density of particles(p. )
Initial Heating Viscous Heating
x p, =800 p =2403 p_=8010 |p =800 p =2403 p = 8010
1.20 | 1.35E+03  3.53E+02 3.24E+02 2.61E+03 2.17E+02 1.97E+02
1.40 | 2.30E+02 1.27E+02 8.90E+01 2.41E+02 8.38E+01 5.90E+01
1.60 | 8.46E+01 1.16E+01 2.58E+01 2.91E+01 7.66E+00 1.86E+01
1.80 | 3.09E+01 2.82E+00 5.49E+00 1.28E+01 2.52E+00 3.46E+00
2.00 | 2.31E+00 2.65E+00 5.31E+00 3.17E+00 1.93E+00 3.43E+00
2.40 | 1.12E+00 2.54E+00 5.25E+00 8.98E-01 1.66E+00 3.37E+00
2.80 | 1.12E+00 2.54E+00 5.24E+00 8.98E-01  1.66E+00 3.37E+00




3.20

1.12E+00

2.54E+00

5.24E+00

8.99E-01

1.66E+00

Table 5. Variation of c; with x for different diffusion parameter(e)

Initial Heating

Viscous Heating

=005

=01

=02

=005

g=01

s=02

1.20
1.40
1.60
1.80
2.00
2.40
2.80
3.20
3.60

1.35E+03
2.30E+02
8.46E+01
3.09E+00
2.31E+00
1.12E+00
1.12E+00
1.12E+00
1.12E+00

5.39E+02
1.86E+02
2.16E+01
3.30E+00
5.89E-01
5.58E-01
5.45E-01
5.45E-01
5.45E-01

5.39E+02
1.86E+02
2.16E+01
3.30E+00
5.89E-01
5.58E-01
5.45E-01
5.45E-01
5.45E-01

2.61E+03
2.41E+02
2.91E+01
1.28E+01
3.17E+00
9.54E-01
9.18E-01
8.99E-01
8.99E-01

3.59E+02
1.23E+02
1.36E+01
1.60E+00
9.96E-01
4.45E-01
4.37E-01
4.37E-01
4.37E-01

2.81E+02
1.20E+02
1.55E+01
6.56E+00
7.13E-01
2.18E-01
2.08E-01
2.08E-01
2.08E-01

Table 6: Variation of chwith x

Without

x | electrification

With

electrification

1.2
1.4
1.6
1.8
2.0
2.4
2.8
3.2
3.6

7.80E+03
6.30E+02
6.25E+02
5.83E+02
3.66E+02
3.19E+02
9.56E+01
9.24E+01
9.24E+01

1.35E+03
2.30E+02
8.46E+01
3.09E+01
2.31E+00
1.12E+00
1.12E+00
1.12E+00
1.12E+00

Table 7. Variation of N, with x Initial Heating Viscous Heating

Without

electrification

With

electrification

Without
electrification electrification

With
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1.2 1.18E+04 3.00E+00 -1.89E+05 -1.19E+08
14 3.04E+05 9.80E+03 -4.22E+05 -2.60E+07
1.6 2.02E+06 5.41E+03 -1.21E+06 -1.20E+06
1.0 4.49E+06 -1.19E+03 -9.49E+05 -9.08E+06
2.0 1.57E+06 -6.05E+02 -6.95E+05 -1.85E+06
2.4 8.98E+03 -6.52E+02 1.13E+05 -1.66E+06
2.8 -1.03E+01 -6.50E+02 7.94E+03 -1.66E+06
3.2 -8.41E+01 -6.50E+02 7.20E+04 -1.66E+06
3.6 -4.79E+01 -6.50E+02 8.92E+04 -1.66E+06
4.0 -2.86E+01 -6.50E+02 1.03E+05 -1.66E+06
4.4 -1.78E+01 -6.50E+02 1.18E+05 -1.66E+06
4.8 -1.13E+01 -6.50E+02 1.32E+05 -1.66E+06
5.0 -9.12E+00 -6.50E+02 1.39E+05 -1.66E+06

Fig- 6(a) and 6(b) depicts particle phase temperature T,, having viscous heating with and

without charged SPM. It is concluded from both the figure that both profile are Blasius type
near the plate and free jet type away from the plate.
Thus we conclude that the electrification of particles reduces the numerical value of

uq .71y, T?L_
To show the heat transfer in the wall jet, the Nusselts number is calculated for the case of
initial heating and viscous heating without and with electrification. The value of

Nu = Nu, + Nu,, where Nu, is the Nusselts number not effected by electrification and N, is
calculated based on perturbation temperature T,. In Table-1 values of Nu, for initial heating

and viscous heating for different values of Pr is calculated. Similarly, Table-2 shows the

dependence of Nu, on Pr. From Table-1 it can be observed that Nu, is increasing in both for
initial heating and for viscous heating. Further from Table-2, it can be observed that Nu,is

increasing and then decreasing towards the downstream and assuming a constant value towards
the downstream of the plate.

Table-3, Table-4 and Table-5 represents variation of ¢, with x for the parameters, size,
material density and diffusion of the particles. It can be observed that ¢, decreases and then

remain constant towards downstream in both the cases of Initial and Viscous heating. Table-6
and Table-7 represents variation of ¢, and Nu, with x for without and with electrification
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respectively. It is observed that the electrification of particles reduces the velocity and

temperature gradient leading to reduction of skin friction and heat transfer.

Conclusion

In this paper the effects of electrification of suspended particulate matter on fluid flow and
heat transfer is studied. It is concluded that electrification of particles reduces the numerical
value of velocity of fluid and temperature of fluid and particles. So it reduces skin friction and
heat transfer. Further the increase of Prandtl number (Pr) results in the decrease in temperature
distribution. Physically heat is diffused away from the heated surface rapidly then for higher
value of Pr as smaller value of Pr indicates an increase in thermal conductivity. Thus
temperature falls more rapidly for water (Pr =7.0) then that of air (Pr = 0.71) and electrolyte
solution (Pr =1.0).
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