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Abstract 

The unsteady viscous compressible boundary layer fluid flow past a semi-infinite vertical 

porous plate surrounded in a porous medium with induced magnetic field has been studied 

numerically. The governing non-linear coupled partial differential equations have been 

transformed by using usual transformations. The obtained non-linear dimensionless coupled 

partial differential equations have been solved numerically. The explicit finite difference method 

is used as solution technique and MATLAB software is used as a secondary tool. The obtained 

results for the density, velocity, induced magnetic field as well as temperature distributions are 

shown graphically.  
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1. Introduction

The field of magneto-hydrodynamics has been concerned with geophysical and astrophysical

problems for several numbers of years. The combined heat transfer consideration arises due to 

buoyancy forces instigated by thermal diffusions. Condensing and boiling are characteristic for 
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many separation processes in chemical engineering as drying, evaporation, distillation, 

condensation, rectification and absorption of a fluid. In recent times, the MHD is used to affect a 

flow stream of an electrically conducting fluid for the resolution of thermal protection, braking, 

propulsion and control. The general boundary layer equations for continuous surfaces have been 

analyzed by Sakiadis (1961). Due to the importance of the flow past a continuously moving 

surface in manufacturing processes such as hot rolling, metal and plastic extrusion, continuous 

casting, glass fiber and paper production, the steady heat transfer flow past a continuously 

moving plate with variable temperature has been analyzed by Soundalgekar and Ramana Murty 

(1980). Along with the possessions of magnetic field, the effect of transpiration parameter, being 

an effective method of controlling the boundary layer has been considered by Kafoussias (1991). 

The combined boundary layer heat and mass transfer of an electrically conducting fluid in MHD 

natural convection adjacent to a vertical surface has been analyzed by Chen (2004). Alam et al. 

(2006) numerically examined the mass transfer flow past a vertical porous medium with heat 

generation and thermal diffusion on the combined free-forced convection under the influence of 

transversely applied magnetic field. The level of concentration of foreign mass has been assumed 

very low in this study so that the thermal and mass diffusion were neglected. They used 

perturbation technique to obtain the solution. Such type of model studies have been carried out by 

many investigators such as Sattar and Alam (1999) and Alam et al. (2006). The effects of hall 

current and viscous dissipation on MHD free convection fluid flow in a rotating system have 

been studied by Quader and Alam (2015). Pervin and Alam (2015) studied the fluid flow through 

parallel plates in the presence of hall current with inclined magnetic field in a rotating system. 

The unsteady heat transform of viscous incompressible boundary layer fluid flow through a 

porous plate with induced magnetic field, and the related problems have been observed by Islam 

et al. (2016).  MHD free convection and mass transfer flow through a vertical oscillatory porous 

plate in a rotating porous medium with hall, ion-slip currents and heat source have been 

investigated by Hossain, Samad and Alam (2016). 

Hence our aim is to study unsteady viscous compressible fluid flow along a porous plate 

with induced magnetic field. The explicit finite difference technique has been used to solve the 

dimensionless equations. The obtained results have been shown in graph. 

 

2. The Basic Governing Equations 

The equation of continuity for a viscous compressible fluid in vector form is given as follows: 
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where   is the density of the fluid   andq is the velocity of fluid. 

The Navier-Stokes’ momentum equation for a viscous compressible fluid when the fluid 

moves along a porous medium also electrically conducting fluid moves through a magnetic field 

of intensity H  in vector form is given as follows: 
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where   is the kinematic viscosity, 'k  is the permeability of the porous medium, B is the 

magnetic field and e  is called the magnetic permeability. 

The MHD energy equation for a viscous compressible electrically conducting fluid with 

diffusion thermo is given as follows: 
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The MHD induction equation is given as follows: 
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where  is the electrical conductivity.  

 

3. Mathematical Formulation 

Initially the plate as well as the fluid are at the same temperature ( )T T=  everywhere. Also 

it is assumed that the fluid and the plate is at rest initially in its own plane and instantaneously at 

time 0t  , the temperature of the plate is raised to ( )wT T , which is there after maintained 

constant, where wT is the temperature at the wall andT is the temperature of the species out side 

the boundary layer. The physical configuration of the study is given in figure 1.   
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Fig. 1. Physical Configuration and Coordinate System 

 

Within the basis of the above assumptions, the equations related to the unsteady two-

dimensional problem governed by the following system of coupled non-linear partial differential 

equations under the boundary-layer approximations, equations (1) (2) (3) and (4) become 

Continuity equation:  
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Momentum equation: 
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Magnetic induction equation: 
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Energy equation: 

2 22

2

1 x

p p p

HT T T T u
u v

t x y c y c y c y

 

  

       
+ + = + +   

        
                           (9) 

and the corresponding initial and boundary conditions for the problem are as follows: 

0, 0, 0, 0,xt u v H T T= = = = → everywhere                                                (10) 

0, 0, 0, 0,xt u v H T T = = = →  at 0=x  
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0, 0, ,x w wu v H H T T= = = =  at 0=y                                                                              (11)       

0, 0, 0,xu v H T T= = = → at y →                                                                                                          

where ,x y  are Cartesian coordinate system; ,u v  are ,x y  component of flow velocity respectively 

g  is the local acceleration due to gravity;   is the thermal expansion coefficient;  is the 

kinematic viscosity; e is the magnetic permeability;  is the density of the fluid;  0H  is the 

constant induced magnetic field; xH is the X  component induced magnetic field and wH  is the 

induced magnetic field at the wall. 

Since the solution of the governing equation (5) to (9) under the initial condition (10) and 

boundary condition (11) will be based on the finite difference method it is required to make the 

equations into dimensionless equations. 

The dimensionless quantities are as follows: 
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The obtained dimensionless differential equations are as follows: 
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Also the associated initial (10) and boundary (11) conditions become  

854



0, 0, 0, 0, 0xU V H = = = = =  everywhere                                                                          (17)                                      

0, 0, 0, 0, 0xU V H  = = = =
 
at 0X =                                                                     

0, 0, 1, 1xU V H = = = =  at 0Y =                                                                           (18)                                                                                                                    

0, 0, 0, 0xU V H = = = =
 
at  Y →           

                                                        

4. Numerical Solution 

To solve the dimensionless system (12) to (16) by the explicit finite difference method 

subject to the boundary conditions, a set of finite difference equations is required. For which, the 

region within the boundary layer is divided into a grid or mesh of lines parallel to X and Y axes 

where X-axis is taken along the plate and Y-axis is normal to the plate as shown in figure-1.  

Here we consider that the plate of height ( )max 100X =  i.e. X varies from 0 to 100 and regard 

( )max 30Y =  as corresponding to Y →  i.e. Y varies from 0 to 30. We take 200m=  and 60n =  

grid spacing in the X and Y directions respectively.   

It is assumed that X , Y  are constant mesh sizes along X and Y directions respectively and 

taken as follows: 

     ( )0.5 0 100X x =    

     ( )0.5 0 30Y y =     

with the smaller time-step, 0.005 =  

Let
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respectively. Using the explicit finite difference approximation the following appropriate set of 

finite difference equations are obtained as: 
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and the initial and boundary conditions with the finite difference scheme are given as 

follows: 
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Here the subscripts i  and j  designate the grid points with x  and y  coordinates 

respectively and the superscript n  represents a value of time, n =   where 0, 1, 2,....n =   

 

5. Results and Discussion 

5.1 Justification of Grid Space 

To verify the effects of grid space for andm n , the computations have been carried out for 

three different grid spaces such as =100, 30; 150, 50 and m=200,n=60m n m n= = = are shown in 

figure-2. It is seen that the graph for m=200, n=60  is more shaded than others. According to this 

situation, the results of density, velocity, temperature and magnetic induction have been carried 

out for m=200 and n=60 . 

 

5.2 Steady State Solution 

In order to verify the effects of time step size  , the computations have been carried out 

for five different time step sizes such as  = 10,20,70,80,90. It is observed that, the result of 

computations for xρ, U, θ and H
, however shows so little changes after  = 70. Thus the 

solutions of all variables for  =80 are essentially the steady-state solutions which is shown in 

figure-3. Hence the density, velocity, temperature and magnetic induction profiles have been 

carried out for  =80. 
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Due to analyze the physical situation of the model, we have computed the steady state 

numerical values of the non-dimensional density ρ , velocity U , temperature   and magnetic 

induction H  within the boundary layer for different values of Grashof number ( )rG , Prandtl 

number ( )rP , Eckert number ( )cE , Magnetic diffusivity number ( )mP , Magnetic force number 

( )M  and permeability of Porous plate ( )0k . 

Here the solution for 80 =  are essentially steady state solutions. For the purpose of 

special importance of cooling problem in nuclear engineering in connection with the cooling 

of reactors, the value of the Grashof number for heat transfer is taken to be positive ( )0rG   

and the present study has considered 2.0, 2.5, 3.0rG = also take the value of density of air 

at 0 C is
31.293 kg m . Since the study is related to compressible fluid, we have chosen 

atmospheric air whose 0.71rP =  (Prandtl number for air at 20 C), and have also taken lower 

Prandtl number as air such as 0.5, 0.6rP = . Here the investigation are assumed for both lighter 

and heavier fluid particles, hence with respect to the convergence criteria of the problem the 

values of parameters M , mP  and cE  are chosen arbitrarily as 0.01,M =  

1.0,mP = 0.001,cE = 0.005  and 0.008  also the dimensionless permeability of porous medium 

0 0.21 =  are considered as a fixed value.  Along with the obtained steady state solutions, the 

flow behaviors in case of cooling problem are discussed graphically. The profiles of the 

density, velocity, temperature and magnetic field versus Y  are illustrated in (Figures 4-6). 
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Figure-4 shows the profiles of density ( )ρ , energy ( )θ ,  and magnetic induction ( )H  

decreases with increase of Grashof number ( )rG , also the velocity profiles increases with 

increase of Grashof number ( )rG . 
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Figure-5 shows the profiles of velocity ( )U and energy ( )θ  decreases with increase of 

Prandtl number ( )rP , also the profiles of density ( )ρ  and magnetic induction ( )H  increases with 

increase of Prandtl number ( )rP . 

859



 
 

Figure-6 shows the density profiles ( )ρ decreases with increase of Eckert number ( )cE , also 

the profiles of velocity ( )U ,  energy ( )θ  and magnetic induction ( )H  increases with increase of 

Prandtl number ( )rP . 

Finally, qualitative and quantitative comparisons of the present steady-state results with the 

published results of Islam et al. (2016) are presented in Fig 7-8. 
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Thus the present results are qualitatively as well as quantitatively quite different with the 

results of Islam et al. (2016) due to compressible and incompressible fluid respectively. 

For the basis of many scientific and engineering applications for investigating more complex 

vertical problems involving the flow of conducting fluids, it is hoped that the present 

investigation of the study of flow over a vertical surface can be utilized in applied physics. It is 

expected that the results of the present investigations be also of great interest in geophysical and 

astrophysical problems.  

 

Conclusion 

In this research, the explicit finite difference solution of unsteady viscous compressible fluid 

flow along a porous plate with induced magnetic field has been investigated for steady state 

solution. The results were discussed for different values of important parameters as Grashof 

number ( )rG , Prandtl number ( )rP , Eckert number ( )cE  and for brevity, the effect of Magnetic 

diffusivity number ( ) ,mP Magnetic force number ( )M  and permeability of Porous plate ( )0k are 

not shown. The physical properties are illustrated graphically for different values of 

corresponding parameters. Among them some important findings of this investigation are point 

out here; 

1. The density decreases with increase of rG  and cE both also increases with increase of 

rP . 

2. The velocity decreases with increase of rP
 also increases with the increase of rG  and cE
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both.  

3. The energy decreases with increase of rG  and rP
 both also increases with the increase 

of cE
. 

4. The magnetic induction decreases with increase of rG  also increases with the increase of 

rP
 and cE

both. 
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