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ABSTRACT 

  
 In this study, the single Fourier sine integral transform method was used to solve the elastic 

buckling problem of Kirchhoff rectangular plates simply supported at two opposite edges 

x = 0, and x = a and clamped at the other two edges y = 0, and y = b. The problem considered 

was that for uniaxial uniform compressive load in the x coordinate direction. The single 

finite Fourier sine integral transformation was applied to the governing fourth order partial 

differential equation of Kirchhoff plates under uniaxial uniform in-plane compressive loads 

to convert the problem to a fourth order ordinary differential equation in terms of the finite 

Fourier sine transform space variables. Solution of the ordinary differential equations 

yielded the buckling modal shape functions in the Fourier sine transform variables. 

Enforcement of boundary conditions along the y direction at y = 0, and y = b yielded an 

algebraic eigenvalue eigenvector problem which was solved to obtain non-trivial solutions. 

The characteristic buckling equation was obtained by requiring the vanishing of the matrix 

of coefficients as the transcendental equation involving the buckling load. The buckling 

load was obtained by solving the transcendental equation for various assumed values of 

the plate aspect ratios. Critical buckling loads for various values of the plate aspect ratio 

were found to be identical with classical solutions obtained in the technical literature. The 

present study thus yielded exact solution for the buckling loads and buckling modes of 

uniaxially compressed Kirchhoff plates; illustrating the effectiveness of the analytical tool. 
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1. INTRODUCTION 

 

Navier and Saint Venant presented equations for the elastic 

buckling analysis of rectangular thin plates. Navier’s 

equations included twisting forces while Saint Venant 

improved on Navier’s equation by further incorporating the 

axially applied compressive edge forces and shearing forces. 

The differential equations derived variously by Navier and 

Saint Venant provided the foundations for the research work 

on the elastic stability of thin rectangular plates under uniaxial, 

biaxial and shear buckling. The basic problem of elastic 

buckling of plates is thus to determine the minimum loads 

(buckling loads) and the associated shapes (buckling modal 

shapes) at which the plate would collapse (fail) when subjected 

to uniaxial, biaxial or shear compressive forces for given edges 

support conditions [1-3]. Elastic buckling problems can be 

solved using classical analytical method or approximate 

numerical methods. Ibearugbulem and Ezeh [4] used algebraic 

shape functions derived from a truncation of the infinite Taylor 

– Maclaurin’s series for the particular case of clamped ends of 

thin beams in the Ritz variational method to solve the elastic 

buckling problem of uniaxially uniformly compressed 

rectangular Kirchhoff plates with clamped edges. Ezeh et al [5] 

used the Galerkin’s indirect variational method to solve the 

elastic buckling problem of rectangular Kirchhoff plates with 

clamped edges under uniform axial compression in one axis 

only (uniaxial uniform compression case). 

Ibearugbulem et al. [6] presented the elastic buckling 

analysis of uniaxially compressed simply supported thin 

rectangular plate using the truncated Taylor – Maclaurin shape 

function by using the one parameter Ritz variational method. 

They obtained solutions that approximated exact solutions 

from the technical literature. 

Nwoji et al. [7] presented the elastic buckling analysis of 

simply supported thin plates using the double finite Fourier 

sine integral transform method. They considered two cases of 

uniaxial uniform compressive loading and biaxial compressive 

loading; and obtained solutions that agreed with the solutions 

from literature. 

Timoshenko [8] solved the elastic buckling problems of thin 

rectangular plates under uniaxial uniform compression load 

for various edge support conditions. Timoshenko presented 

solutions using the Navier method and using energy 

minimization techniques. He obtained characteristic buckling 

loads and characteristic buckling modal shapes that agreed 

with laboratory findings presented by Bridget et al [9]. 

In this work, the single finite Fourier sine transform method 

is used to solve the elastic buckling problem of uniaxially 

compressed Kirchhoff plate with simply supported edges x = 

0, and x = a and clamped edges y = 0, and y = b. 

 

 

2. RESEARCH AIM AND OBJECTIVES 

 

The general aim of this study is to use the single finite 

Fourier sine transform method to solve the elastic buckling 

problem of uniaxially compressed Kirchhoff plate with simply 
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supported edges x = 0, x = a, and clamped edges y = 0 and y = 

b. The specific objectives include: 

(i) to apply the single finite Fourier sine integral 

transformation to the governing fourth order partial 

differential equation of Kirchhoff plates under uniaxial 

uniform compressive load. 

(ii) to show that the boundary value problem simplifies to an 

algebraic eigenvalue – eigenvector problem in terms of 

the Fourier sine transform variable. 

(iii) to solve the resulting algebraic eigenvalue – eigenvector 

problem, and hence determine the characteristic buckling 

equations for the elastic buckling problem of CCSS plate 

considered. 

(iv) to determine the characteristic buckling loads and the 

buckling modes. 

 

 

3. THEORETICAL FRAMEWORK/GOVERNING 

PARTIAL DIFFERENTIAL EQUATIONS 

 

The governing partial differential equations PDE for the 

elastic buckling of Kirchhoff plates is given by: 

 
4 4 4 2 2

4 2 2 4 2 2
2 xx yy

w w w w w
D N N

x x y y x y

     
+ + + + + 

      
2

2 0xy

w
N

x y


=

 
                           (1) 

where Nxx is the uniform compressive force in the x direction 

Nyy is the uniform compressive force in the y direction 

Nxy is the twist, w is the deflection, x and y are the inplane 

Cartesian coordinates 

D is the flexural rigidity of the plate given by  

 
3

212 1( )

Eh
D =

− 
                            (2) 

 

 
 

Figure 1. Kirchhoff plate under uniform compression 

 

E is the Young’s modulus of elasticity of the plate material, 

h is the plate thickness 

 is the Poisson’s ratio of the plate material. 

For the elastic buckling problem of Kirchhoff plate under 

uniaxial compression along the x axis which is shown in 

Figure 1, we have 0,xxN N=  0,yyN =  0,xyN =  and the 

governing PDE simplifies to: 

 
4 4 4 2

04 2 2 4 2
2 0

w w w w
D N

x x y y x

    
+ + + = 

     
  

 

where 0 ,x a   0 y b    

The boundary conditions for simply supported edges x = 0, x 

= a, and clamped edges y = 0, y = b are: 

 

0 0( , )w x y= =                 (3) 

0( , )w x a y= =                (4) 

 

0 0( , )xxM x y= =               (5) 

 

0( , )xxM x a y= =               (6) 

 
2 2

02 2
0

0
,

( , )

xx x y

x y

w w
D M

x y
=

=

  
− +  = = 

  
            (7) 

 
2 2

2 2
0

,

,

xx x a y

x a y

w w
D M

x y
=

=

  
− +  = = 

  
            (8) 

 

0 0( , )w x y = =                (9) 

 

0( , )w x y b= =              (10) 

 

0 0( , )
w

x y
y


= =


            (11) 

 

0( , )
w

x y b
y


= =


           (12) 

 

 

4. METHODOLOGY 

 

Applying the finite Fourier sine transformation to Equation 

(2), we have: 

 

4 4 4 2

04 2 2 4 2

0

02 sin

a

m xw w w w
dxD N

ax x y y x

       
=+ + +  

       
  

             (13) 

 

4 4 4 2
0

4 2 2 4 2

0

2 0sin

a
Nw w w w m x

dx
D ax x y y x

     
+ + + = 

       

            (14) 

 

4 4 4

4 2 2 4

0 0 0

2sin sin sin

a a a

w m x w m x w m x
dx dx dx

a a ax x y y

     
+ + +

       

2
0

2

0

0sin

a
N w m x

dx
D ay

 
=

                        (15) 

 

4 2 2

2

0 0

2( , )sin ( , )sin

a a

m m x m m x
w x y w x y dx

a a a ay

       
− +   

       

4

4

0

( , )sin

a

m x
w x y dx

ay

 

   

2
0

0

0( , )sin

a
Nm m x

w x y dx
a D a

  
− = 
            (16) 

 

Let 

0

( , )sin ( , )

a

m x
w x y dx W k y

a


=         (17) 
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where W(k, y) is the finite Fourier sine transform of w(x, y) 

 

let m

m

a


=               (18) 

 

Then, 

 
2 4

4 2

2 4
2( , ) ( , ) ( , )m mW k y W k y W k y

y y

 
 −  + −

 
  

2 0 0( , )m

N
W k y

D
 =           (19) 

 
4 2

2

4 2
2( , ) ( , )mW k y W k y

y y

 
−  +

 
  

4 2 0 0( , )m m

N
W k y

D

 
 − = 
 

                                   (20) 

 

Due to the geometric restraints of fixed supports on the 

edges y = 0, and y = b, the buckling load N0 is such that 
2

0 mN D  . 

The solution to the fourth order ordinary differential 

equation (ODE) is, using the method of D – operators: 

 

1 1 2 1 3 2 4 2( , ) cosh sinh cos sinW k y c y c y c y c y=  +  +  +   

        …(21) 

 

where  

 
1/2

2 2 20
1 m m

N

D

 
 =  + 

 
           (22) 

 
1/22

2 20
2

m
m

N

D

 
 = − 

 
           (23) 

 

and c1(k), c2(k), c3(k) and c4(k) are the four constants of 

integration corresponding to the fourth order of the ODE. 

Application of the finite Fourier sine transformation to 

Equation (7) yields: 

 
2 2

2 2

0 0

sin sin ( , )

a a

xx xx

w w m x m x
D dx M dx M k y

a ax y

    
− +  = = 

     

        …(24) 

 
2 2

2

0 0

( , )sin ( , )sin ( , )

a a

xx

m m x m x
D w x y dx w x y dx M k y

a a ay

      − − +  = 
    

 
 

             (25) 

 
2

2

2
( ) ( , ) xx

m

M
W ky W k y

Dy


− +  = −


         (26) 

 

along the edge, 

 
2

2

2
0( , ) ( , )mW k y W k y

y


− +  =


          (27) 

 

The solution for W(k,y) is made of hyperbolic functions. 

 

5. RESULTS 

 

The solutions for W(k, y) that agree with the boundary 

conditions is then found. Application of the finite Fourier sine 

transformation to the boundary conditions Equations (3 – 8) 

yield: 

 

1 1 1 2 1 1

( , )
sinh cosh

W k y
c y c y

y


=   +   −


 

3 2 2 4 2 2sin cosc y c y  +                                     (28) 

 

1 30 0( , )W k y c c= = + =          (29) 

 

1 3c c= −            (30) 

 

3 1c c= −             (31) 

 

2 1 4 20 0( , )
W

k y c c
y


= =  +  =


           (32) 

 

2
2 4

1

c c


= −


             (33) 

 

2 1
4

2

c
c

− 
=


             (34) 

 

1 1 2 1( , ) cosh sinhW k y b c b c b= =  +  +   

3 2 4 2 0cos sinc b c b +  =           (35) 

 

1 1 1 2 1 1( , ) sinh cosh
W

k y b c b c b
y


= =   +   −


 

2 2 2 4 2 2 0sin cosc b c b  +   =            (36) 

 

In matrix form, 

 

1

1 2 2

1 1 2 2 3

1 1 1 1 2 2 2 2 4

1 0 1 0 0

0 0 0

0

0

cosh sinh cos sin

sinh cosh sin cos

c

c

b b b b c

b b b b c

    
     
    =
       
    
    −       

 

             (37) 

 

Then, 

 

1 1 1 2( , ) cosh cosW k y c y c y=  −  +  

2 1
2 1 2

2

sinh sin
c

c y y


 − 


          (38) 

1
1 1 2 2 1 2

2

( , ) (cosh cos ) sinh sinW k y c y y c y y
 

=  −  +  −   
 

             (39) 

 

1 1 1 2 2 2 1 1 1 2( sinh sin ) ( cosh cos )
W

c y y c y y
y


=   +   +   − 


 

            (40) 

 

The boundary conditions Equations (35) and (36) yield: 
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1
1 1 2 2 1 2

2

0(cosh cos ) sinh sinc b b c b b
 

 −  +  −  =  
 

            (41) 

or, 

 

1 1 1 2 2 2 1 1 2 0( sinh sin ) (cosh cos )c b b c b b  +  +   −  =  

            (42) 

 

In matrix form, we obtain the homogeneous equations: 

 

1
1 2 1 2 1

2
2

1 1 2 2 1 1 2

0

0

(cosh cos ) sinh sin

( sinh sin ) (cosh cos )

b b b b c

c
b b b b

  
 −   −        =           +     −  

 

        …(43) 

For non-trivial solutions, 
1

2

0
c

c

 
 

 
  

The characteristic buckling equation becomes: 

 

1
1 2 1 2

2

1 1 2 2 1 1 2

0
(cosh cos ) sinh sin

( sinh sin ) (cosh cos )

b b b b

b b b b

 
 −   −   = 

  +     − 

 

            (44) 

 

Expanding the determinant, 

 

2 1
1 1 2 1 2

2

(cosh cos ) sinh sinb b b b
 

  −  −  −    
  

1 1 2 2 0( sinh sin )b b  +  =          (45) 

2 2
1 1 1 2 22(cosh cosh cos cos )b b b b  −   +  −   

2
2 1

1 1 1 22
2

sinh sinh sinb b b
 
  −  


 

)2
2 2 1 1 2 0sin sinh sinb b b+   −  =                       (46) 

 

Further simplification yields the characteristic buckling 

equation as: 

 

1 2
1 2 1 2

2 1

2 1 0( cosh cos ) sinh sinb b b b
  

−   + −   =   
 

        …(47) 

 

The buckling loads are obtained by solving the 

characteristic buckling equation for N0. 

The critical buckling stress (xx)cr is obtained as: 

 
2

212 1
( )

( )

b
xx cr

k E h

b

 
 =  

 − 
          (48) 

 

For 0 25. , =  the solution for the characteristic buckling 

equation for various values of the plate aspect ratio (a/b) are 

presented in terms of the dimensionless critical buckling load, 

,crN  defined as: 

 
2

2
cr

cr

N b
N

D
=


            (49) 

 

 

Table 1. Critical buckling loads Ncr of CCSS Kirchhoff plates subject to uniform uniaxial compressive forces (Nxx = −N0) 

 
 

a/b 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

2

2

cr

cr

N

D
N

b

=

 
 
 

 9.448 7.055 7.304 7.691 7.055 7.001 7.304 7.055 6.972 

Table 2. Critical buckling stress for CCSS plate for 
9 258 8 10 /. N m ,E =   / 0 02. ,h b =  0 3. =  

 

 a/b N0 
2/(N m )xx cr  

0.2 27.86 5.927  108 

0.4 9.49 2.021  108 

0.8 7.44 1.583  108 

1.0 7.69 1.638  108 

2   7.04 1.498  108 

2 6.99 1.487  108 

6   7.02 1.494  108 

3.2 6.98 1.486  108 

12   6.99 1.487  108 

4.5 6.98 1.485  108 

 

 

6. DISCUSSION 

 

In this work, the single finite Fourier sine transformation 

method was successfully used to solve the elastic buckling 

problem of rectangular Kirchhoff plate with two opposite 

edges (x = 0, and x = a) simply supported and the other two 

opposite edges (y = 0 and y = b) clamped. The elastic buckling 

solutions were obtained for the case when the edges x = 0 and 

x = a are subjected to uniform uniaxial compressive load Nx = 

N0 and Ny = 0, Nxy = 0. The elastic buckling problem solved 

was presented as a boundary value problem defined by the 

domain equation-Equation 2 – and the boundary conditions-

Equations (3) – (12). 

The finite sine transformation was applied to the domain 

partial differential equation with respect to the x – coordinate 

variable in Equation (13) and the linearity property of the 

integral transformation, and the Dirichlet boundary conditions 

on the simply supported edges (x = 0, x = a) led to the 

simplification of the problem to an ordinary fourth order 

homogeneous differential equation (Equation (20) in terms of 

W(k, y) the deflection in the Fourier transformed space. The 

solution of Equation (22) using D – operator techniques, trial 

function methods, variation of parameters or other methods for 

solving ordinary differential equations resulted in the general 

solution for W(k, y) as Equation (21); a solution that contains 

four constants of integration corresponding to the fourth order 

nature of the ODE in Equation (20). Enforcement of boundary 

conditions on the y = 0, and y = b axes on the Equation (20) 

yielded a set of four homogeneous equations in terms of the 
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unknown integration constants. The algebraic eigenvalue – 

eigenvector problem resulting from the enforcement of 

boundary conditions yielded the matrix equation – Equation 

(37). Further use of the boundary conditions simplified the 

algebraic eigenvalue – eigenvector problem as Equation (43). 

The characteristic buckling equation obtained from the 

requirement of non – trivial solution gave the determinantal 

equation – Equation (44). Expansion and simplification of the 

determinantal equation yielded the characteristic buckling 

equation as Equation (47). The characteristic buckling 

equation is found to be a transcendental equation in terms of 

1 and 2 which are each functions of the buckling load N0 as 

given in Equations (22) and (23). Solution of the buckling 

equation yielded the buckling loads for various values of the 

plate aspect ratio a/b as presented in Table 1. The critical 

buckling stresses as were further calculated for various plate 

aspect ratios for Kirchhoff plate with simply supported edges 

(x = 0 and x = a) and clamped edges (y = 0 and y = b) and for 

plate material properties given by 9 258 8 10 /. N m ,E = 

0 02.h b= and 0 30. , = and presented in Table 2. 

7. CONCLUSIONS

The following conclusions can be made from the study: 

(i) The single Fourier sine transform method is an ideal

mathematical/analytical tool for solving the boundary

value problem of elastic buckling of Kirchhoff plates with

two opposite simply supported edges (x = 0, x = a) and

two opposite clamped edges (y = 0, y = b).

(ii) The single Fourier sine transformation applied in the x -

coordinate direction simplified the problem since the

Dirichlet boundary conditions are satisfied in that

direction, thus simplifying the Fourier sine transformation

of partial derivatives with respect to x.

(iii) The single finite Fourier sine transformation simplifies

the boundary value problem of elastic buckling to an

algebraic eigenvalue – eigenvector problem, which is

easier to solve.

(iv) The characteristic buckling equations obtained by

enforcement of boundary conditions are the same as the

characteristic buckling equations obtained by other

scholars who applied Navier’s double trigonometric

series methods, and total potential energy minimization

methods.

(v) The critical buckling loads obtained were exact

solutions and were the same as critical buckling loads obtained 

by Timoshenko and other researchers who used total potential 

energy minimization methods. 
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NOMENCLATURE 

Nxx uniform compressive force in the x – direction 

Nyy uniform compressive force in the y – direction 

Nxy twist 

w(x, y) deflection 

x, y in-plane Cartesian coordinates 

D flexural rigidity of plate 

E Young’s modulus of elasticity of the plate material 

 Poisson’s ratio of plate material 

h plate thickness 

N0 uniform compressive force in the x direction 

Mxx bending moment 

W(k,y) finite Fourier sine transform of w(x,y) 

k finite Fourier sine transform variable 

m integer 

m parameter defined to relate with m and a 

ODE ordinary differential equation 

C clamped edge 

S simply supported edge 

CCSS plate with two opposite edges clamped and two 

opposite edges simply supported 

Subcripts 

cr critical 

Mathematical symbols 

 integration sign or integral 

x




partial derivative with respect to x 

2

x y



 
mixed partial derivative
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