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ABSTRACT 

  
 Structural, elastic modulus for the SrTiO3 crystal in the cubic (Pm3m) phase were 

calculated by the first-principles calculations using the plane wave pseudo potential 

calculations (PP-PW) im-plemented in the ABINIT package within density functional 

theory and the generalized gradient approximation based on the Perdew–Burke–Ernzerhof 

(PBE-GGA) functional. The thermody-namic properties have been investigated by using 

the GIBBS program, which is based on the qua-si-harmonic model of Debye.  

The structural parameters (lattice constant, bulk modulus), mechanical (elastic constant, 

Young’s Modulus, shear modulus and Poisson’s ratio), thermodynamic properties (the 

variation of the volume, bulk modulus and thermal expansion coefficient, heat capacity at 

constant volume CV, heat capacity at constant pressure CP and entropy) as function of 

temperature of the SrTiO3 cubic phase, are studied. The results of our simulations are 

discussed and compared to experi-mental and theoretical results when available.  
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1. INTRODUCTION 

 

The ABO3 perovskite-type oxides, where A is a monovalent 

or divalent cation, B is penta- or tetravalent transition metal 

atom and O is oxygen, display a wide range of interesting 

electrical and optical properties and therefore have wide 

applications in the manufacture of electronic and 

optoelectronic devices such as various sensors, electro-optic 

modulators, infrared detectors, catalytic activity, optical 

waveguides in various applications [1-2]. Strontium titanate 

(SrTiO3) is a typical perovskite dielectric with a wide range of 

technological applications. Because of its special properties 

related to ferroelectricity, semi conductivity, 

superconductivity and catalytic activity, it has been 

extensively studied over the past several years.  

From the literature data, SrTiO3 undergoes the following 

sequence of phase transitions [1]: 𝐼4/𝑚𝑐𝑚 
 105𝐾 
→       𝑃𝑚– 3𝑚  

In the present study SrTiO3 perovskite is assumed to have 

ideal cubic structure (e.g. Pm3m) where atomic positions in 

the elementary cell are Ti: 1a (0, 0, 0); O: 3d (1/2,1/2, 0); and 

Sr: 1b (1/2, 1/2, 1/2). Here, the noble gas cores are 

distinguished from the sub-shells of valence electrons. Plane 

waves method has been employed as a basis set for the 

electronic wave functions. Hartwigsen-Goedecker-Hutter 

pseudopotentials have been used in our calculations. 

 

 

2. COMPUTATIONAL DETAILS 

 

The present calculations were performed in the density 

functional theory (DFT) framework implemented in the 

ABINIT package [3]. The exchange-correlation energy is 

evaluated in the generalized gradient approximation GGA [4] 

using the Teter "extended norm-conserving" [5] 

pseudopotentials. The electronic wave functions were 

expanded in terms of a plane-wave basis set and the kinetic 

energy cut off needed to obtain a convergence better than 1 

mHa (Ha =Hartree) for total energy is found to be equal to 220 

Ha (cubic phase). With the application of norm-conserving 

pseudopotentials, the taken valence configurations are 4s24p6 

5s2 for Sr, 3s2 3p6 3d2 4s2 for Ti and 1s2 2s2 2p4 for O. The 

sampling over the Brillouin zone was treated by a 4x4x4 

Monkhorst-Pack mesh grid [6]. The calculation was perfrmed 

at the equilibrium lattice constants that are determined from 

the plot of total energy against the unit cell volume fitted to 

the Birch-Murnaghan equation of state [7]. The elastic 

constants (𝐶𝑖𝑗) are obtained with a total energy method [8-9] 

using density functional perturbation theory (DFPT),  
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where 𝑉0  is the cell equilibrium volume. The second 

derivatives of the total energy with respect to all the 

perturbation have been determined by computing the energy 

of the system with respect to the strain perturbation. 

In order to obtain the thermodynamic properties of SrTiO3, 

the quasi-harmonic Debye model [10] is introduced, in which 

the non-equilibrium Gibbs function G * (V, P, T) takes the 

form of 

 

G* (V, P,T) = E(V) + P(V) + Avib(Ɵ(V),T).                        (2) 

 

In Eq. (2), E(V) is the total energy per unit cell of SrTiO3, 

P(V) corresponds to the constant hydrostatic pressure 

condition, θ(V) is the Debye temperature as a function of V, 

and Avib is the vibrational Helmholtz free energy which can be 

expressed as [11]: 
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Avib(θ, T)= 𝑛𝑘𝐵𝑇 [
9𝜃

8𝑇
+ 3 𝑙𝑛(1 − 𝑒−𝜃/𝑇) − 𝐷(𝜃/𝑇)]          (3) 

 

where 𝐷(𝜃/𝑇) is the Debye integral, and is defined as: 
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where n represents the number of atoms per formula unit, θ the 

Debye temperature is expressed as [11-12]:  
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M is the mass of per formula unit, σ is the Poisson ratio and 

Bs is the adiabatic bulk modulus approximated by the 

following formulae: 
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and the f (a) is given by 
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Therefore, for a given pressure P and temperature T with 

respect to the volume V, the non-equilibrium Gibbs function 

merely depends on V (P, T) and can be solved as 
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As a result, the isothermal bulk modulus BT, the heat 

capacity CV (at constant volume), the heat capacity Cp (at 

constant pressure), and the thermal expansion α are given by: 
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The entropy is described by 

 

( ) ( )/4 / 3ln 1 T
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where the Grüneisen parameter is defined as: 
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3. RESULTS AND DISCUSSION 

 

3.1 Structural properties 

 

In Fig 1, we present the total energy as a function of the 

volume of the unit cell for SrTiO3 fitted to the Murnaghan’s 

equation of state [7, 13] to determine the ground state 

properties, such as equilibrium lattice parameter (a0), total 

energies (E0), bulk modulus (B0) and its pressure derivatives 

(B0
’). The calculated ground state parameters obtained by 

using GGA approximation are summarized in Table I together 

with previous results. 
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Figure 1. The total energy as a function of volume for 

SrTiO3 with GGA calculation in the cubic perovskite 

structure 

 

Table 1. Calculated lattice constant a0 (Å), bulk modulus B0 

(GPa), its first pressure derivative B’
0 for SrTiO3 compared to 

the experimental data and previous theoretical calculations 

 

Material Parameters 
Present 

Work 

Other 

calculations  
Exp 

a0 3.94a) 
3.94b) 

3.95c) 
3.905d,e) 

SrTiO3 B0  169.2a) 169.72b) 175f) 

  175c)  

B0
’  

 

 

4.33a) 4.44b) 4.31g) 

a)This work; b)Theor. Ref. [22]; c)Theor. Ref. [23] d)Exp. Ref. [24]; e) Exp. Ref. 

[25]; f) Exp. Ref. [26]; g) Exp. Ref. [27]; 

 

The agreement between our calculated results for lattice 

constant for SrTiO3 using GGA with the experimental data is 

reasonably good [24,25]. When analysing the results of B0 and 

B0, we find that there is a good agreement between our results 

and previous theoretical calculations [22] and experiment data 

[26,27]. A conclusion can be drawn for the bulk modulus 

where the deviation between our calculation and experiment is 

less than 3%.  

 

3.2 Elastic properties 

 

Elastic properties of a solid are important because they are 

related to various fundamental solid-state properties such as 

interatomic potentials, equation of state and phonon spectra.  

A cubic crystal has only three independent elastic constants, 

namely 𝐶11, 𝐶12  and 𝐶44 . 𝐶11  give the resistance to the 

unidirectional compression, 𝐶12 is the modulus for dilation on 

compression, and 𝐶44  reflects the resistance to the shear 

deformation. Once we have calculated the three elastic 

231



constants namely 𝐶11, 𝐶12  and 𝐶44  the bulk modulus can be

obtained by the as: 

 (15) 

The Zener anisotropy factor (A) is an indicator of the degree 

of anisotropy in the solid structures. For a completely isotropic 

material, the A factor takes the value of 1, when the value of 

A is smaller or greater than unity it is a measure of the degree 

of elastic anisotropy. Poisson’s ratio v, Young’s modulus (E) 

and shear modulus (G) can be calculated using the following 

relations [14]: 

     (16) 

     (17) 

 (18) 

and 

       (19) 

GV is Voigt’s shear modulus corresponding to the upper 

bound of G values, and GR is Reuss’es shear modulus 

corresponding to the lower bound of G values, and can be 

written as [15]: 

         (20) 

    (12) 

And shear modulus is given by [16]: 

C’  (22) 

The values of elastic constants (C11, C12 and C44) in the 

cubic phase for SrTiO3 are presented in Tables 2 and compared 

with available theoretical and experimental results. 

Table 2. Calculated elastic constants (in GPa) for C11, C12, 

C44 for SrTiO3 in the cubic structure 

Material Parameters 
Present 

Work 
Other calculations Exp 

 C11 312.56a) 311.08b) 334c) 317.2d) 

SrTiO3 C12  98.25a) 99.04b) 96c) 102.5d) 

123.5d) 

C44 109.26a) 107.66b) 108c) 
a)This work; b)Theor. Ref. [22]; c)Theor. Ref. [23]; d)Exp. Ref. [28]; 

The calculated elastic constants (C11, C12, C44) are in very 

good agreement with the predictions of other computational 

methods [22]. In terms of experimental results, our values 

especially for 𝐶11 and 𝐶12 are in good agreement with those

reported in Ref. [28]. The deviation from experiment is less 

than 4%. However, a somewhat larger discrepancy between 

our calculated C44 and that of Ref. [28] can be noticed. Note 

that the values of C44 are smaller than those of 𝐶11 and 𝐶12 .
This reflects the weak resistance to shear deformation 

compared to the compressional deformations. 

It is well known that for cubic crystal structure, the 

necessary conditions for mechanical stability are: [17] 
(𝐶11 − 𝐶12)>0, 𝐶11>0, 𝐶44>0, (𝐶11 + 2𝐶12)>0

Our results for elastic constants satisfy all these criteria 

indicating thus that the material of interest is mechanically 

stable in the perovskite cubic structure. The calculated Zener 

anisotropy factor (A), shear modulus G, Young’s modulus E, 

Poisson’s ratio v and shear modulus C’ in the present work for 

perovskite structure SrTiO3 are listed in Table 3.  

Table 3. Calculated bulk modulus B (in GPa), Zener 

anisotropy factor A, shear modulus G (in GPa), Young’s 

modulus E (in GPa), Poisson’s ratio v and shear modulus C’

(in GPa) 

Material Parameters 
Present 

Work 

Other 

calculations 
Exp 

B 169.69a) 175.33b) 175c) 

 A 1.02a) 0.91b) _ 

SrTiO3 G 108.41a) 112.23b) _ 

E 268.13a) 277 .44b) _ 

B/G 1.57a) 1.56b) _ 

𝜈 0.24a) 0.24b) _ 

 C’  107.16a) 118.79b) 119d) 
a)This work; b)Theor. Ref. [23]; c)Exp. Ref. [26]; d)Exp. Ref. [29]; 

Calculated A value for SrTiO3 is 1.02 which is close to 1 

considered as isotropic medium (Table III). The value of the 

Poisson ratio (v) for covalent materials is small (v = 0.1), 

whereas for ionic materials a typical value is 0.25 [18]. In our 

case the value of  v  is 0.24, i.e. a higher ionic contribution in 

intra-atomic bonding for this compound should be assumed. 

Higher values of Young’s modulus in comparison to the bluk 

modulus for SrTiO3 indicate that the material is hard to be 

broken. The hardness of a material can also be predicted in 

terms of isotropic shear modulus. The bulk modulus B 

represents the resistance to fracture [19], while the shear 

modulus G represents the resistance to plastic deformation 

[20]. A high Pugh B/G ratio is associated with ductility, 

whereas a low value corresponds to the brittle nature. The 

critical value which separates ductile and brittle material is 

1.75; i.e., if B/G > 1.75, the material behaves in a ductile 

manner; otherwise the material behaves in a brittle manner 

[21]. Now we have found that the B/G ratio is 1.57 for this 

compound, classifying SrTiO3 as brittle.  

3.3 Thermodynamic properties 

Figure 2. The variation of the primitive cell volume as a 

function of temperature of SrTiO3 
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The thermodynamic properties are studied at different 

temperatures. The temperature effect on the volume of SrTiO3 

compound is shown in Figure 2. It can be seen that the volume 

increases with increasing temperature. The rate of increase is 

almost zero from T = 0 to 100 K and becomes very moderate 

for T > 100 K Generally speaking, the volume increases as the 

temperature increases. 

The bulk modulus B at different temperature is shown in 

Figure 3. These results indicate that B decreases with 

increasing the temperature T. The decrease of the bulk 

modulus B with t increasing the temperature is explained by 

the increase of the volume for the studied material results from 

the temperature elevation. At 300 K°, the bulk modulus B is 

160.36 GPa. 

 

 
 

Figure 3. Calculated temperature dependence of bulk 

modulus B of SrTiO3 

 

In Fig 4, we present the effect of the temperature on the 

thermal expansion α. It is shown that the thermal expansion 

coefficient increases with increasing of temperature up to 400 

K°. Above this temperature, α gradually approaches to a linear 

increase with enhanced temperature. At 300 K°, the thermal 

expansion α is 3.07 × 10-5 K-1. 

 

 
 

Figure 4. Thermal expansion as a function of temperature (T) 

of SrTiO3 

 

The heat capacity is an important parameter of the 

condensed matter physics. It does not only provide a 

fundamental insight into their vibrational properties but is also 

mandatory for many applications. At intermediate 

temperatures, temperature dependence of the heat capacity CV 

is governed by the details of the vibrations of atoms and has 

been able to be determined only experimentally for a long time 

past [29]. Figures 5 and 6 show respectively the calculated 

specific heats at constant volume CV and constant pressure CP 

of SrTiO3.  

 
 

Figure 5. Calculated temperature dependence of heat 

capacity of SrTiO3 at constant volume CV 

 

 
 

Figure 6. Calculated temperature dependence of heat 

capacity of SrTiO3 at constant pressure CP 

 

At low temperatures, the shapes of curves of CV and CP are 

similar. The data of CV and CP are proportional to T3. At higher 

temperatures, CV becomes close to the Dulong–Petit limit 

(CV(T)~15R ≅124.08 J.mol-1. K-1) [30] suggesting that the 

thermal energy at high temperature excites all phonon mode; 

when T > 400 K°, and CP deviates from CV and trends to be 

linear with the temperature. Our calculated value of CV at 1300 

K° is 123.51J.mol-1K-1 for SrTiO3. The entropy S under high 

temperature can be obtained according to Eq. (13). The 

variation of the entropy S as a function of temperature is 

displayed in Figure 7. The curve indicate that the entropy 

increases monotonously with increasing the temperature T. 

Then, the functional dependence of the entropy on temperature 

becomes more like a sublinear behaviour: the entropy is 

proportional to 𝑇𝛼with 𝛼 <1. 

 

 
 

Figure 7. The variation of the entropy S as a function of 

temperature of SrTiO3 

 

The quasi-harmonic Debye model employed appeared to be 

effective for the description of the material properties, namely 
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an equilibrium volume, bulk modulus, thermal expansion 

coefficient, heat capacity at constant volume CV, heat capacity 

at constant pressure CP and entropy S at the temperature, in 

which the anharmonicity not significantly affects the 

thermodynamic parameters.  

The thermodynamic properties of SrTiO3 perovskite we 

have no literature data to which to compare our results. Hence, 

our results are predictions. 

 

 

4. CONCLUSION  

 

This manuscript presents a theoretical study, within the 

density functional theory framework (DFT) and the 

pseudopotential plane waves approach, of the structural, 

elastic, and thermodynamic properties for the perovskite 

compound SrTiO3.The exchange-correlation of generalized 

gradient approximation of Perdew–Burke–Ernzerhof (PBE-

GGA) energy is employed, using the ABINIT package. In 

order to investigate the thermodynamic properties of SrTiO3 

perovskite under temperature effect, we have calculated the 

variation of the volume, bulk modulus and thermal expansion 

coefficient, heat capacity at constant volume CV, heat capacity 

at constant pressure CP, entropy S as function of temperature. 

Generally, the agreement between our results and the available 

experimental and previous theoretical data reported in the 

literature was found to be reasonably good. 
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