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ABSTRACT 

The purpose of this study is presenting a novel micro-electromechanical (MEM) sensor for 

measurement of a micro-scale fluid physical properties. A mathematical model is proposed 

for this study which consists of a micro-shaft with one end fixed and a sensing element in 

the form of a cylinder at its free end. The fluid is bounded between the micro-cylinder as 

sensing element and the outer fixed cylinder. As fluids behave differently in micro-scale 

than macro, the fluid in the gap is modeled based on micro-polar fluid theory. The sensor 

can be actuated torsionally via applying an AC voltage to the pair of capacitive plates 

situated around the micro-shaft and the outer fixed cylinder. After deriving the equations 

of motion of the micro-shaft and also micro-scale fluid media, these coupled partial 

differential equations have been solved simultaneously using Galerkin based reduced order 

model. The dynamic response of the micro-shaft for different exciting frequencies has been 

investigated. It has been shown that inertial and damping effects of fluid, causes resonance 

frequency and resonance amplitude of the shaft to decrease. By calculating resonance 

frequency and resonance amplitude changes, physical properties of a fluid can be 

measured. Effects of geometrical parameters of the sensing element on the force response 

of the sensor have also been studied.  Through this study it was found that a sensor with 

large surface area of sensing element and small fluid gap, could measure fluid properties 

with high accuracy. 

Keywords: 

MEMS, micropolar theory, micro-scale fluid, 

torsional vibration 

1. INTRODUCTION

The importance of fluids physical properties can be seen in 

many branches of industry as food and pharmaceutical 

industries. For example, knowledge of viscosity is an 

important property in fluid dynamics because it is a key factor 

in determining the amount of fluid that can be transported in a 

pipeline during a specific period of time. Also, liquid viscosity 

in chemical process design makes it one of the most measured 

transport properties. Various classical methods have been 

presented for measurement of fluids physical properties. 

Magneto restrictive wave guide viscometers work based on the 

retardation of a torsion sound wave through a solid [1]. In 

vibrating cylindrical densitometers and viscometers, the 

motion of sensor is in relation with the fluid viscosity and 

density. These vibration-based sensors work on the force 

required to induce the sensor to move [1]. Other vibration-

based sensors are crystal resonator [2] and ultrasonic plate 

waves [3]. 

Recently, Micro-electro mechanical systems (MEMS) due 

to their advantages have become an interesting tpoic for study 

among researchers. Micro-scale devices have several 

advantages. They can be produced at low cost, in small size 

and with low-energy consumption and fast response time. So 

they can be used in diverse fields of engineering and science. 

micropumps, micromirrors, micro-accelerometers and 

microsensors are examples of micro-scale devices [4-7]. 

As solid-fluid interaction can be seen in many micro devices, 

many type of researches have been done on investigating the 

effect of fluid on the behavior of the micro structure. Ghanbari 

et.al studied squeeze film damping phenomenon in a micro-

resonator by applying non-classical theories [8]. In another 

work, Ghanbari et al. investigated thin film damping in 

microbeam resonator based on micropolar theory [9]. 

Rezazadeh and Ghanbari studied the effect of fluid on the 

frequency response of the vibrating micro-beam and presented 

the proposed model as a MEM- based sensor for simultaneous 

measurement of fluids viscosity and density [10]. 

In most of micro devices as micro-sensors, micro-

cantilevers are applied as sensing mechanism due to their 

advantages of having high sensitivity, quick response time and 

low power requirement [11-13]. Many researches have been 

done on using micro-cantilevers in sensing devices especially 

in measurement sensors for determination of fluids physical 

properties. Castille et.al studied on the fabrication of a self-

actuated resonant-micro-sensor, based on a thick-film 

piezoelectric cantilever [14]. Conceptual study for torsional 

oscillators, which were electromagnetically driven and read 

out, was presented by Heinisch et al. [15]. They studied 

feasibility of applying the resonant sensor in viscosity and 

density measurement of fluids. Heinisch et al., investigated the 

feasibility of using commercially available steel tuning forks 

for viscosity and mass density determination [16]. A 

generalized, reduced order model for resonant viscosity and 

mass density sensors was discussed by Heinisch et al. [17]. 

Zhao et.al presented a MEMS resonant sensor to measure fluid 

viscosity and density based on resonance principle [18]. 

Payam et al. used a vibrating microcantilever for simultaneous 
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viscosity and density measurement of small volumes of liquid 

[19]. Clara et al. introduced advanced viscosity and density 

sensor based on diamagnetically stabilized levitation [20]. 

Gonzalez et.al used mechanical resonators for viscosity and 

density measurements that could be used in oil and gas 

applications [21]. Automated high-throughput viscosity and 

density sensor was presented by Bircher et al. [22]. They used 

nanomechanical resonators to overcome limitations of 

classical methods as high sample consumption and long 

measurement time. Mathematical modeling of a 

piezoelectrically actuated micro-sensor was presented by 

Ghanbari et .al in which longitudinally vibrating microbeam 

with a sensing plate at its end was used for measurement of 

fluids properties [23]. 

The fluid media in the mentioned works were modeled 

based on classical theories which could not properly describe 

the behavior of fluids in micro and nano scales. Physics of 

microscale fluids can be described by micro-polar theory 

developed by Eringen [24-25]. When dimensions a fluid 

decrease to micrometer size, the rotation of molecules should 

be taken into account. These rotations are independent of fluid 

vorticity. In micro-polar theory, effect of couple stresses and 

consequently the effect of micro-rotations is taken into 

account. It causes the theory to be introduced as a capable 

theory in modeling micro scale flows behavior [26-27]. 

In this paper, a new mathematical model is introduced for 

measurement of micro-scale fluids physical properties. This 

model is made up of a shaft with a cylinder at its free end 

immersed in a micro-scale fluid. Micro cylinder acts as a 

sensing element. Applying AC voltages to the capacitive 

plates around the micro-shaft and the outer cylinder can 

actuate the shaft torsionally. By investigating the effect of 

surrounding fluid on dynamic behavior of system, this model 

is introduced as a novel MEMS based sensor for measurement 

of physical properties of fluids in micro and nano scale.  

 

 

2. MICROPOLAR THEORY 
 

In micro-polar theory, the material points of the fluid are 

considered to be small deformable particles. As shown in 

Figure. 1, an element V is enclosed within its surface S  in 

the un-deformed body. The center of mass of V  has the 

position vector X . The element V contains N discrete 

micro-material elements ( )( 1,....Ν)V   = . The position 

vector of the center of the mass of macro volume and 

displacement vector of a material point in the α th 

microelement in the deformed body are expressed as: 

 

k k kx X U= + ; ( ) ( )
k kkk kU U E

  = +                             (2.1) 

 
 

Figure 1. Deformation of a micro-volume in micro-polar 

theory 

where 
( )
kE


 is the position of a point in the microelement 

relative to the center of mass of V  and kk  is defined as 

skew-symmetric micro-rotation tensor which is independent 

of macro-rotation tensor, kkR . In the micro-polar theory, in 

addition to macro-strain tensor KLE , two micro-strain tensors 

KL  and KML  are defined as [24-25]: 

 

, ,

1 1
(C ) (U )

2 2
KL KL KL L K K LE U − = −                                 (2.2) 

                                          

( )KL KL KL KL KLM M ME R     − = − −                           (2.3) 

  

,KML KLN N M   −                                                                (2.4)                                                                                                                    

 

where , , ,CKL L K K L K LU U  + +  is defined as material 

macro-strain tensor and ,ψKL L K KL KLU   + +  ,   is the 

Kronecker delta,  is Levi-Civita symbol and ,KML KM L 

are defined as material micro-strain tensors that are absent in 

classical theory [24-25]. 

The equations of the balance of momentum and balance of 

moment of momentum in micro-polar theory are as following 

[28]: 

 

,ij j i if u  + =                             1,2,3i =                     (2.5) 

                                                                                          

,ij j i ink nk f im l I   + − =             1,2,3i =                     (2.6) 

                                                                                    

In which   and m  are stress and couple stress tensors, if  

are body forces per unit mass, il  are body couples per unit 

mass, iu  are displacement components,   is mass density, 

and fI  is micro-inertia density, respectively. 

The constitutive equations of the micro-polar media link the 

deformation and micro-rotations tensors to the force and 

couple stresses as [24-25]: 

 

(2 ) ( )kl kl kl kl klm m mE k E k R    = + + + −                     (2.7) 

                                                                

m k l
kl kl

m l l

m
X X X

  
  

  
= + +

  
                                         (2.8) 

                                                                                                    

where  and   are classical constants. There are 4 extra 

modulus in micro-polar theory,  ,  ,  and K . If these 

modulus are set equal to zero, the classic continuum media is 

obtained. 

 

 

3. MODEL DESCRIPTION AND ASSUMPTIONS 
 

As shown in Figure. 2, the proposed model for measurement 

of micro-scale fluid physical properties is made up of a micro-

shaft and a cylinder as a sensing element at its free end. The 

sensor can be constructed in both macro and micro scale. The 

macro scale sensor is used for measurement of density and 

dynamic viscosity coefficient of the fluid similar to the work 

that was done by Rezazadeh et.al for classical Newtonian 
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fluids where the effect of couple stresses were not taken in to 

account [7]. The micro scale one is used for measurement of 

micro-scale fluids vortex and spin gradient viscosity 

coefficients which are absent in macro-scale fluids. The micro-

shaft and micro-cylinder of the device are assumed to be made 

of poly crystalline silicone. Capacitive plates are situated 

around the micro shaft and the outer fixed cylinder. The shaft 

is actuated via applying AC voltage to the plates around the 

shaft and outer fixed cylinder. Two external moments act on 

the sensing cylinder in measuring process. The first one is the 

momentum that acts on the sensing cylinder of the micro-

sensor due to the physical properties of the micro-scale fluid 

and the second one is an external exciting momentum. The 

sensing cylinder is bounded by the outer fixed cylinder in 

order to control the magnitude of the shear force. In the 

proposed mathematical model, it is assumed that the both 

cylinders have ideally smooth surfaces. 

 

 
 

Figure 2. Schematic of the proposed micro-sensor for 

measurement of micro-scale physical properties 

 

Equation of motion governing angular displacement of the 

micro-shaft is as following: 

 

( )( )
2 2

2 2
? )s s c s s sI J z L G I T t

t z

 
 

 
+ − − =

 
                       (3.1) 

 

( ) ( ) ( )

( )

0

0

( ) ; ( ) ( );

L

i s s

L

sc c

T t t Ar z L T t z L dz T t

J z L dz J

  



= − − − =

− =





        (3.2) 

 

where, sI  is the polar moment of inertia and s  is mass 

density of the shaft. cJ  is the mass moment of inertia of the 

cylinder, 𝐿 is the length of the shaft and ( )t  is the shear force 

of the surrounding fluid acting on the surface of the cylinder. 

A  is the surface area of the cylinder, ir  is the radius of the 

cylinder and T  is the momentum acting on the surface of the 

cylinder due to shear force of the surrounding fluid. It should 

be noted that for simplicity the inertial force owing to the mass 

of the cylinder and the shear force due to physical properties 

of the surrounding fluid are assumed to be singular distributed 

loads with zero load intensity through the whole length of the 

beam and infinite intensity at its end. 

Boundary conditions of equation (3.1) are as: 

 

( )0, 0t =                                                                                           (3.3) 

                                                          

( )
( )

( )
( )

,

, 0
s sL t

ex
ex

T t
T L t T t

z I G


= → = =


                               (3.4)     

 

where ( )exT t   is an external exciting momentum acting on the 

shaft. 

Governing equations of the fluid field in the vector form 

based on micro-polar theory are as following [21]: 

 

( ). 0V
t





+ =


                                                                           (3.5) 

 

( ) ( ) ( ) ( )2 .f f

f

k V k V

k G P f V

  

 

+ +   − +  

+  − + =

                     (3.6) 

                                                                             

( ) ( ) ( ).

2

f

f f f

G G k V

k G l I G

   

 

+ +   −   + 

− + =

                    (3.7) 

 

Eq. (3.5) represents conservation of mass; Eq. (3.6) 

represents conservation of linear momentum; and Eq. (3.7) 

represents conservation of angular momentum. In the 

equations above V and G are the fluid velocity and micro-

rotation vectors, f and l are body forces and body couples. 

is density and I  is micro-inertia density of the fluid,  and 

fk are dynamic and vortex viscosity coefficients. , ,    are 

spin gradient viscosity coefficients and   is second order 

viscosity coefficient which produces a viscous effect 

associated with volume change [25-28]. Two important micro-

polar parameters are length scale of the fluid (L )f  and 

coupling parameter ( )N  which are defined as:

L
4 2

f
fk




=

+
and coupling parameter

;0 1
2

f

f

k
N N

k
=  

+
. Coupling parameter characterizes 

coupling between the vortex viscosity coefficient fk  and the 

shear viscosity coefficient  . If the value of the parameter 

0N → , then  the equations of the linear and angular 

momentums become independent of each other and  the linear 

momentum transforms into the classical Navier-Stocks 

equations for Newtonian fluids. 

By considering the following assumptions: 

The fluid is assumed to be incompressible. 

There are no body forces and body couples acting along   

direction. 

r dimension is very small in comparison to   and z 

directions, so all derivatives with respect to   and z are 

negligible compared to r dimension. 
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By supposing 𝐼𝑠𝐺𝑠 << 𝐼𝑐𝐺𝑐  in which 𝐼𝑐𝐺𝑐  is torsional 

stiffness of the sensing cylinder, the fluid field can be 

considered one-dimensional. 

There is no Pressure gradient in 𝜃 direction. 

The Equations (3.6) and (3.7) in the cylindrical coordinate 

can be rewritten as: 

 

( ) ( )

( )
2

2 2

1

1

z
f f f

z
f f

v g
k rv k

t r r r r

v v v g
k k

r r rr r




  

 



       
= + + −               

   
= + + − − 

   

     (3.8) 

 

2

2

1
2

1
2

z z
f f z f

z z
f z f

vg g
k g r k

t r r r r

vg g
k g k

r r rr





 



        
= − + +      

         

   
= − + + + 

   

       (3.9) 

                                               
where 𝑣𝜃  and 𝑔𝑧  are the fluid velocity and micro-rotation 

components in 𝜃 and z directions, respectively. 

Boundary conditions of Equations (3.8) and (3.9) are: 

 

( )
( )

( )
,

,
t

i i

L

v r t r t
t







= =


; ( ), 0ov r t =                   (3.10) 

 

( ), 0z ig r t = ; ( ), 0z og r t =                                               (3.11) 

 

Shear force of the fluid acting on the cylinder due to the 

physical properties of the fluid is: 

 

( ) ( )
( )

( , )
,

,
i

i

i f f z r t
r t

v v
r t k k g

r r

  
 

= + + +  
               (3.12) 

 

By introducing new functions:  

 

( ) ( ) ( ), , exz t z t zT t = +                                                         (3.13) 

 

𝑣𝜃(𝑟, 𝑡) = 𝑤𝜃(𝑟, 𝑡) +
𝛼(𝑡)

ℎ
(𝑟𝑜 − 𝑟);  ℎ = 𝑟𝑜 − 𝑟𝑖                  (3.14) 

 

Equations. (3.1), (3.8) and (3.9) can be rewritten as:

  

( )( ) ( )( )

( )

( )
( ) ( ) ( )

22

2 2

2

2

,

 

w w

2

i i

i

p

s s c s

s s

r r r r

f

o i s

i

f z r

T
z t I J z L z

t t

G I
z

r r
k

t t r Ar z L

h r h

k g

 


   




  

= =

 
 = + − +
   


− +



  
+  

  
+  

−  − +  
  

 +
 

     (3.15) 

( )( )
( )

( )

( )

( )

( )
( )

2

2 2

2

w
,

w ,w

w ,1

z f f o

z
f f

o

t
w r t r r

t h

r t

gr r
k k

rr t r
t

r r hr








  






= + −



 
− 

 − + −
   
 + + −     

          (3.16) 

 

( )

( )

2

2

1
( , 2

w

z z z
z f f z

f

g g g
g r t k g

t r r r

t
k

r h



  



    
= + − +  

      

 
− − 

  

              (3.17)                             

 

With homogenous Boundary conditions: 

 

( )0, 0t = ;
( ),

0
L tz


=


                                                  (3.18) 

    

( ), 0ow r t = ; ( ), 0iw r t =                                              (3.19) 

 

( ), 0z ig r t = ; ( ), 0z og r t =                                              (3.20)                                                                                                                             

 

 

4. NUMERICAL SOLUTIONS  

 

In this work, by applying Galerkin reduced order method, 

approximate solutions are considered as following to solve the 

coupled equations (3.15), (3.16) and (3.17), respectively 

 

( ) ( ) ( ) ( )
1

, ,

p

p k k

k

z t z t q t z  

=

= =                                      (4.1) 

 

( ) ( ) ( ) ( )
1

w , (w ) ,

m

m i i

i

r t r t a t r  

=

= =                             (4.2) 

 

( ) ( ) ( ) ( )
1

g , (g ) ,

n

z z n j j

j

r t r t b t r

=

= =                              (4.3) 

                                                 

Substituting equations (4.1), (4.2) and (4.3) into equations 

(3.15), (3.16) and (3.17) yields: 

 

( )( ) ( )( )
( ) ( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

1

1

1

1

1

, ( )

2

(t)

p

kk

keq c s

M

j j i

j

p
i s f

k k So

k
i

s ex

M

s f j j

ex

i

j

q t z

z t I J z L

zT t

a t r

Ar z L k
q t Lr

h r h
L T

A z L k a t r



   



 


  

=

=

=

=

 
 
 = + − +
 
 
+ 

 
 + 

 
 

− +   
   

− +    
    +   

+ − =









       (4.4)                                                                                                           
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( )( ) ( ) ( )
( )

( ) ( )

( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

1

1

2
1 1

2
1

2

1

w ,

(t)

1

(t)

M
f o

f j j

j

p

k k S s

k

M M

j j j j

j j

f p

o
k k S s ex

k

p

f j j

j

r r
r t a t r

h

q t L L T

a t a t r
r

k

r
q t L L T

hr

k b t r

r




  



 





 

=

=

= =

=

=

−
= +

 
 +
 
 

 
 +

 
 − +

   
 − +       



+

− =





 





           (4.5) 

 

( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

1

1 1

31

1

,

1

1

(t)

p

z f f j j

j

p p

j j j j

j j

p

M
k k S

f j j k

j

s ex

r t J b t r

b t r b t r
r

q t L
k a t r

h
L T

   

  


 

=

= =

=

=

=

 
  − +
 
 

  
  

 − − = 
  

  +  



 



          (4.6) 

 

By applying Galerkin- based reduced order model, 

following ordinary differential equations are obtained: 
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With the following coefficients: 
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5. NUMERICAL RESULTS 

 

In applying Galerkin method for solving the coupled 

equations of micro-shaft vibration and fluid flow, Shape 

functions are considered as following which satisfy the 

boundary conditions (3.18), (3.19) and (3.20), respectively. So: 
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Geometric and material properties of the proposed model in 

this study are listed in Table1. 

 

 

Table 1. Geometrical and material properties of the proposed 

model 

 
Properties Micro-shaft Cylinder 

Length 100μm  100μm  

Diameter 20μm  50μm  

Young's modulus 169GPa  169GPa  

Poisson's modulus 0.27  0.27  

Mass density 32331kg.m−
 

32331kg.m−
 

 

Table 2 shows the first natural frequency of the micro-shaft 

in the absence of the fluid shear force, for different number of 
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the used shape functions. The fluid gap (ℎ) is considered to 

be 20μm . Calculation presents that for p=6 the results 

converge and show 2.2% error in comparison with the first 

natural frequency of the shaft having a concentrated mass at 

the free end.  

 
Table 2. Values of the first calculated natural frequency of 

the system (MHZ)  

 
Number of shape 

functions 

Natural 

Frequency 

1p =  1.5 

2p =  1.43 

3p =  1.41 

4p =  1.4 

5p =  1.39 

6p =  1.39 

 

Figure 3 presents the effects of micro-scale fluid coupling 

parameter on torsional vibration of the micro-shaft. Results 

show that in fluids with high values of vortex viscosity 

coefficient, the micro-rotations have more dependency to 

macro-rotations that causes damping and inertial effects of 

fluid to increase. Consequently, Resonance frequency and 

resonance amplitude changes of the micro-shaft are more 

considerable in fluids with high vortex viscosity coefficient. 

 

 
 

Figure 3. Tip vibration amplitude of the micro-beam versus 

exciting frequency for different values of coupling parameter 

(𝑁)  
 

Considering geometrical and material parameters of sensor 

listed in table.1, knowing kinematic viscosity and density of 

the fluid via classical methods, the effect of length scale of 

fluid on frequency response of the micro-shaft for different 

values of spin gradient viscosity coefficients are investigated, 

and results are shown in Figure 4 and Figure 5. As mentioned 

above fluid loading changes the resonance frequency and 

resonance amplitude of the shaft. so, for the length scale in the 

range of approximate 𝐿𝑓 ≤ 1.4𝑒 − 6 , the changes of 

microshaft resonance frequency are considerable. Therefore, 

in the mentioned ranges of fluid length scale, this sensor can 

be applied to measure micro-scale fluid vortex and spin 

gradient viscosity coefficients simultaneously. For fluids 

having higher values of length scales, the vibrating microshaft 

doesn’t have a considerable resonance frequency changes, 

therefore it is difficult to measure vortex and spin gradient 

viscosity coefficients of fluids with hight length scale 

simultaneously. However, by knowing the vortex viscosity 

coefficient of a fluid, it’s spin viscosity coefficient can be 

determined, and it is also valid on the contrary. It should be 

noted that the obtained results are dependent of the sensor 

geometry and also the amplitude of the exciting momentum. 

For obtaining uncertainty of measuring, we can say that 

capacitive plates around the vibrating micro shaft and the fixed 

micro cylinder form a capacitor. Variation of the capacitance 

of the capacitor caused by torsional vibration of the micro-

shaft can show the uncertainty of measurement. As todays 

variation of capacitance of the capacitor can be measured up 

to 40e-16 farad with high resolution, so measurement of 

desired values from measurement characteristics can be done 

with high accuracy [29]. 

 

 
 

Figure 4. Resonance frequency versus length scale 

considering micro-scale-fluid with different spin gradient 

viscosity coefficient 

 

 
 

Figure 5. Resonance amplitude versus length scale 

considering micro-scale-fluids with different spin gradient 

viscosity coefficients 

 

5.1 Effect of fluid gap 

 

For this study, resonance frequency and resonance 

amplitude changes of the micro-sensor in first mode of 

vibration for different values of fluid gap are determined and 

shown in Figure 6 and Figure 7. We can see that decreasing 

fluid gap, due to increasing inertial and damping effect of fluid, 

decreases resonance frequency and amplitude of the micro-

sensor. Results also show that in lower values of fluid gap, 

resonance frequency and resonance amplitude changes are 

more considerable than in higher values. Therefore, in a sensor 

with small gap size due to having higher sensibility, 

262



 

measurement of fluid properties can be obtained with high 

accuracy than in a sensor with large gap size. 

 

 
 

Figure 6. Resonance frequency versus length scale for 

different values of fluid gap 

 

 
 

Figure 7. Resonance amplitude versus length scale for 

different values of fluid gap 

 

For this study, resonance frequency and resonance 

amplitude changes of the micro-sensor for different values of 

sensing cylinder surface area are determined and the obtained 

results are shown in Figure 8 and Figure 9. 

 

 
 

Figure 8. Resonance frequency versus length scale for 

different values of sensing cylinder area 

 
 

Figure 9. Resonance amplitude versus length scale for 

different values of sensing cylinder area 

 

Results show that in a sensor with large sensing element 

area, changes of the resonance frequency are more sensible in 

comparison to the sensor having a small sensing element area. 

It means that a sensing element with larger surface area causes 

inertial and damping effects of the fluid and sensibility of the 

micro-sensor to increase. Therefore, replacing the sensing 

element with a one having large surface area allows measuring 

the viscosity coefficients of a micro-scale fluid with small 

uncertainty. 

 

 

6. CONCLUSION 

 

In this paper, a novel MEMS-based sensor was presented 

for measurement of micro-scale fluid physical properties. A 

mathematical model was introduced which could be actuated 

torsionally via applying an AC voltage to the capacitive plates 

around the shaft and the outer fixed cylinder. After deriving 

governing equations of motion of the shaft and the fluid media 

and transforming them to an enhanced form, they were 

discretized applying Gelerkin-based reduce order model. 

Solving coupled differential equations simultaneously showed 

that a micro-scale fluid has dissipative and inertial effects on 

torsional vibration of the micro-shaft. This causes resonance 

frequency and resonance amplitude of the shaft to decrease, 

therefore by knowing kinematic viscosity of a fluid, two other 

viscosity coefficients of a micro-scale fluid can be measured 

by detecting changes in resonance frequency and resonance 

amplitude of the micro-shaft. The effects of the fluid gap and 

sensing cylinder surface area on the dynamic response of the 

micro-shaft were investigated. Results showed that a sensor 

having small fluid gap and large surface area has considerable 

resonance frequency and amplitude changes and consequently 

has higher sensibility. The sensing element surface area, the 

fluid gap, and the amplitude of the exciting momentum acting 

on the shaft affect the sensibility. Replacing the sensor with 

one having large surface area and small fluid gap can measure 

the viscosity coefficients with desired accuracy. 
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NOMENCLATURE 

  
C   material macro-strain tensor 

E   macro-strain tensor 

f   Body force per unit mass 

G   micro-roration vector 
g   micro-roration component 

h   fluid gap 

I   micro-inertia density 
J   mass moment of inertia 

k   Vortex viscosity coefficient 

l   Body couples per unit mass 

L   Lengh 

L   Lengh scale 
N   Coupling parameter 

r   radius 

R  macro-rotation tensor 

T   momentum 
u   displacement(m) 
v   Fluid velocity 

𝑋 

a , b  

Position of element  

Functions 

  

 

Greek symbols 

 
, ,     Spin gradient viscosity coefficient 

   second order viscosity coefficient 
   dynamic viscosity coefficient 
   Density, kg.m-3 

  micro-rotation tensor 

  micro-strain sensor 

  material micro-strain sensor 
ψ  material micro-strain sensor 
  Stress tensor 
m   Couple stress tensor 
   the Kronecker delta 
   Levi-Civita symbol 
   Angular displacement, Rad 

, , ,          

                       

functions 

shear stress 

 

Subscripts 

 

 

c   cylinder 

f   fluid 

s   shaft 
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