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Abstract  

Despite the extensive use in data processing, the symmetric distribution fails to yield 

satisfactory results. Based on the traditional normal distribution, the asymmetric distribution is 

often adopted to handle the features of asymmetric-tailed data. In view of the above, this paper 

proposes a new normal distribution, alpha normal distribution, to deal with skewed and heavy-

tailed data. The validity of the proposed distribution was verified by fitting the data of China’s 

logistics prosperity index (LPI). 
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1. Introduction 

To obtain the desired results, the data are by default normally distributed in many studies. 

Under real-world conditions, however, many data as too skewed or heavy-tailed to be interpreted 

by normal distribution, and should be depicted by more flexible statistical models. A viable option 

is the symmetrical distribution, a variation of normal distribution. Its density function is expressed 

as ( )
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skewed data of positive real numbers. It has been applied in the research of various fields, 

particularly the analysis of pollution concentration. Some representative studies are presented as 

follows.  

Based on the data on air pollutant concentration in Beijing, Fan [1] looked for the general 

distribution pattern of air pollutant concentration in northern China during the winter, and 

concluded that the pollution concentration follows lognormal distribution, exponential distribution 

and other distribution patterns. Wayne [2] suggested that the pollutant concentration in different 

environments adheres to or approximates lognormal frequency distribution, that is, the logarithms 

of the measured concentrations are distributed in a near normal or Gaussian pattern in the plot of 

frequency distribution. Larry [3] held that symmetric distribution fits well in analysing the data on 

environmental pollution, and lognormal distribution is a good choice to characterize the 

intrinsically positive and often highly skewed environmental data. However, the scholar did not 

mention the implications of the use of the said distribution. Han et al. [4] collected the PM2.5 

concentration from 12 monitoring stations, and verified that the concentration obeys the lognormal 

distribution. In 2012, Chen [5] discussed the distribution of air pollutant concentration in different 

seasons in Yulin, and revealed that the lognormal distribution is the most suitable model for SO2 

concentration in winter. Through Maximum likelihood estimation, Han and Chen [6] verified the 

fitness of four theoretical distributions (lognormal, gamma, Pearson and generalized extreme 

value) to the daily average concentrations of PM10, SO2 and NO2 in Shanghai from June 1, 2000 

to May 31, 2003, and evaluated the fitting results by the chi-square test. The results show that the 

most suitable distributions for PM10, SO2 and NO2 concentrations in Shanghai are lognormal, 

Pearson and generalized extreme value, respectively. 

The symmetrical distribution has also been employed in decision analysis and quality 

evaluation. With attributes of unknown weights and valued as interval numbers, Xu and Lv [7] 

assumed that the interval numbers obey the normal distribution, presented a new attribute 

weighting strategy, and conducted a multi-attribute decision-making. Their research reveals that 

normal distribution is an effective tool for multi-attribute decision-making method with interval 

numbers. Zhao et al. [8] applied the normal distribution to assess the quality of regional 

geochemical exploration samples, and conducted a normal distribution test to convert the trace 

elements into normal distribution by log transformation. 

In the above studies, the asymmetry and kurtosis of data deviate greatly from the lognormal 

distribution, making it necessary to develop even more flexible distribution to model asymmetric 

datasets. 
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In 1985, Azzalini put forward the partial normal distribution by introducing the asymmetric 

parameter into the normal distribution. The asymmetric distribution has been widely used to model 

various asymmetric-tailed datasets [9]. The distribution is introduced as follows. If a random 

variable X obeys the normal distribution with the density function of (x; ) 2 (x) ( x)   =  (xϵR), 

where 𝜑(𝑥) and 𝛷(𝑥) are the density function and distribution function of the standard normal 

distribution, respectively; α is the shape parameter that controls skewness, then X follows the 

partial normal distribution with the shape parameter of α, denoted as X~SN(α). The density 

function is reduced to normal distribution when α=0, and equal to the maximum distribution of the 

two independent standard normal variables when α=1. The partial normal distribution is applicable 

to asymmetric data fitting, as it carries some properties of the original symmetric distribution.  

Henze [10] further explored the probability expressions of the partial normal distribution and 

deduced the odd order moments of the distribution. Recently, Azzalini and Dalla Valle [11] 

investigated the multivariate skewed normal distribution, which is created by adding a shape 

parameter to normal distribution, and extended the generalized normal distribution to the 

multivariate case. Huang and Chen [12] introduced a skewed function based on a symmetric 

distribution and derived the general structure of partial normal distribution. 

Unlike lognormal distribution, the asymmetric distribution has rarely been explored in an in-

depth manner. The only exceptions are Gupta et al. [13] and Chen et al. [14]. The former examined 

numerous skewed data distributions, while the latter implemented partial distribution in 

environmental pollution analysis. Based on the traditional normal distribution, this paper proposes 

a new normal distribution, alpha normal distribution. After parameter estimation and statistical 

property analysis, the alpha normal distribution was applied in actual datasets, and was validated 

through comparison with normal distribution, partial normal distribution, and lognormal 

distribution. 

 

2. Alpha Normal Distribution 

Definition 1: If the density function of a random variable X is as follows: 

 

 
1

(x; ) 1 (x) (x)f


  
−

= −
, xϵR, α>0                                                                                                    (1) 

 

where 𝜑(𝑥)  and 𝛷(𝑥)  are the density and distribution functions of the standard normal 

distribution, respectively; α is the shape parameter that controls skewness; then X obeys the alpha 
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normal distribution with the shape parameter of α, denoted as X~AN(α). 

The density function is reduced to standard normal distribution when α=1, tends towards the 

right when α>1, and tends towards the left when α<1. 

The distribution function of the alpha normal distribution is expressed as: 

 

 F(x; ) 1 1 (x)


 = − −
, xϵR, α>0                                                                                                 (2) 

 

where 𝛷(𝑥) is the distribution function of standard normal distribution; α is the shape parameter 

that controls skewness. The greater the value of α, the steeper the curve of the distribution function. 

 

3. Properties of Alpha Normal Distribution 

3.1 Expectation and Variance 

If the random variable X~AN(α), its expectation is the following. 
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whereas the integrand is a singular function [15], we have: 
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Hence, we may reasonably draw the following: 
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The moment generating function of X2 is:  
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Therefore, if α=1, 2, 3, 4, …, the E(X2) is 1, 1, 
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The variance can be obtained by 2 2 2(X ) E(X ) [E(X)]Var = − . 

The central moment of order K is [16]: 
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where the density function of U is expressed as: 
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3.2 Generation of Random Numbers 

According to the definition of alpha normal distribution, the random numbers are generated 

by inverse function [17]. First, n evenly distributed random numbers were generated from the [0, 

1] interval, and denoted as ri, i=1,2,…, n. Then, let  i1 1 (x )ir


= − − to find the solution. In this 

research, the random numbers were generated with n=1,000 and α=2. Then, the author extracted 
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some of the numbers through the comparison between density histogram and the distribution 

function map, and between the density function curve and density estimation curve. 

 

4. Maximum Likelihood Estimation 

To obtain the general form of alpha normal distribution, an unknown parameter μ and scale 

parameter σ were introduced to the density function. Assuming that Y is a random variable from 

alpha normal distribution AN(α) and that X=μ+σY (μϵR; σ>0), then the density function of X is 

expressed below. 
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Suppose X1, X2, …, Xn are n random samples of formula (3), and let θ=(μ, σ, α), then there is 

the following log likelihood function [18]: 
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Then, seek the partial derivative of the upper part of μ, σ and α, respectively. It is possible to 

obtain the following equations. 
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According to the above equations, we have: 
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Substituting formula (5) to formula (4), and we have: 
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Using the L-BFGS-B method in R software, the author obtained the estimated values of μ, σ 

and α. 

 

5. Data Analysis 

The research object is China’s logistics prosperity index (LPI) from February 2014 to June 

2017 (Table 1). First, the maximum likelihood and log likelihood were calculated for each 

parameter. Then, the model fitting was carried out with the AIC criterion (AIC=-2logL+2k) and 

the BIC criterion (BIC=-2logL+klogn). In the two criteria, k is the number of arguments, L is the 

maximum likelihood function, and n is the number of samples. The fitting results of the alpha 

normal function were contrasted with those of partial normal distribution, normal distribution and 

lognormal distribution. The density functions of the three contrast distributions are as follows: 
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Tab.1. China’s LPI 

Data Current index Previous index Difference Rose% 

2017/6/25 0.558 0.577 -0.019 -3.29% 

2017/5/25 0.577 0.582 -0.005 -0.86% 

2017/4/25 0.582 0.554 0.028 5.05% 
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2017/3/25 0.554 0.521 0.033 6.33% 

2017/2/25 0.521 0.525 -0.004 -0.76% 

2017/1/25 0.525 0.56 -0.035 -6.25% 

2016/12/25 0.56 0.593 -0.033 -5.56% 

2016/11/25 0.593 0.592 0.001 0.17% 

2016/10/25 0.592 0.59 0.002 0.34% 

2016/9/25 0.59 0.543 0.047 8.66% 

2016/8/25 0.543 0.548 -0.005 -0.91% 

2016/7/25 0.548 0.555 -0.007 -1.26% 

2016/6/25 0.555 0.542 0.013 2.40% 

2016/5/25 0.542 0.542 0 0.00% 

2016/4/25 0.542 0.529 0.013 2.46% 

2016/3/25 0.529 0.5 0.029 5.80% 

2016/2/25 0.5 0.533 -0.033 -6.19% 

2016/1/25 0.533 0.55 -0.017 -3.09% 

2015/12/25 0.55 0.542 0.008 1.48% 

2015/11/25 0.542 0.525 0.017 3.24% 

2015/10/25 0.525 0.522 0.003 0.57% 

2015/9/25 0.522 0.52 0.002 0.38% 

2015/8/25 0.52 0.522 -0.002 -0.38% 

2015/7/25 0.522 0.557 -0.035 -6.28% 

2015/6/25 0.557 0.58 -0.023 -3.97% 

2015/5/25 0.58 0.586 -0.006 -1.02% 

2015/4/25 0.586 0.58 0.006 1.03% 

2015/3/25 0.58 0.549 0.031 5.65% 

2015/2/25 0.549 0.563 -0.014 -2.49% 

2015/1/25 0.563 0.575 -0.012 -2.09% 

2014/12/25 0.575 0.565 0.01 1.77% 

2014/11/25 0.565 0.549 0.016 2.91% 

2014/10/25 0.549 0.564 -0.015 -2.66% 

2014/9/25 0.564 0.541 0.023 4.25% 

2014/8/25 0.541 0.568 -0.027 -4.75% 

2014/7/25 0.568 0.567 0.001 0.18% 

2014/6/25 0.567 0.552 0.015 2.72% 

2014/5/25 0.552 0.577 -0.025 -4.33% 

2014/4/25 0.577 0.53 0.047 8.87% 

2014/3/25 0.53 0.519 0.011 2.12% 

2014/2/25 0.519 0.515 0.004 0.78% 

 

The calculation results are listed in Table 2. 

 

Tab.2. Fitting Results of Alpha Normal Function, Partial Normal Distribution, Normal 

Distribution and Lognormal Distribution 

Model Log likelihood AIC BIC 

Normal distribution -496.271 997.068 1005.738 
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Partial normal distribution -477.173 956.297 969.755 

Lognormal distribution -469.052 942.571 949.317 

Alpha normal distribution -461.278 931.192 946.025 
 

As shown in Table 1, the alpha normal distribution has the smallest AIC and BIC values on 

the dataset of China’s LPI, and the highest value of likelihood. The lognormal distribution and 

partial normal distribution share similar results. The normal distribution, which is symmetrical in 

nature, fails to capture the skewed and heavy-tailed properties of the data. The results show that 

the alpha normal distribution can depict the dataset features in an accurate manner. 

Furthermore, the alpha normal distribution boasts the highest goodness of fit, whether in 

skewness or kurtosis, and stands out as the best distribution of the LPI. The second best distribution 

is the popular lognormal distribution, which fits the skewness well. The partial normal distribution 

performs poorer than the lognormal distribution on capturing the right tail but outperforms the latter 

on fitting the thick left tail. Therefore, the partial normal distribution and the alpha normal 

distribution are more suitable for LPI analysis. The two distributions provide better models for 

asymmetric heavy-tailed data in real life. 

Next, the author tested if there is any significant difference between normal distribution and 

alpha normal distribution in a given dataset. Two assumptions were made as follows. 

H0: If α=1, the sample comes from a normal distribution. 

H1: If α≠1, the sample comes from an alpha normal distribution. 

The likelihood ratio was introduced to the test: 

l ( )
,

2log(LRT) 2log 67.518

( )
,

N

ANl

 

  

 

− = − =
   . At the 

significance level of 0.05, 𝑥1
2 = 3.86, which rejects the original hypothesis. Hence, the alpha 

normal distribution has a higher goodness of fit than the normal distribution. The conclusion echoes 

the fitted density curves of these distributions. Thus, the alpha normal distribution is an important 

choice considering that no normal distribution applies to the analysis of asymmetric datasets. 

 

Conclusion 

This paper introduces the alpha normal distribution, a novel distribution pattern with normal 

distribution as a special case. Specifically, the basic properties were analysed, the random numbers 

were generated, and the parameters were predicted by maximum likelihood estimation. Based on 

the density function curve, it is found that the alpha normal distribution is left skewed and right 

skewed. Then, this new asymmetric distribution was compared to the normal distribution and the 
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popular lognormal distribution. The results show that the alpha normal distribution is more flexible 

in handling skewed or heavy-tailed data, and is thus suitable for fitting asymmetric datasets. Then, 

the dataset of China’s LPI was introduced for fitting, and statistical judgement criteria were adopted 

to compare the alpha normal distribution with partial normal distribution, normal distribution and 

lognormal distribution. It is concluded that the proposed distribution outshines the contrast 

distributions in data fitting. All in all, this research provides a new statistical for analysing 

asymmetric datasets in real life. 
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