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The security of computer networks is critical for network intrusion detection systems 

(NIDS). However, concerns exist about the suitability and sustainable development of 

current approaches in light of modern networks. Such concerns are particularly related to 

increasing levels of human interaction required and decreased detection accuracy. These 

concerns are also highlighted. This post presents a modern intrusion prevention deep 

learning methodology. For unattended function instruction, we clarify our proposed 

Symmetric Deep Autoencoder (SDAE). Also, we are proposing our latest deep research 

classification model developed with stacked SDAEs. The classification proposed by the 

Network Security Laboratory-Knowledge Discovery in Databases (NSL-KDD) and 

Canadian Institute for Cybersecurity -Intrusion Detection System (CICIDS 2017) data sets 

was implemented in Tensor Flow, a Graphics Procedure Unit (GPU) enabled and evaluated. 

We implemented and tested our experiment with different batch sizes using Adam 

optimizer. Promising findings from our model have been achieved so far, which 

demonstrates improvements over current solutions and the subsequent improvement for use 

in advanced NIDS. 
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1. INTRODUCTION

A reliable and efficient network intrusion prevention 

program is a big problem for network protection. While NIDS 

technology has made considerable strides, in comparison to 

anomaly detection strategies, most of the approaches still work 

with less efficient signature-based technologies. There are 

several explanations why we fail to move, including the high 

error rate, accurate training data complexity, reliability of 

training data, and system behavioral dynamics. The present 

scenario is going to contribute to an inefficient and unreliable 

identification by depending on these techniques. The basic 

features of this problem include the creation of a generally 

recognized anomaly detection methodology that can solve 

shortcomings created by the continuing improvements in 

digital networks. 

The use of machine learning, as well as low-level learning 

methods such as Naive Bayes, Decision Trees, and Support 

Vector Machinery (SVM) [1], have been a major focus of 

NIDS research in recent years. 

The vast variety of networking and network innovations that 

have transformed our everyday lives is expected to bring about 

50 billion users to the Internet by 2020. For virtually all 

activities such as internet shopping, finance, business, and 

email services, these tools are utilized worldwide. Although 

the benefits of new developments have improved our lives and 

transformed the environment, the protection of knowledge 

remains a major concern. Organizations need to provide 

Internet users, including the customers and staff of 

organizations, with secure communication channels and detect 

unlawful activities. Network Intrusion Detection Systems 

(NIDS), in contrast with other traditional network defense 

technology such as firewall devices, are currently offering a 

better approach for the security question. NIDS lets network 

managers track threats, bugs, and breaches within the network 

of an organization. The two forms of NIDS are NIDS 

(SNIDS)-based signature and NIDS (AD-NIDS)-based 

anomaly. In SNIDS, the system detects attacks by preinstalled 

rules for NIDS attacks. Data traffic is compared to an updated 

attack log file to detect network activity violations. 

2. BACKGROUND

We should include context details to explain our motives 

and the ideas behind the model presented in this paper in this 

section. 

2.1 NIDS challenge 

With the purposes of protection, forensics, and anomaly 

detection, network surveillance has been used extensively. A 

recent development, however, has created several new hurdles 

to NIDS.  

2.1.1 Size 

Continues to increase the amount of data collected as well 

as flowing across networks [2]. The total volume of data is 

expected to hit 45 ZB by 2020 [3]. As a consequence, new 

networks have significantly expanded their transmission 

ability to support the influx of transmission. Most new conduit 

networks now run at 100 Gigabits per second (Gbps) and higher 

networking rates. A link of 100Gbps can handle 148,810,534 

packets per second to make this context possible [4]. Therefore, 
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a NIDS should be able to complete a packet analysis within 

6.72 ns if its operation is at drill speed. It is also difficult to 

provide NIDS at such a speed and ensure satisfactory levels of 

accuracy, and efficiency. 

 

2.1.2 Accuracy 

Existing techniques cannot be relied on to preserve the 

aforementioned levels of accuracy. To provide a more holistic 

and accurate picture, greater granularity, depth, and contextual 

understanding are necessary. Sadly, this includes the various 

cost of financing, computing, and time. 

 

2.1.3 Complexity 

The amount of different or unique protocols used in digital 

networks has grown in recent years. The amount of network 

and/or Web access equipment may be related in half. As a 

result, differentiation between normal and abnormal traffic 

and behaviors is becoming increasingly difficult. 

 

2.1.4 Dynamics 

The action is complex and challenging to forecast due to the 

variety and versatility of digital networks. This, in turn, leads 

to problems with a reliable standard of behavior. There are also 

questions concerning the lifecycle of learning styles. 

 

2.1.5 Low-frequency assaults 

Such forms of threats also disrupted prior methods for 

anomaly identification, including artificial intelligence. The 

issue arises from imbalances in the training data collection. In 

the case of these low-frequency attacks, NIDS has lower 

detection precision. 

 

2.1.6 Adaptability 

New networks have implemented various modern 

innovations to reduce their dependence on outdated 

technology and types of management. Dynamic technologies 

like containerization, virtualization, and software-defined 

networks are therefore more widely used. NIDS will be 

prepared to respond to the usage and side effects of these 

technologies. 

 

2.2 Deep learning 

 

The specialized area of machine learning is Deep Learning, 

which encourages machine learning similar to artificial 

intelligence. This allows dynamic interactions and principles 

to be modeled [5] with several layers. Supervised and 

unattended learning algorithms help to create higher 

abstraction rates, which are described using low-level 

performance characteristics [6]. 

 

2.2.1 Autoencoder 

Autoencoders, which are used in our proposed solutions, are 

a common tool commonly used in deep learning science. A 

neural network extraction algorithm, which learns the best 

necessary parameters to rebuild its output as close as possible 

to your input, is an autoencoder. The ability to generalize more 

powerfully than the Principles Competitor Analysis (PCA) is 

one of its desirable characteristics. 

The recall is used and target values are specified for inputs. 

In other words, it tries to know the role of identity. The input 

layer, the output layer, and the secret automotive encoder layer 

typically have the same input layer. The secret layer is 

typically smaller than the input. Some researchers use the 

auto-encoder as a non-linear transformation to investigate 

fascinating data structures to establish more network 

constraints and equate findings with pica (linear 

transformation). This approach is the foundation of the 

decoder paradigms of the encoder. The input is transformed 

first and then expanded to replicate the initial data (decoder). 

The code is given next to the very non-linear input model when 

you learn the sheet. The following is given. In this model, the 

dimension of the data entry is the. Because of this, the 

cornerstone of the deep self-encoder structure is a special layer 

called an implementation layer [6]. This data layer is used for 

grouping or mixing purposes in a stacked autoencoder as a 

compact vector [7]. A low-dimensional version (called 

coding) of high-dimensional data is generated using the secret 

layer. The autoencoder must obtain the most important aspects 

of data flow through this dimension. The data function 

generated by the autoencoder [8] provides a better summary of 

the data points in an ideal scenario than the raw information. 

 

2.2.2 Stacked autoencoder 

A deep self coding system, unlike a simple autoencoder, has 

two symmetrical deep creaming networks that have 4 or 5 

superficial layers of coding and the second series of 4 or 5 

decoding layers. A deep research algorithm has been 

developed that transforms high-dimensional figures into 

small-dimensional figures via a deep self-coder using Hinton 

and Salacukhudinov [9]. Deep knowledge of automatic 

encoders can be expanded by using a technique called the 

stacked automatically encoder like the masked layers and 

several hidden levels of scope. This increased scope decreases 

cost estimates and the quantity of relevant training information 

and increases accuracy. The performance is the entry-level of 

every secret layer that is a step by step higher. Therefore, the 

raw input typically displays the first sheet of a stacked car 

encoder key characteristics. The second layer normally learns 

the second-order characteristics related to patterns on the first-

order properties. Later, higher layers know higher 

functionality. The picture of a stacked self-encoder is an 

illustrative example. 2. The super-script numbers show here 

the name of the hidden layer, while the number of 

subscriptions indicates the dimension of the layer. 

 

 

3. EXISTING WORK 

 
Zhao et al. [2] submitted an up-to-date computer-safety 

survey of deep learning technology. They compared 

conventional computer-learning approaches experimentally 

with four new methods of deep learning (self-encoders, 

Boltzmann’s small system, convolutional neural network 

(CNN), and recurrent neural network (RNN)). Their research 

suggested that revolutionary forms of learning have better 

consistency than conventional approaches. 

Intrusion detection of the network has become the most 

important part of information security defense network 

infrastructure. A selection of algorithms is used to identify and 

distinguish irregularity or assault in NIDS traffic networks, 

such as a Decision Tree [10], K-nearest neighbor (K-NN) [11], 

the naive Bayes Network [12], SOM [13], and SVM Network 

(ANN). 

SVM is more efficient than traditional machine learning 

classification methods [14, 15]. Kim et al.’s job [16] 

specifically targeted at ongoing and advanced threats. We 

suggest a robust neural network (DNN) utilizing 100 secret 
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computers, together with the right linear unit activation feature 

and the ADAM optimizer. They have been built on Tensor 

Flow’s GPU and tested by the KDD. To enhance potential 

security, the writers reported an overall precision rating of 99 

percent. RNN and Large short-term memory (LSTM) models 

described them. 

The research proposed was carried out by analyzing the 

output of SVM and ANN on the KDD CUP 99 dataset [17]. 

The findings indicate that SVM experiments are equal to ANN. 

Consider the Classification and Regression Tree (CART) 

SVM, naive bayed, logistic regression, decision tree (DT), and 

KDD CUP 99 data collection of invasive prediction 

classifications [18]. The tests demonstrated that SVM 's 

characteristics are distinct. 

Unattended methods to research traditional network flow 

simulation have been brought forward by Cordero etc. [19]. 

We use the terms RNN, autoencoder, and drop-out. The 

quality of the procedure you are proposing is not obvious. Via 

their Fuzziness approach, the authors have established a new 

perspective focused on intrusion detection semi-monitored 

research [20]. This approach is based on a random neural 

weight network and plays a significant part in NIDS diagnosis 

since computation costs are minimized. The assessment of this 

model using the NSL-KDD data set was performed, but only 

binary tasks were examined. 

The way network flow data was tracked is also suggested 

by Tang et al. [20]. There were no specific algorithms in the 

study, but the NSL-KDD dataset evaluation was 75.75 percent 

reliable with 6 primary features reported by the publishers. In 

many unattended training algorithms, SVM, and neural 

network (NN) was combined to improve the performance of 

intrusion detectives [21]. To choose the features and SVM or 

NN for classification, the authors developed, applied, and 

tested a variety of hybrid models utilizing key parameter 

analysis (PCA) and GFR gradual reduction. The findings have 

shown, in terms of preparation and test time, hybrid models 

are capable of accurately detecting established and unknown 

threats, and the PCA and GFR classification approaches are 

expensive to quantify. 

The authors have suggested an integral component of a 

wired or wireless network service for network intrusion 

detection device (NIDS) for both external and internal assaults 

[22]. NIDS tracks network-based threats such as malware 

assaults by Denial of Service (DoS), ransomware spread, and 

device intrusions. 

LSTM is a useful tool for classifying and detecting 

documented and unknown intrusions [23]. In this review, they 

suggested a fundamental learning approach to IDS 

construction. The authors used LSTM RNNs and used NSL-

KDD to train the pattern. Despite restricted computational 

power, the new model has achieved greater accuracy. 

 

 

4. PROPOSED METHODOLOGY 

 

The proposed architecture indicates the strategies suggested 

for our experiment. We call to train and testing data sets. The 

training data collection is marked as friendly or focused for all 

rows and labels all rows as neutral or an assault form. Then we 

will apply standardization to this knowledge. After 

normalization, we educated the data using deep learning 

methods. We have used standardization for the test data 

collection and presented these structured data to the IDS model 

that detects the attack. The proposed architecture is described 

in Figure 1. 

 

 
 

Figure 1. The proposed NIDS architecture 

 

 

5. RESULTS AND DISCUSSION 

 

Similar to other current deep learning work, Tensor Flow 

was used to apply our proposed classification algorithm. All 

our reviews were conducted on Google co laboratory with 13 

GB RAM with the GPU-enabled Tensor Flow. We also used 

the CICIDS and the NSL-KDD datasets to perform our 

assessments. These two datasets are called landmarks of NIDS 

science. The usage of such datasets also allows assessing 

current approaches and studies.  

Throughout this portion, we will use the following metrics: 

False Positive (FP): Standard data falsely marked as an 

assault. 

True Positive (TP): Attack data properly classified as an 

assault. 

False Negative (FN): Wrongly counted as usual attack 

results. 

True Negative (TN): Normal data correctly categorized as 

normal. We will use the mentioned measures to assess our 

proposed solution’s performance: The description of 

performance metrics is shown in Table 1. 

 

Table 1. The performance metrics used 

 
Metric Description Formula 

ACC 

The exactness tests the 

percentage of the overall 

amount of false type wrong 

description. 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

PR 

Precision tests the right 

number of classifications 

penalized by the sum of false 

classifications. 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

RE 

The recall measures the right 

amount of penalized 

classifications 

The number of submissions 

missing. 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

FA 

The false alarm wrongly tests 

the ratio of positive 

occurrences categorized as 

malevolent. 

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

F S 

The F-score tests the 

harmonic mean of precision 

and recall which serves as an 

efficiency measurement 

derived. 

2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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5.1 Datasets 

 

The NSL-KDD and CICDS2017 contrasts are included in 

this article. For IDS research both natural and abnormal 

partnerships were widely used. 

NSL-KDD: The more recent NSL-KDD dataset [24] 

developed by Patil and Srikanth Yadav [25] to solve KDD 99 

data collection problems.  

The authors [26] have done a taxonomy survey of the deep 

architectures and algorithms accessible in these works and 

grouped such algorithms into three groups: hierarchical, 

composite, and generative. Afterward, a wide range of 

intrusion detection fields investigates selected deep learning 

applications. 

Some of the current NIDS studies utilize this dataset as well, 

and we hope that researchers will compare various strategies. 

Table 2 displays the NSL-KDD data set's instruction and 

evaluation documentation collection. 

 

Table 2. Various forms of NSL-KDD data collection attacks 

 
Attack type  Flow count  Training  Test 

Normal  12697529 67354 9734 

DoS  659050 45935 7469 

Probe  281156 11678 2405 

R2L  114596 991 2748 

U2R  201889 49 213 

Total  13954220 126007 22569 

 

In the 2017 CICIDS datasets [27], the evaluation CICIDS 

dataset collects 80 Network Flow features from the network 

traffic created. It includes SSH, DoS, Heart Blood, Hack, 

Botnet, DDoS, and Brute ForceFTP. 80 network flow 

properties are extracted from network traffic generated from 

CIC traffic flow. The CIC-IDS2017 dataset also comprises 25 

specific implementations, including FTP and HTTPS. Based 

on other standards, Table 3 displays the collection of CICIDS 

data sets for testing and training. 

 

Table 3. Various forms of CIC-IDS2017 data collection 

attacks 

 
Category 

of Attack 
Type of attack 

Flow 

count 
Training Test 

Brute-force 

Web attack 

SSH 241 175 42 

FTP 601 477 112 

XSS 187599 7525 1856 

Web 193360 15532 3850 

SQL Injection 86 65 13 

DoS attack 

Hulk 466654 18658 4658 

SlowHTTPTest 139880 55947 13996 

Slow Loris 10994 4377 1085 

Goldeneye 41522 16503 4162 

DDoS 

attack 

HOIC 686112 27445 6860 

LOIC-UDP 1736 1356 339 

LOIC-HTTP 576291 23146 5755 

Botnet Bot 286191 11385 2962 

Infiltration Infiltration 161933 6477 1633 

Benign 12697529 50995 12678 

Total 15450729 240063 60001 

 

In general, the analysis reveals that by studying feature 

representations from broad quantities of unlabeled training 

samples the proposed model will achieve high efficiency. The 

session-based training samples are constructed from header 

sections and network packet loading information. We 

observed that the deep learning approach that was introduced 

obtained very strong results for various classification tasks. 

These results provide insights into the characteristics of raw 

traffic. Such function representations are successful in 

detecting specific malicious network traffics and creating low 

false alarms. The following recommendations for 

reconstruction error and true class metrics for various batch 

sizes 32, 64, 128, 256, 512, and 1024, as shown in Tables 4, 5, 

and 6 have been considered in 74257 protocol-type CICIDS 

samples. 

 

Table 4. Reconstruction error and true class for batch size 32 

and 64 

 
Batch size: 32 Batch size: 64 

 reconstruction 

error 

true  

class 

reconstruction 

error 

true 

class 

count 74257 74257 74257 74257 

mean 0.756783 15.768951 0.612605 15.768951 

std 16.011881 4.52167 15.536912 4.52167 

min 0.030319 0 0.014329 0 

25% 0.113532 14 0.088711 14 

50% 0.194001 16 0.122684 16 

75% 0.412455 16 0.294209 16 

max 2026.624732 39 1992.387512 39 

 

Table 5. Reconstruction error and true class for batch size 

128 and 256 

 
Batch size: 128 Batch size: 256 

 reconstruction 

error 

true  

class 

reconstructio

n error 

True 

class 

count 74257 74257 74257 74257 

mean 0.541016 15.768951 0.505147 15.768951 

std 11.985496 4.52167 11.084156 4.52167 

min 0.018649 0 0.019048 0 

25% 0.085526 14 0.084922 14 

50% 0.115952 16 0.114374 16 

75% 0.273082 16 0.273093 16 

max 1788.619462 39 1556.290473 39 

 

Table 6. Reconstruction error and true class for batch size 

512 and 1024 

 
Batch size: 512 Batch size: 1024 

 reconstruction 

error 

true  

class 

reconstruction 

error 

true  

class 

count 74257 74257 74257 74257 

mean 0.490655 15.768951 0.485803 15.768951 

std 10.675083 4.52167 10.519899 4.52167 

min 0.018295 0 0.018811 0 

25% 0.085305 14 0.084722 14 

50% 0.114188 16 0.113876 16 

75% 0.273149 16 0.272969 16 

max 1629.798801 39 1637.784804 39 

 

Figure 2 below shows the F1-Scores for different batch 

sizes; Figure 3 below shows the ROC curves for different 

batch sizes; Figure 4 below represents a model loss for 

different batch sizes. 

Table 7 describes the comparison results of training dataset 

upon calculation of model loss for all epoch, F1-score, and 

ROC curve of TPR and FPR. The F1-score results are depicted 

in Figure 2, TPR and FPR results are portrayed in Figure 3, 

and the model loss results of all epochs are depicted in Figure 

4. 
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Table 8 demonstrates accuracy and failure for different 

batch sizes. After reducing features, we have ultimately 

considered 14 factors for our experiment. In our 

experimentation with 3 encoders and 3 decoders, in each stage, 

the preceding encoder or decoder is provided as an input 

iteratively and in any iteration, we take into account the 

encoding dimension size by 2. For batch size 32 we have a loss 

of 0.6874 and an accuracy of 0.4684. For 64 batch size, we 

have 0.9144 accuracy with a loss of 0.5528. We have 0.9144 

accuracy with a loss of 0.5177 with 128 batch capacity. Given 

256 batch size, we have an accuracy of 0.9157 with a loss of 

0.4752. We have 0.9164 accuracy with 512 batch size and 

0.4651 loss. Eventually, we received 0.9176 accuracy with 

0.4627 failure with batch size 1024. 

 

 
 

Figure 2. 2(a) to 2(f) F1-Scores for batch sizes 32, 64, 128, 256, 512 and 1024 respectively 

 

 
 

Figure 3. 3(a) to 3(f) ROC curves for batch sizes 32, 64, 128, 256, 512 and 1024 respectively 
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Figure 4. 4(a) to 4(f) ROC curves for batch sizes 32, 64, 128, 256, 512 and 1024 respectively 

 

Table 7. Comparison results of model loss, F1-score, TPR, 

and FPR 

 

Batch size 
Model loss & Accuracy F1-scores 

Loss Accuracy Precision Recall 

32 0.6874 0.4684 0.9556 0.9687  

64 0.5528 0.9144 0.9866 0.9629 

128 0.5117 0.9144  0.9699  0.9594 

256 0.4752 0.9157  0.9699  0.9594 

512 0.4651 0.9164 0.9556 0.9687 

1024 0.4627 0.9176 0.9627 0.9640 

 

Table 8. Loss and accuracy for different batch sizes with 

Adam optimizer 

 
Batch 

size 

No.of 

epochs 
Loss 

Val_ 

Loss 
Accuracy 

Val_ 

Accuracy 

32 100 0.6874 0.7596 0.4684 0.4607 

64 100 0.5528 0.6145 0.9144 0.8256 

128 100 0.5117 0.5432 0.9144 0.8897 

256 100 0.4752 0.5085 0.9157 0.9124 

512 100 0.4651 0.4958 0.9164 0.9188 

1024 100 0.4627 0.4939 0.9176 0.9183 

 

 

6. CONCLUSION 

 

The experimental results of the method proposed indicate 

that our model shows improved classification accuracy and 

faster training set and testing time. The methods have achieved 

a higher precision with batch sizes 512 and 1024, especially in 

binary classification with 0.9176 accuracies and 0.9188 value 

accuracy of the CICIDS dataset. The further development will 

be the subject of our future expansion strategy by using a 

hybrid feature learning model for a great indication for 

reduction of dimensionality and classification mechanisms. 

Also, the training and test times of the model should be further 

minimized with parallel structures or GPU acceleration of the 

device. 
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