
A Deep Learning Approach to Network Intrusion Detection Using Deep Autoencoder

Srikanthyadav Moraboena1*, Gayatri Ketepalli1, Padmaja Ragam2

1 Department of IT, VFSTR (Deemed to be University), Guntur 522213, Andhra Pradesh, India
2 Department of CS, Andhra Muslim College, Guntur 522003, Andhra Pradesh, India

Corresponding Author Email: kg_itp@vignan.ac.in

https://doi.org/10.18280/ria.340410 ABSTRACT

Received: 18 June 2020

Accepted: 25 July 2020

The security of computer networks is critical for network intrusion detection systems

(NIDS). However, concerns exist about the suitability and sustainable development of

current approaches in light of modern networks. Such concerns are particularly related to

increasing levels of human interaction required and decreased detection accuracy. These

concerns are also highlighted. This post presents a modern intrusion prevention deep

learning methodology. For unattended function instruction, we clarify our proposed

Symmetric Deep Autoencoder (SDAE). Also, we are proposing our latest deep research

classification model developed with stacked SDAEs. The classification proposed by the

Network Security Laboratory-Knowledge Discovery in Databases (NSL-KDD) and

Canadian Institute for Cybersecurity -Intrusion Detection System (CICIDS 2017) data sets

was implemented in Tensor Flow, a Graphics Procedure Unit (GPU) enabled and evaluated.

We implemented and tested our experiment with different batch sizes using Adam

optimizer. Promising findings from our model have been achieved so far, which

demonstrates improvements over current solutions and the subsequent improvement for use

in advanced NIDS.

Keywords:

deep learning, anomaly detection,

autoencoders, NSL- KDD, network security,

CICIDS

1. INTRODUCTION

A reliable and efficient network intrusion prevention

program is a big problem for network protection. While NIDS

technology has made considerable strides, in comparison to

anomaly detection strategies, most of the approaches still work

with less efficient signature-based technologies. There are

several explanations why we fail to move, including the high

error rate, accurate training data complexity, reliability of

training data, and system behavioral dynamics. The present

scenario is going to contribute to an inefficient and unreliable

identification by depending on these techniques. The basic

features of this problem include the creation of a generally

recognized anomaly detection methodology that can solve

shortcomings created by the continuing improvements in

digital networks.

The use of machine learning, as well as low-level learning

methods such as Naive Bayes, Decision Trees, and Support

Vector Machinery (SVM) [1], have been a major focus of

NIDS research in recent years.

The vast variety of networking and network innovations that

have transformed our everyday lives is expected to bring about

50 billion users to the Internet by 2020. For virtually all

activities such as internet shopping, finance, business, and

email services, these tools are utilized worldwide. Although

the benefits of new developments have improved our lives and

transformed the environment, the protection of knowledge

remains a major concern. Organizations need to provide

Internet users, including the customers and staff of

organizations, with secure communication channels and detect

unlawful activities. Network Intrusion Detection Systems

(NIDS), in contrast with other traditional network defense

technology such as firewall devices, are currently offering a

better approach for the security question. NIDS lets network

managers track threats, bugs, and breaches within the network

of an organization. The two forms of NIDS are NIDS

(SNIDS)-based signature and NIDS (AD-NIDS)-based

anomaly. In SNIDS, the system detects attacks by preinstalled

rules for NIDS attacks. Data traffic is compared to an updated

attack log file to detect network activity violations.

2. BACKGROUND

We should include context details to explain our motives

and the ideas behind the model presented in this paper in this

section.

2.1 NIDS challenge

With the purposes of protection, forensics, and anomaly

detection, network surveillance has been used extensively. A

recent development, however, has created several new hurdles

to NIDS.

2.1.1 Size

Continues to increase the amount of data collected as well

as flowing across networks [2]. The total volume of data is

expected to hit 45 ZB by 2020 [3]. As a consequence, new

networks have significantly expanded their transmission

ability to support the influx of transmission. Most new conduit

networks now run at 100 Gigabits per second (Gbps) and higher

networking rates. A link of 100Gbps can handle 148,810,534

packets per second to make this context possible [4]. Therefore,

Revue d'Intelligence Artificielle
Vol. 34, No. 4, August, 2020, pp. 457-463

Journal homepage: http://iieta.org/journals/ria

457

https://crossmark.crossref.org/dialog/?doi=10.18280/ria.340410&domain=pdf

a NIDS should be able to complete a packet analysis within

6.72 ns if its operation is at drill speed. It is also difficult to

provide NIDS at such a speed and ensure satisfactory levels of

accuracy, and efficiency.

2.1.2 Accuracy

Existing techniques cannot be relied on to preserve the

aforementioned levels of accuracy. To provide a more holistic

and accurate picture, greater granularity, depth, and contextual

understanding are necessary. Sadly, this includes the various

cost of financing, computing, and time.

2.1.3 Complexity

The amount of different or unique protocols used in digital

networks has grown in recent years. The amount of network

and/or Web access equipment may be related in half. As a

result, differentiation between normal and abnormal traffic

and behaviors is becoming increasingly difficult.

2.1.4 Dynamics

The action is complex and challenging to forecast due to the

variety and versatility of digital networks. This, in turn, leads

to problems with a reliable standard of behavior. There are also

questions concerning the lifecycle of learning styles.

2.1.5 Low-frequency assaults

Such forms of threats also disrupted prior methods for

anomaly identification, including artificial intelligence. The

issue arises from imbalances in the training data collection. In

the case of these low-frequency attacks, NIDS has lower

detection precision.

2.1.6 Adaptability

New networks have implemented various modern

innovations to reduce their dependence on outdated

technology and types of management. Dynamic technologies

like containerization, virtualization, and software-defined

networks are therefore more widely used. NIDS will be

prepared to respond to the usage and side effects of these

technologies.

2.2 Deep learning

The specialized area of machine learning is Deep Learning,

which encourages machine learning similar to artificial

intelligence. This allows dynamic interactions and principles

to be modeled [5] with several layers. Supervised and

unattended learning algorithms help to create higher

abstraction rates, which are described using low-level

performance characteristics [6].

2.2.1 Autoencoder

Autoencoders, which are used in our proposed solutions, are

a common tool commonly used in deep learning science. A

neural network extraction algorithm, which learns the best

necessary parameters to rebuild its output as close as possible

to your input, is an autoencoder. The ability to generalize more

powerfully than the Principles Competitor Analysis (PCA) is

one of its desirable characteristics.

The recall is used and target values are specified for inputs.

In other words, it tries to know the role of identity. The input

layer, the output layer, and the secret automotive encoder layer

typically have the same input layer. The secret layer is

typically smaller than the input. Some researchers use the

auto-encoder as a non-linear transformation to investigate

fascinating data structures to establish more network

constraints and equate findings with pica (linear

transformation). This approach is the foundation of the

decoder paradigms of the encoder. The input is transformed

first and then expanded to replicate the initial data (decoder).

The code is given next to the very non-linear input model when

you learn the sheet. The following is given. In this model, the

dimension of the data entry is the. Because of this, the

cornerstone of the deep self-encoder structure is a special layer

called an implementation layer [6]. This data layer is used for

grouping or mixing purposes in a stacked autoencoder as a

compact vector [7]. A low-dimensional version (called

coding) of high-dimensional data is generated using the secret

layer. The autoencoder must obtain the most important aspects

of data flow through this dimension. The data function

generated by the autoencoder [8] provides a better summary of

the data points in an ideal scenario than the raw information.

2.2.2 Stacked autoencoder

A deep self coding system, unlike a simple autoencoder, has

two symmetrical deep creaming networks that have 4 or 5

superficial layers of coding and the second series of 4 or 5

decoding layers. A deep research algorithm has been

developed that transforms high-dimensional figures into

small-dimensional figures via a deep self-coder using Hinton

and Salacukhudinov [9]. Deep knowledge of automatic

encoders can be expanded by using a technique called the

stacked automatically encoder like the masked layers and

several hidden levels of scope. This increased scope decreases

cost estimates and the quantity of relevant training information

and increases accuracy. The performance is the entry-level of

every secret layer that is a step by step higher. Therefore, the

raw input typically displays the first sheet of a stacked car

encoder key characteristics. The second layer normally learns

the second-order characteristics related to patterns on the first-

order properties. Later, higher layers know higher

functionality. The picture of a stacked self-encoder is an

illustrative example. 2. The super-script numbers show here

the name of the hidden layer, while the number of

subscriptions indicates the dimension of the layer.

3. EXISTING WORK

Zhao et al. [2] submitted an up-to-date computer-safety

survey of deep learning technology. They compared

conventional computer-learning approaches experimentally

with four new methods of deep learning (self-encoders,

Boltzmann’s small system, convolutional neural network

(CNN), and recurrent neural network (RNN)). Their research

suggested that revolutionary forms of learning have better

consistency than conventional approaches.

Intrusion detection of the network has become the most

important part of information security defense network

infrastructure. A selection of algorithms is used to identify and

distinguish irregularity or assault in NIDS traffic networks,

such as a Decision Tree [10], K-nearest neighbor (K-NN) [11],

the naive Bayes Network [12], SOM [13], and SVM Network

(ANN).

SVM is more efficient than traditional machine learning

classification methods [14, 15]. Kim et al.’s job [16]

specifically targeted at ongoing and advanced threats. We

suggest a robust neural network (DNN) utilizing 100 secret

458

computers, together with the right linear unit activation feature

and the ADAM optimizer. They have been built on Tensor

Flow’s GPU and tested by the KDD. To enhance potential

security, the writers reported an overall precision rating of 99

percent. RNN and Large short-term memory (LSTM) models

described them.

The research proposed was carried out by analyzing the

output of SVM and ANN on the KDD CUP 99 dataset [17].

The findings indicate that SVM experiments are equal to ANN.

Consider the Classification and Regression Tree (CART)

SVM, naive bayed, logistic regression, decision tree (DT), and

KDD CUP 99 data collection of invasive prediction

classifications [18]. The tests demonstrated that SVM 's

characteristics are distinct.

Unattended methods to research traditional network flow

simulation have been brought forward by Cordero etc. [19].

We use the terms RNN, autoencoder, and drop-out. The

quality of the procedure you are proposing is not obvious. Via

their Fuzziness approach, the authors have established a new

perspective focused on intrusion detection semi-monitored

research [20]. This approach is based on a random neural

weight network and plays a significant part in NIDS diagnosis

since computation costs are minimized. The assessment of this

model using the NSL-KDD data set was performed, but only

binary tasks were examined.

The way network flow data was tracked is also suggested

by Tang et al. [20]. There were no specific algorithms in the

study, but the NSL-KDD dataset evaluation was 75.75 percent

reliable with 6 primary features reported by the publishers. In

many unattended training algorithms, SVM, and neural

network (NN) was combined to improve the performance of

intrusion detectives [21]. To choose the features and SVM or

NN for classification, the authors developed, applied, and

tested a variety of hybrid models utilizing key parameter

analysis (PCA) and GFR gradual reduction. The findings have

shown, in terms of preparation and test time, hybrid models

are capable of accurately detecting established and unknown

threats, and the PCA and GFR classification approaches are

expensive to quantify.

The authors have suggested an integral component of a

wired or wireless network service for network intrusion

detection device (NIDS) for both external and internal assaults

[22]. NIDS tracks network-based threats such as malware

assaults by Denial of Service (DoS), ransomware spread, and

device intrusions.

LSTM is a useful tool for classifying and detecting

documented and unknown intrusions [23]. In this review, they

suggested a fundamental learning approach to IDS

construction. The authors used LSTM RNNs and used NSL-

KDD to train the pattern. Despite restricted computational

power, the new model has achieved greater accuracy.

4. PROPOSED METHODOLOGY

The proposed architecture indicates the strategies suggested

for our experiment. We call to train and testing data sets. The

training data collection is marked as friendly or focused for all

rows and labels all rows as neutral or an assault form. Then we

will apply standardization to this knowledge. After

normalization, we educated the data using deep learning

methods. We have used standardization for the test data

collection and presented these structured data to the IDS model

that detects the attack. The proposed architecture is described

in Figure 1.

Figure 1. The proposed NIDS architecture

5. RESULTS AND DISCUSSION

Similar to other current deep learning work, Tensor Flow

was used to apply our proposed classification algorithm. All

our reviews were conducted on Google co laboratory with 13

GB RAM with the GPU-enabled Tensor Flow. We also used

the CICIDS and the NSL-KDD datasets to perform our

assessments. These two datasets are called landmarks of NIDS

science. The usage of such datasets also allows assessing

current approaches and studies.

Throughout this portion, we will use the following metrics:

False Positive (FP): Standard data falsely marked as an

assault.

True Positive (TP): Attack data properly classified as an

assault.

False Negative (FN): Wrongly counted as usual attack

results.

True Negative (TN): Normal data correctly categorized as

normal. We will use the mentioned measures to assess our

proposed solution’s performance: The description of

performance metrics is shown in Table 1.

Table 1. The performance metrics used

Metric Description Formula

ACC

The exactness tests the

percentage of the overall

amount of false type wrong

description.

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

PR

Precision tests the right

number of classifications

penalized by the sum of false

classifications.

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

RE

The recall measures the right

amount of penalized

classifications

The number of submissions

missing.

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

FA

The false alarm wrongly tests

the ratio of positive

occurrences categorized as

malevolent.

𝐹𝑃

𝐹𝑃 + 𝑇𝑁

F S

The F-score tests the

harmonic mean of precision

and recall which serves as an

efficiency measurement

derived.

2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

459

5.1 Datasets

The NSL-KDD and CICDS2017 contrasts are included in

this article. For IDS research both natural and abnormal

partnerships were widely used.

NSL-KDD: The more recent NSL-KDD dataset [24]

developed by Patil and Srikanth Yadav [25] to solve KDD 99

data collection problems.

The authors [26] have done a taxonomy survey of the deep

architectures and algorithms accessible in these works and

grouped such algorithms into three groups: hierarchical,

composite, and generative. Afterward, a wide range of

intrusion detection fields investigates selected deep learning

applications.

Some of the current NIDS studies utilize this dataset as well,

and we hope that researchers will compare various strategies.

Table 2 displays the NSL-KDD data set's instruction and

evaluation documentation collection.

Table 2. Various forms of NSL-KDD data collection attacks

Attack type Flow count Training Test

Normal 12697529 67354 9734

DoS 659050 45935 7469

Probe 281156 11678 2405

R2L 114596 991 2748

U2R 201889 49 213

Total 13954220 126007 22569

In the 2017 CICIDS datasets [27], the evaluation CICIDS

dataset collects 80 Network Flow features from the network

traffic created. It includes SSH, DoS, Heart Blood, Hack,

Botnet, DDoS, and Brute ForceFTP. 80 network flow

properties are extracted from network traffic generated from

CIC traffic flow. The CIC-IDS2017 dataset also comprises 25

specific implementations, including FTP and HTTPS. Based

on other standards, Table 3 displays the collection of CICIDS

data sets for testing and training.

Table 3. Various forms of CIC-IDS2017 data collection

attacks

Category

of Attack
Type of attack

Flow

count
Training Test

Brute-force

Web attack

SSH 241 175 42

FTP 601 477 112

XSS 187599 7525 1856

Web 193360 15532 3850

SQL Injection 86 65 13

DoS attack

Hulk 466654 18658 4658

SlowHTTPTest 139880 55947 13996

Slow Loris 10994 4377 1085

Goldeneye 41522 16503 4162

DDoS

attack

HOIC 686112 27445 6860

LOIC-UDP 1736 1356 339

LOIC-HTTP 576291 23146 5755

Botnet Bot 286191 11385 2962

Infiltration Infiltration 161933 6477 1633

Benign 12697529 50995 12678

Total 15450729 240063 60001

In general, the analysis reveals that by studying feature

representations from broad quantities of unlabeled training

samples the proposed model will achieve high efficiency. The

session-based training samples are constructed from header

sections and network packet loading information. We

observed that the deep learning approach that was introduced

obtained very strong results for various classification tasks.

These results provide insights into the characteristics of raw

traffic. Such function representations are successful in

detecting specific malicious network traffics and creating low

false alarms. The following recommendations for

reconstruction error and true class metrics for various batch

sizes 32, 64, 128, 256, 512, and 1024, as shown in Tables 4, 5,

and 6 have been considered in 74257 protocol-type CICIDS

samples.

Table 4. Reconstruction error and true class for batch size 32

and 64

Batch size: 32 Batch size: 64

 reconstruction

error

true

class

reconstruction

error

true

class

count 74257 74257 74257 74257

mean 0.756783 15.768951 0.612605 15.768951

std 16.011881 4.52167 15.536912 4.52167

min 0.030319 0 0.014329 0

25% 0.113532 14 0.088711 14

50% 0.194001 16 0.122684 16

75% 0.412455 16 0.294209 16

max 2026.624732 39 1992.387512 39

Table 5. Reconstruction error and true class for batch size

128 and 256

Batch size: 128 Batch size: 256

 reconstruction

error

true

class

reconstructio

n error

True

class

count 74257 74257 74257 74257

mean 0.541016 15.768951 0.505147 15.768951

std 11.985496 4.52167 11.084156 4.52167

min 0.018649 0 0.019048 0

25% 0.085526 14 0.084922 14

50% 0.115952 16 0.114374 16

75% 0.273082 16 0.273093 16

max 1788.619462 39 1556.290473 39

Table 6. Reconstruction error and true class for batch size

512 and 1024

Batch size: 512 Batch size: 1024

 reconstruction

error

true

class

reconstruction

error

true

class

count 74257 74257 74257 74257

mean 0.490655 15.768951 0.485803 15.768951

std 10.675083 4.52167 10.519899 4.52167

min 0.018295 0 0.018811 0

25% 0.085305 14 0.084722 14

50% 0.114188 16 0.113876 16

75% 0.273149 16 0.272969 16

max 1629.798801 39 1637.784804 39

Figure 2 below shows the F1-Scores for different batch

sizes; Figure 3 below shows the ROC curves for different

batch sizes; Figure 4 below represents a model loss for

different batch sizes.

Table 7 describes the comparison results of training dataset

upon calculation of model loss for all epoch, F1-score, and

ROC curve of TPR and FPR. The F1-score results are depicted

in Figure 2, TPR and FPR results are portrayed in Figure 3,

and the model loss results of all epochs are depicted in Figure

4.

460

Table 8 demonstrates accuracy and failure for different

batch sizes. After reducing features, we have ultimately

considered 14 factors for our experiment. In our

experimentation with 3 encoders and 3 decoders, in each stage,

the preceding encoder or decoder is provided as an input

iteratively and in any iteration, we take into account the

encoding dimension size by 2. For batch size 32 we have a loss

of 0.6874 and an accuracy of 0.4684. For 64 batch size, we

have 0.9144 accuracy with a loss of 0.5528. We have 0.9144

accuracy with a loss of 0.5177 with 128 batch capacity. Given

256 batch size, we have an accuracy of 0.9157 with a loss of

0.4752. We have 0.9164 accuracy with 512 batch size and

0.4651 loss. Eventually, we received 0.9176 accuracy with

0.4627 failure with batch size 1024.

Figure 2. 2(a) to 2(f) F1-Scores for batch sizes 32, 64, 128, 256, 512 and 1024 respectively

Figure 3. 3(a) to 3(f) ROC curves for batch sizes 32, 64, 128, 256, 512 and 1024 respectively

461

Figure 4. 4(a) to 4(f) ROC curves for batch sizes 32, 64, 128, 256, 512 and 1024 respectively

Table 7. Comparison results of model loss, F1-score, TPR,

and FPR

Batch size
Model loss & Accuracy F1-scores

Loss Accuracy Precision Recall

32 0.6874 0.4684 0.9556 0.9687

64 0.5528 0.9144 0.9866 0.9629

128 0.5117 0.9144 0.9699 0.9594

256 0.4752 0.9157 0.9699 0.9594

512 0.4651 0.9164 0.9556 0.9687

1024 0.4627 0.9176 0.9627 0.9640

Table 8. Loss and accuracy for different batch sizes with

Adam optimizer

Batch

size

No.of

epochs
Loss

Val_

Loss
Accuracy

Val_

Accuracy

32 100 0.6874 0.7596 0.4684 0.4607

64 100 0.5528 0.6145 0.9144 0.8256

128 100 0.5117 0.5432 0.9144 0.8897

256 100 0.4752 0.5085 0.9157 0.9124

512 100 0.4651 0.4958 0.9164 0.9188

1024 100 0.4627 0.4939 0.9176 0.9183

6. CONCLUSION

The experimental results of the method proposed indicate

that our model shows improved classification accuracy and

faster training set and testing time. The methods have achieved

a higher precision with batch sizes 512 and 1024, especially in

binary classification with 0.9176 accuracies and 0.9188 value

accuracy of the CICIDS dataset. The further development will

be the subject of our future expansion strategy by using a

hybrid feature learning model for a great indication for

reduction of dimensionality and classification mechanisms.

Also, the training and test times of the model should be further

minimized with parallel structures or GPU acceleration of the

device.

REFERENCES

[1] Dong, B., Wang, X. (2016). Comparison deep learning

method to traditional methods using for network

intrusion detection. 8th IEEE International Conference

on Communication Software and Networks (ICCSN),

Beijing, pp. 581-585.

http://dx.doi.org/10.1109/ICCSN.2016.7586590

[2] Zhao, R., Yan, R.Q., Chen, Z.H., Mao, K.Z., Wang, P.,

Gao, R.X. (2019). Deep learning and its applications to

machine health monitoring. Mechanical Systems and

Signal Processing, 115: 213-237.

https://doi.org/10.1016/j.ymssp.2018.05.050

[3] IDC. (2014). Executive summary: Data growth, business

opportunities, and the IT imperatives. Framingham, MA,

USA, Tech. https://www.emc.com/leadership/digital

universe/2014iview/executive-summary.htm, accessed

on 17 June 2020.

[4] Juniper, N. (2015). Juniper Networks—how many

packets per second per port are needed to achieve Wire-

Speed?

https://kb.juniper.net/InfoCenter/index?page=content&i

d=KB14737, accessed on 17 June 2020.

[5] Heaton, N. (2018). Ian Goodfellow, Yoshua Bengio,

Aaron Courville: Deep learning. Program Evolvable

Mach, 19: 305-307. http://dx.doi.org/10.1007/s10710-

017-9314-z

[6] Li., D., Yu, D. (2014). Deep learning: Methods and

applications. Deep Learning: Methods and Applications,

206. http://dx.doi.org/10.1561/9781601988157

[7] Pascal, V., Hugo, L., Isabelle, L., Yoshua, B., Pierre-

Antoine, M. (2010). Stacked denoising autoencoders:

learning useful representations in a deep network with a

local denoising criterion. The Journal of Machine

Learning Research, 11: 3371-3408.

[8] Javaid, A., Niyaz, Q., Sun, W., Alam, M. (2016). A deep

learning approach for network intrusion detection system.

Proc. 9th EAI Int. Conf. Bio-Inspired Inf. Commun.

462

Technol., pp. 21-26. http://dx.doi.org/10.4108/eai.3-12-

2015.2262516

[9] Wang, Y.S., Yao, H.X., Zhao, S.C. (2015). Auto-

Encoder based dimensionality reduction.

neurocomputing. ACM Journals, 184.

https://doi.org/10.1016/j.neucom.2015.08.104

[10] Kim, G., Lee, S, Kim, S. (2014). A novel hybrid intrusion

detection method integrating anomaly detection with

misuse detection. Expert Systems with Applications,

41:1690-1700.

http://dx.doi.org/10.1016/j.eswa.2013.08.066

[11] Koc, L., Mazzuchi, T, Sarkani, S. (2012). A network

intrusion detection system based on a hidden naïve bayes

multiclass classifier. Expert Systems with Applications,

39: 13492-13500.

http://dx.doi.org/10.1016/j.eswa.2012.07.009

[12] De la Hoz, E., De la Hoz, E., Ortiz, A., Ortega, J.,

Martínez-Á, A. (2014). Feature selection by multi-

objective optimization: Application to network anomaly

detection by hierarchical self-organizing maps.

Knowledge-Based Systems, 71: 322-338.

http://dx.doi.org/10.1016/j.knosys.2014.08.013

[13] Rinku, S., Manojit, C., Nilanjan, S. (2015). An efficient

approach to develop detection system based on multi-

layer Backpropagation Neural Network Algorithm: IDS

using BPNN Algorithm. ACM SIGMIS Conference on

Computers and People. Research. Association for

Computing Machinery, New York, NY, USA, pp. 105–

108. https://doi.org/10.1145/2751957.2751979

[14] Guang, K., Yi, P., Chen, Z., Yong, S. (2009). Multiple

criteria mathematical programming for multi-class

classification and application in network intrusion

detection. Information Sciences, 179: 371-381.

https://doi.org/10.1016/j.ins.2008.10.025

[15] Mehmood, T., Rais, H. (2015). SVM for network

anomaly detection using ACO feature subset. 2015

International Symposium on Mathematical Sciences and

Computing Research (iSMSC), Ipon, pp. 121-126,

https://doi: 10.1109/ISMSC.2015.7594039

[16] Kim, J., Shin, N., Jo, S., Kim, S. (2017). Method of

intrusion detection using deep neural networks. 2017

IEEE International Conference on Big Data and Smart

Computing (BigComp), Jeju, pp. 313-316

https://doi.org/10.1109/BIGCOMP.2017.7881684

[17] Long, C., Fei, Y., Long, J., Zheng, X. (2017). A deep

learning approach for intrusion detection using recurrent

neural networks. IEEE Access, 5: 21954-21961.

https://doi.org/10.1109/ACCESS.2017.2762418

[18] Garcia, C., Carlos, H., Sascha, M., Max, F., Mathias.

(2016). Analyzing flow-based anomaly intrusion

detection using Replicator Neural Networks. 14th

Annual Conference on Privacy, Security and Trust (PST),

Auckland, pp. 317-324.

https://doi.org/10.1109/PST.2016.7906980

[19] Ashfaq, R., Wang, X., Huang, J., Abbas, H., He, Y.

(2017). Fuzziness based semi-supervised learning

approach for Intrusion Detection System. Information

Sciences, 378: 484-497.

https://doi.org/10.1016/j.ins.2016.04.019

[20] Tang, T.A., Mhamdi, L., McLernon, D., Zaidi, S.A.R.,

Ghogho, M. (2016). Deep learning approach for network

intrusion detection in software defined networking. 2016

International Conference on Wireless Networks and

Mobile Communications (WINCOM), Fez, pp. 258-263.

https://doi.org/10.1109/WINCOM.2016.7777224

[21] Perez, D., Astor, M., Perez, A, David, S., Eugenio.

(2017). Intrusion detection in computer networks using

hybrid machine learning techniques. 2017 XLIII Latin

American Computer Conference (CLEI), Cordoba, pp. 1-

10. https://doi.org/10.1109/CLEI.2017.8226392

[22] Srikanth Yadav, M., M.C.P/ Saheb. (2020). Comparative

assessment of deep learning methods for network

intrusion detection. Journal of Critical Reviews, 7(18):

314-320.

[23] Srikanth Yadav, M., Sushma, K., Gayatri.K. (2020).

Enhanced network intrusion detection using LSTM RNN.

International Journal of Advanced Science and

Technology, 29(05): 7210-7220.

[24] Nslkdd. https://www.unb.ca/cic/datasets/nsl.html,

accessed on May 30, 2019.

[25] Patil, A., Srikanth Yadav, M. (2018). Performance

analysis of misuse attack data using data mining

classifiers. International Journal of Engineering &

Technology, 7 (4.36): 261-263. ISSN 2227-524X.

http://dx.doi.org/10.14419/ijet.v7i4.36.23782

[26] Cicds. Dataset. https://www.unb.ca/cic/datasets/ids-

2017.html, accessed on May 30, 2019.

[27] Srikanth Yadav, M., Kalpana, R. (2019). Data

preprocessing for intrusion detection system using

encoding and normalization approaches. 2019 11th

International Conference on Advanced Computing

(Icoac), Chennai, India, pp. 265-269.

https://doi.org/10.1109/Icoac48765.2019.246851

463

