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Kernel extended dictionary learning model (KED) is a new type of Sparse Representation 

for Classification (SRC), which represents the input face image as a linear combination of 

dictionary set and extended dictionary set to determine the input face image class label. 

Extended dictionary is created based on the differences between the occluded images and 

non-occluded training images. There are four defaults to make about KED: (1) Similar 

weights are assigned to the principle components of occlusion variations in KED model, 

while the principle components of the occlusion variations have different weights, which 

are proportional to the principle components Eigen-values. (2) Reconstruction of an 

occluded image is not possible by combining only non-occluded images and the principle 

components (or the directions) of occlusion variations, but it requires the mean of occlusion 

variations. (3) The importance and capability of main dictionary and extended dictionary 

in reconstructing the input face image is not the same, necessarily. (4) KED Runtime is 

high. To address these problems or challenges, a novel mathematical model is proposed in 

this paper. In the proposed model, different weights are assigned to the principle 

components of occlusion variations; different weights are assigned to the main dictionary 

and extended dictionary; an occluded image is reconstructed by non-occluded images and 

the principle components of occlusion variations, and also the mean of occlusion variations; 

and collaborative representation is used instead of sparse representation to enhance the 

runtime. Experimental results on CAS-PEAL subsets showed that the runtime and accuracy 

of the proposed model is about 1% better than that of KED. 
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1. INTRODUCTION

Automatic face recognition (AFR) is one of the most 

important research topics in the field of machine vision, image 

processing and pattern recognition due to its wide range of 

applications. AFR is a very complicated and difficult process 

due to considerable intra-class variation, such as viewing angle, 

expression, lighting conditions, change of age, and occlusions. 

Occlusion can occur due to sunglasses, facial hair, wearing hat, 

etc. 

One of the classification models which achieved great 

success in AFR is sparse representation for classification 

model (SRC) [1] . The main idea of this minimization model is 

that an input face image can be expressed as a sparse linear 

combination of training images, and the larger coefficients of 

this linear combination belong to images that are in the same 

class as the input face image. Therefore, input image face class 

label can be determined. Compared with SRC, which assumes 

that noise also has a sparse representation, sparse 

representation on the basis of Maximum Correntropy is much 

more insensitive to outliers [2, 3]. Kernel sparse representation 

based classification (KSRC) algorithm [4, 5] maps data into a 

high dimensional feature space first and then SRC is 

performed in this new feature space by utilizing kernel trick. 

If the number of training data is low, KSRC may suffer from 

lack of training samples when mapping data from input data 

into feature space. To address this problem, a number of new 

training samples, termed virtual dictionary, are generated on 

the basis of the original training set to be used in feature 

mapping [6]. The performance of SRC highly depends on the 

data distribution. SRC could not obtain satisfactory results on 

uncontrolled or imbalanced data sets. Sparse supervised 

representation classifier (SSRC) was proposed to solve these 

issues [7].  

In extended SRC (ESRC), first, the intra-class variation of 

each face is determined based on standard and non-standard 

training set, and then, the input face image is expressed as a 

sparse linear combination of standard training images and 

intra-class variation [8] . The accuracy of ESRC is better than 

that of the basic SRC but the runtime of ESRC is more than 

that of SRC. In collaborative representation for classification 

model (CRC), L2-norm is used instead of L1-norm of training 

data coefficients in the minimization model [9] . Although this 

model cannot obtain a sparse representation of the input face 

image, but the accuracy of this model is not less than the basic 

SRC and its runtime is better than that of basic SRC. Akhtar et 

al. [10 ]  showed that fusion of SRC and CRC can increase the 

accuracy. In Locally Linear K-Nearest Neighbers (LLK) [11] , 

higher priority is assigned to nearest neighbors of input face 

image for contributing in linear representation of that input 

face image. The accuracy of LLK is better than that of basic 

SRC. Kernel extended dictionary learning model (KED)  [12]  

is a new type of ESRC. In this model, first, training data 

features are extracted using local binary patterns (LBP) [13 ] . 

The preprocessed training data then are mapped into a High-

dimensional feature space. Next, by using Kernel Discriminant 

Analysis (KDA) [14] , standard training images are mapped 

into a space with the least intra-class variation and inter-class 
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similarity. Then, the main directions of occlusion variations 

are determined according to the differences between the 

standard training set and occluded training set in the high-

dimensional feature space using Kernel Principle Component 

Analysis (KPCA) [15] , and are transformed into the KDA 

space. Finally, the input face image, whose features are 

extracted by LBP, are mapped into the KDA space, and 

represented as a sparse linear combination of standard training 

set in the KDA space (basic dictionary) and the main 

directions of occlusion variations determined by KPCA and 

transformed into the KDA space (Extended Dictionary). 

There are four defaults to make about KED: (1) Similar 

weights are assigned to the principle components of occlusion 

variations in KED model, while the principle components of 

the occlusion variations have different weights, which are 

proportional to the principle components Eigen-values. (2) 

Reconstruction of an occluded image is not possible by 

combining only non-occluded images and the principle 

components (or the directions) of occlusion variations, but it 

requires the mean of occlusion variations. (3): The importance 

and capability of main dictionary and extended dictionary in 

reconstructing the input face image is not the same, necessarily. 

(4) KED Runtime is high. To address these problems or 

challenges, a novel mathematical model is proposed in this 

paper. In the proposed model, different weights are assigned 

to the principle components of occlusion variations; different 

weights are assigned to the main dictionary and extended 

dictionary; an occluded image is reconstructed by non-

occluded images and the principle components of occlusion 

variations, and also the mean of occlusion variations; and 

collaborative representation is used instead of sparse 

representation to enhance the runtime. Experimental results on 

CAS-PEAL subsets showed that the runtime and accuracy of 

the proposed model is about 1% better than that of KED. 

In continue, SRC, CRC, ESRC and KED is described in 

Section 2, and the proposed model is presented in Section 3. 

In Section 4, experimental results are reported, and then 

conclusion is drawn in Section 5. 

 

 

2. PREREQUISITES 

 

2.1 SRC 

 

Consider the training set 𝑋 = [x1, x2, … , xn], in which xi ∈
Rd. The class label of xi is ci ∈ [1, C]. To determine the label 

of input face image y ∈ Rd, based on the training data X, the 

input face image y  are first represented as a sparse linear 

combination of training set by the following mathematical 

model [16]: 

 

minβ ‖y − Xβ‖2 + γ‖β‖1. (1) 

 

where, γ≥0 is user-determined parameter of the model which 

determines the importance of the second term of the model (1) 

with respect to its first term. The first term of the model (1) 

represent the input face image y as a linear combination of 

training set, where βi is the coefficient of i-th training data in 

this linear combination. Since there are several representations 

for the input face image y, the second term of the model (1) 

selects the sparse linear combination among these linear 

combinations. In fact, γ controls the sparseness of this linear 

combination. It is expected that for a proper γ, the input face 

image y is represented as linear combination of a small number 

of training data of the same class as y. Model (1) can be solved 

by different algorithms, such as FISTA ]17[. Let δl(β) be a 

vector whose i-th entry is equal to βi if ci is equal to l, otherwise 

its i-th element is equal to zero. ci is the class label of i-th face 

image. The class label of the input data y is l* which minimizes 

the amount of the following residual: 

 

𝑟𝑙∗(𝑦) = ‖𝑦 − 𝑋𝛿𝑙∗(𝛽)‖2 (2) 

 

2.2 CRC  

 

The SRC model is not differentiable. Therefore, fast 

gradient based algorithm cannot be used to solve SRC. To 

address this problem, CRC model was proposed. CRC model 

is as follows: 

 

min𝛽   𝐹 = ‖𝑦 − 𝑋𝛽‖2 + 𝛾‖𝛽‖2. (3) 

 

The objective function of CRC model, unlike the SRC 

model, is differentiable. Therefore, to solve the model (3), it is 

enough to solve the following equation: 

 
𝜕𝐹

𝜕𝛽
= 0 (4) 

 

We have 

 

0 =
𝜕𝐹

𝜕𝛽
= −2𝑋𝑇(𝑦 − 𝑋𝛽) + 2𝛾𝛽, 

→ 𝛽 = 𝑍𝑦. 
(5) 

 

where, 

 

𝑍 = (𝑋𝑇𝑋 + 𝛾𝐼)−1𝑋𝑇 . (6) 

 

Eq. (6) is calculated only once in the training phase, and the 

coefficient vector β is calculated just by multiplication of the 

matrix Z and the input data y, while in the SRC model, to 

calculate β, the SCR model must be solved for each input face 

image y using FISTA algorithm. Therefore, the CRC method 

is faster than the SRC. 

 

2.3 ESRC  

 

Both SRC and CRC are not robust to non-standard face 

images. To solve this problem, ESRC was proposed. Suppose 

that training face images include two types of face images: 

standard face images and non-standard face images. Standard 

images are obtained under standard conditions, for example, 

standard lighting conditions, standard viewing angle, standard 

expression, and without glasses. Let X̃ = [x̃1, x̃2, … , x̃ñ] be the 

non-standard face images and X = [x1, x2, … , xn] be standard 

ones. Also, let x̃i be the non-standard face image of i-th 

individual and  xidx(i) be his standard face image. Therefore, 

intra-class variation bases are as follows: 

 

�̃� = [�̃�1 − 𝑥𝑖𝑑𝑥(1), �̃�1 − 𝑥𝑖𝑑𝑥(2), … , �̃��̃� − 𝑥𝑖𝑑𝑥(�̃�)], 

 

where, ñ is the number of non-standard images. In ESRC, the 

input face image y is represented as sparse linear combination 

of standard images and intra-class variation using the 

following model:
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min𝛽,�̃�  ‖𝑦 − [𝑋, �̃�] [
𝛽

𝛽
]‖

2

+ 𝛾 ‖[
𝛽

𝛽
]‖

1

. (7) 

 

Finally, the label of the input face image y is equal to the 

class label l∗ which minimizes the following residual: 

 

𝑟𝑙∗(𝑦) = ‖𝑦 − [𝑋, �̃�] [
𝛿𝑙∗(𝛽)

𝛽
]‖

2

. (8) 

 

2.4 Kernel extended dictionary (KED) 

 

ESRC has better generalization ability than SRC, but its 

runtime time is highly influenced by the number of the intra-

class variation bases Ẽ. One of the goals of KED is to address 

this problem. 

 

2.4.1 Learning basic dictionary 

In KED, all training data except the occluded face images 

are first transformed into a (C − 1) −dimensional space with 

the least intra-class variation and inter-class similarity using 

KDA. Let Ṽ = [ṽ1, ṽ2, … , ṽC−1]  be C − 1  axes in the (C −
1) −dimensional KDA space, and 

 

�̃�𝑖 = ∑�̃�𝑖𝑗𝜑(𝑥𝑗)

𝑛

𝑗=1

, (9) 

 

where, φ is a mapping function which maps data from input 

space into a high-dimentional feature space, and ãi =
[ãi1, ãi2, … , ãin] is a vector obtained using KDA. Then, the 

input face image y and the standard training images in the 

KDA space (the basic dictionary) which are denoted by 

yKDA and D̃, respectively, are calculated as follows: 

 

𝑦𝐾𝐷𝐴 = �̃�𝑇𝜑(𝑦)
= [�̃�1

𝑇𝐾(𝑦), �̃�2
𝑇𝐾(𝑦), … , �̃�𝐶−1

𝑇 𝐾(𝑦)]𝑇 , 
(10) 

 

�̃�𝑖 = ∑�̃�𝑖𝑗𝜑(𝑥𝑗)

𝑛

𝑗=1

, (11) 

 

where, 

 

𝐾(𝑦) = [𝑘(�̃�1, 𝑦), 𝑘(�̃�2, 𝑦), … , 𝑘(�̃��̃� , 𝑦)]𝑇 , (12) 

 

and k(. , . ) is Gaussian kernel function. 

 

2.4.2 Learning the model of occluded face images or extended 

dictionary 

The occluded face images were not used to learn basic 

dictionary model by KDA because an occlusion in a face 

images causes a broad change in the face image, and an 

occluded face image is considered to be an outlier in KDA. 

When there is outlier in training set, KDA cannot find a proper 

space with the least intra-class variation and inter-class 

similarity.  

Let X⃛ = [x⃛1, x⃛2, … , x⃛n⃛] be occluded face images. Occlusion 

variation in high-dimensional feature space is as follows: 

 

𝐸 =

[
 
 
 
 
𝜑(𝑥1) − 𝜑(𝑥𝑖𝑑𝑥(1)),

𝜑(𝑥2) − 𝜑(𝑥𝑖𝑑𝑥(2)),
… ,

𝜑(𝑥𝑛) − 𝜑(𝑥𝑖𝑑𝑥(𝑛))]
 
 
 
 

 (13) 

 

where, x(idx(i)) is the standard image of the occluded image of 

i -th individual 𝑝  principle components of the occlusion 

variation which are denoted by V ⃛=[v ⃛_1,v ⃛_2,…,v ⃛_p ], 

can be obtained using KPCA model, namely the following 

model: 

 

max
𝑉

𝑉𝑇𝑆 𝑉

subject to 𝑉𝑇𝑉 = 𝐼.
 (14) 

 

where, I is identity matrix, and 

 

𝑆 = ∑𝜑𝑖

𝑛

𝑖=1

𝜑𝑖
𝑇 , (15) 

 

where,  φi = φ(x⃛i) − φ(xidx(i)). The constraints of the model 

(14) enforce the length of occlusion variation principle 

components to be equal to 1. To solve the model (14), the 

following eigen-vector problem must be solved: 

 

𝑆𝑉 = Λ𝑉, ( 61 ) 

 

where, Λ is a matrix of which main diagonal elements are the 

eigen-values corresponding to the eigen-vector matrix V⃛. V⃛ 

contains the p more important eigenvectors of the matrix S.  

We have: 

 

𝑣𝑖 = ∑𝑎𝑖𝑗𝜑𝑗

𝑛

𝑗=1

, ( 71 ) 

 

where, a⃛ij ∈ R. Therefore, the problem (16) can be written as 

follows: 

 

𝐾𝑎 = Λ⃛𝑎, ( 81 ) 

 

in which, 

 

𝐾𝑖𝑗 = 𝜑𝑖
𝑇𝜑𝑗 

= (𝜑(𝑥𝑖) − 𝜑(𝑥𝑖𝑑𝑥(𝑖)))
𝑇

(𝜑(𝑥𝑖) − 𝜑(𝑥𝑖𝑑𝑥(𝑖)))  

= 𝑘(𝑥𝑖 , 𝑥𝑖) + 𝑘(𝑥𝑖𝑑𝑥(𝑖), 𝑥𝑖𝑑𝑥(𝑖)) − 2𝑘(𝑥𝑖 , 𝑥𝑖𝑑𝑥(𝑖)). 

( 91 ) 

 

and Λ⃛ is the matrix of which main diagonal elements are the 

eigen-values corresponding to the eigenvector matrix a⃛. After 

solving the problem (18) and obtaining optimal value of a⃛, p 

principle components of the occlusion variation E⃛  are 

determined using Eq. (17). Then, the principle components of 

the occlusion variation in KDA space (Extended Dictionary) 

which are denoted by D⃛ , are obtained by projecting the 

principle components of occlusion variation V⃛ on the KDA 

space Ṽ as follows: 
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�⃛� = �̃�𝑇𝑉, (20) 

 

where, 

 
�⃛�𝑖𝑙 = �̃�𝑖

𝑇𝑣𝑙  

= (∑ �̃�𝑖𝑗𝜑(𝑥𝑗)
𝑛
𝑗=1 )

𝑇
(∑ 𝑎𝑙𝑡𝜑𝑡

�⃛�
𝑗=1 )  

= (∑ãijφ(xj)

n

j=1

)

T

(∑a⃛lt (φ(x⃛t) − φ(xidx(t)))

n⃛

j=1

) 

= �̃�𝑖
𝑇𝐾𝑎𝑙 ,  

( 12 ) 

 

𝐾𝑖𝑗 = 𝑘(𝑥𝑖 , 𝑥𝑗) − 𝑘(𝑥𝑖 , 𝑥𝑖𝑑𝑥(𝑗)). ( 22 ) 

 

Finally, the input face image y in the KDA space denoted 

by yKDA  is represented as a linear combination of the basic 

dictionary D̃  and the extended dictionary D⃛  using the 

following model: 

 

𝑚𝑖𝑛�̃�,�⃛�  ‖𝑦𝐾𝐷𝐴 − [�̃�, �⃛�] [
𝛽

𝛽
]‖

2

+ 𝛾 ‖[
𝛽

𝛽
]‖

1

 ( 32 ) 

 

Eventually, the class label of the input face image y is equal 

to l∗ which minimizes the following residual: 

 

𝑟𝑙∗(𝑦) = ‖𝑦𝐾𝐷𝐴 − [�̃�, �⃛�] [
𝛿𝑙∗(𝛽)

𝛽
]‖

2

 ( 42 ) 

 

 

3. OUR PROPOSED MODEL 

 

There are four criticisms to make about KED: 

• First criticism: Similar weights are assigned to the 

principle components of occlusion variations in KED 

model, while the principle components of occlusion 

variations have different weights, which are 

proportional to the principle component eigen-values. 

If the eigen-value of a principle component is high, 

occlusion variation along its corresponding eigen-

vector is considerable. Therefore, variation along this 

eigen-vector is more probable than an eigen-vector 

with a small eigen-value. Thus, unlike KED, we must 

assign a higher priority to variation along an eigen-

vector with a large eigen-value with respect to variation 

along an eigen-vector with a small eigen-value in our 

model. 

• Second criticism: An occluded face image is the sum of 

its corresponding non-occluded face image and 

occlusion. Reconstruction of an occluded image is not 

possible by combining only non-occluded images and 

the principle components (or the directions) of 

occlusion variations, but it requires the mean of 

occlusion variations because reconstruction of an 

occlusion is not possible by only the principle 

components of occlusion variations. For further 

explanation, we showed the occlusion, i.e. the 

difference between an individual's occluded and non-

occluded face image, with a point in Figure 1. 

Directions or the principle components of occlusion 

variation were shown with two lines in Figure 1. These 

directions are determined using KPCA. According to 

the constraints of KPCA, i.e. the model (14), the length 

of principle components is the same. In KED, the p 

most important components of the principle 

components of occlusion variation are selected. Let 
p=1. Therefore, the most important direction is only 

selected from the two main directions specified in Fig. 

1. This principle component or the most important 

direction was shown with a solid line in Figure 1. 

Obviously, it is not possible to reconstruct the 

occlusions or the points shown in Figure 1 with this 

principle component, i.e. the most important direction. 

In other words, a specified occlusion with a point in 

Figure 1 cannot be reached by moving from the origin 

along the most important direction. In order to 

reconstruct the occlusions or the points shown in Figure. 

1, we must move from the occlusion mean along the 

most important direction. 

 

 
 

Figure 1. Occlusion cannot be reconstructed using the most 

important principle component of occlusion variation. Each 

point represents an occlusion, and each line is a principle 

component of occlusion variation 

 

• Third criticism: The importance and capability of main 

dictionary and extended dictionary in reconstructing 

the test image is not the same, necessarily, while their 

importance is considered to be the same in KED. 

• Fourth criticism: The runtime of sparse representation-

based classification used in KED model is more than 

collaborative representation. 

To address these four problems or challenges, we propose 

the following model: 

 

𝑚𝑖𝑛�̿�,�⃛�  𝐹 = ‖𝑦𝐾𝐷𝐴 − [�̿�, 𝜃�⃛� 𝛬] [
�̿�

𝛽
]‖

2

2

+ 𝛾 ‖[
�̿�

𝛽
]‖

2

2

 ( 52 ) 

 

where, D̿ is the basic dictionary D̃ together with the occluded 

images mean in the KDA space which are denoted by μKDA, 

i.e.  

 

�̿� = [�̃�, 𝜇𝐾𝐷𝐴], ( 62 ) 

 

μKDA = ṼT (
1

n⃛
∑φj

n⃛

j=1

) 

=
1

n⃛
ṼT ∑φ(x⃛j) − φ(xidx(j))

n⃛

j=1

 

=
1

𝑛
[�̃�1

𝑇 ∑(𝐾(𝑥𝑗) − 𝐾(𝑥𝑖𝑑𝑥(𝑗)))

�⃛�

𝑗=1

, … , 

�̃�𝐶−1
𝑇 ∑(𝐾(𝑥𝑗) − 𝐾(𝑥𝑖𝑑𝑥(𝑗)))

�⃛�

𝑗=1

] 

( 72 ) 

 

The eigen values of occlusion variation Λ⃛ is multiplied by 

the principle components of occlusion variations D⃛  in our 

proposed model to give greater weight or more importance to 
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the principle components of occlusion variation with larger 

eigen-values to response to the first criticism. Principle 

components with larger eigen-values represent the most 

important directions of occlusion variation. In our proposed 

model, we consider the occluded images mean in the KDA 

space μKDA to response to response the second criticism. 

Hyper-parameter θ controls the importance of the extended 

dictionary with respect to the basic dictionary to response to 

the third criticism. Finally, we used l2-norm of coefficient in 

our proposed model instead of l1-norm in KED model to 

response to the fourth criticism. Therefore, our proposed 

model is differentiable and we can design a fast gradient based 

algorithm to solve our proposed model. To solve our proposed 

model, i.e. model (25), we simply solve the following equation: 

 
𝜕𝐹

𝜕 [
�̿�

𝛽
]

= 0, 
( 82 ) 

 

We have: 

 
0 =

𝜕𝐹

𝜕[
�̿�

�⃛�
]

  

= −2[�̿�, 𝜃�⃛� 𝛬]
𝑇
(𝑦𝐾𝐷𝐴 − [�̿�, 𝜃�⃛� 𝛬] [

�̿�

𝛽
]) + 2𝛾 [

�̿�

𝛽
]  

→ [
�̿�

𝛽
] = 𝑍 × 𝑦𝐾𝐷𝐴. 

( 92 ) 

 

where, 

 

𝑍 = ([�̿�, 𝜃�⃛� 𝛬]
𝑇
[�̿�, 𝜃�⃛� 𝛬] + 𝛾𝐼)

−1

[�̿�, 𝜃�⃛� 𝛬]
𝑇
. (30) 

 

Training phase of our proposed model is summarized as 

algorithm 1. The class label of test face image is determined 

using algorithm 2. 

 

Algorithm 1. Training phase of our proposed model. 

Input:  

Occluded face images, 

Standard face images. 

Begin 

• Extract features from occluded face images and 

standard face images using LBP. Let X⃛ =
[x⃛1, x⃛2, … , x⃛n⃛]  be processed occluded face images, and 

X = [x1, x2, … , xn] be processed standard face images. 

• Compute the kernel matrix K⃛ according to Eq. (19). 

• Compute ã using KDA. 

• Compute D̃ using Eq. (11) 

• Solve Eq. (18) to obtain eigen values and eigen vectors 

of K⃛ denoted by Λ⃛ and a⃛. 

• Compute D⃛ using Eq. (21) 

• Compute μKDA using Eq. (27) 

• Compute D̿ using Eq. (26) 

• Compute Z̃ using Eq. (30) 

End. 

 

Algorithm 2. Test phase of our proposed model. 

Input:  

Test face image. 

Begin 

• Extract features from test face image using LBP. Let 𝑦 

be processed test face image. 

• Compute 𝑦𝐾𝐷𝐴 using Eq. (10) 

• The class label of the input face image 𝑦 is equal to 𝑙∗ 

which minimizes the following residual: 

 

rl∗(y) = ‖yKDA − [D̿, θD⃛ Λ⃛] [
(

1
δl∗(β̃(2: end))

)

β⃛

]‖

2

. (31) 

 

where, δl(β) is a vector of which i-th entry is equal to 

βi if ci is equal to l, otherwise its i-th element is equal 

to zero. ci is the class label of i-th face image. 

End. 

 

 

4. EXPERIMENTAL RESULTS 

 

In this section, some experiments are performed on a 

Chinese benchmark dataset, i.e. CAS-PEAL, to study the 

performance of our proposed model. CAS-PEAL contains 

99594 face images of size 120×100. 9031 available frontal 

face images of this dataset are used in our experiments. These 

face images belong to 1040 individuals and include 1040 

standard face images. Some example images of this dataset 

were shown in Figure 2. The experiments were implemented 

on a computer with COREi7 2636 CPU, and 6GB main 

memory. The best value of the hyper-parameters γ and θ, were 

selected from the set {0.001,0.01,0.1,1,2,3,4,5,10,100}  and 

{0.001,0.01,0.1,1,10,102, 103, 104, 105}, respectively. 

 

 
 

Figure 2. Examples of CAS-PEAL dataset face images. 

 

CAS-PEAL was divided into two sets, i.e. training set and 

test set. The training set was randomly selected from 800 face 

images of 200 different individuals under non-standard 

lighting conditions (lighting subset), 400 face images of 100 

individuals with non-standard face expressions (expression 

subset) and 80 occluded face images of 20 different 

individuals with accessory such as glasses (accessory subset). 

Then, standard face images of randomly selected non-standard 

face images were also added to the training set. The test face 

images were selected from expression subset (expression), 

lighting subset (lighting), accessory subset (accessory), non-

standard background face images subset (background), 

individual face images taken at different ages (Time), 

individual face images with non-standard distance from the 

camera (distance), and individual face images with hats (hat). 

Figure 3 shows the sensitivity of overall accuracy of our 

proposed method to the parameter γ. As it can be seen, the 

accuracy of our proposed model for γ = 100 is the best. 

According to Table 1, the overall accuracy of KED for the best 

value of its hyper-parameter, i.e. for γ=0.01, is 93.47%, while 

the overall accuracy of our proposed method for the best value 

of its hyper-parameters, i.e. for γ = 100 and θ=105, is 94.41% 

which is better than that of KED method. In addition, the speed 

of our proposed model is better than that of KED. 
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Figure 3. Sensitivity of the overall accuracy of our proposed 

model to the parameter Gamma (γ) 

 

Table 1. Overall accuracy and speed of our proposed model 

and KED for the whole test set 

 
method Running time (sec.) Overall accuracy (%) 

KED 967 93.47 
proposed  888 94.41 

 

 
 

Figure 4. Sensitivity of the accuracy of our proposed model 

to the parameter Gamma (γ) for “Accessory” subset 

 

 
 

Figure 5. Sensitivity of the accuracy of our proposed model 

to the parameter Gamma (γ) for “Lighting” subset 

 
 

Figure 6. Sensitivity of the accuracy of our proposed model 

to the parameter Gamma (γ) for “Expression” subset 

 

 
 

Figure 7. Sensitivity of the accuracy of our proposed model 

to the parameter Gamma (γ) for “Sunglass” subset 

 

 
 

Figure 8. Sensitivity of the accuracy of our proposed model 

to the parameter Gamma (γ) for “Hat” subset 
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Table 2. Accuracy of our proposed model, SRC, ESRC, 

KDA+SRC, KDA+ESRC, LED, and KED for different test 

data subsets 

 

Method 
Test data subset 

Expression Lighting Hat Accessory 

SRC 98.21 17.31 51.17 72.87 

ESRC 99.70 82.08 75.66 87.05 

KDA +SRC 99.69 82.73 65.85 80.81 

KDA+ESRAC 99.69 83.03 65.93 80.85 

LED 99.12 66.83 72.26 84.78 

KED 99.80 84.55 86.62 92.94 

Proposed  99.80 86.06 89.66 94.44 

 

Figures 4-8 show the sensitivity of accuracy of our proposed 

method to the parameter γ for different subsets of dataset. As 

it can be seen, the accuracy of our proposed model is not too 

sensitive to the parameter γ, specially for some test subsets 

such as “Expression”. Table 2 compares the accuracy of our 

proposed model with SRC, ESRC, KDA+SRC, KDA+ESRC, 

LED, and KED for different test data subsets. Table 3 

compares the best obtained accuracy of the proposed method 

with 1NN, SSEC, RRC, SLF-RKR, MOST, KED methods. As 

can be seen, the accuracy of the proposed method for any type 

of test image, except for the distance, is better or equal to the 

accuracy of the other methods. 

 

Table 3. Accuracy of our proposed model, 1NN, SSEC, RRC, SLF-RKR, MOST, KED for different test data subsets 

 

Method 
Test data subset 

Distance Background Time Expression Lighting Accessory 

1NN 76.91 39.69 38.79 80.31 2.874 38.75 

SSEC 84.23 66.83 51.94 74.51 17.39 66.64 

RRC 97.90 95.64 96.67 93.98 29.32 84.19 

SLF-RKR 99.69 99.88 98.48 99.64 28.81 90.88 

MOST 99.75 99.01 97.88 98.15 82.39 80.35 

KED 100 100 98.48 99.80 84.55 92.94 

Proposed 99.89 100 100 99.80 86.06 94.44 

 

 

5. CONCLUSION 

 

The kernel extended dictionary learning model (KED) is a 

new type of SRC, which represents the test datum as a linear 

combination of dictionary set and extended dictionary set. 

There were four criticisms to make about KED. To address 

these four problems, a novel model was proposed in this paper. 

Experimental results on real dataset showed that the accuracy 

of the proposed model is better than that of KED, SRC, ESRC, 

KDA+SRC, KDA+ESRC, LED, 1NN, SSEC, RRC, SLF-

RKR, MOST, and runtime of the proposed model is at-least 

better than that of KED. 
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NOMENCLATURE 

 

𝑋  Standard face image processed using LBP 

X⃛  Occluded face image processed using LBP 

𝑦  
𝑦𝐾𝐷𝐴  

Test face image processed using LBP 

Processed test face image in KDA space 

μKDA  Occluded images mean in the KDA space 

�⃛�  Principle components of occlusion variation 

(Extended dictionary) 

Λ⃛  Eigen values of occlusion variation 

D̃  Basic dictionary 

𝛾, 𝜃  Hyper-parameters of our proposed model 

k(. , . )  Kernel Gaussian function 
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