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The purpose of this work is to predict the mass loss of cement raw materials during the 

decarbonation process. The mass loss is influenced by the interaction of several parameters 

such as chemical composition of raw material, particle size, temperature range of 

decarbonation and time exposed. Therefore, predicting mass loss based on experimental 

parameters data is often challenging. For this reason, various machine learning algorithms 

such as deep networks using autoencoder DN-AE, artificial neural networks optimized by 

particle swarm optimization PSO-ANN, ANN optimized by ant colony optimization ACO-

ANN and ANN are proposed to predict the mass loss. In this research, all models have been 

applied successfully to predict the mass loss with high accuracy. The results obtained have 

shown the superiority of DN-AE compared to PSO-ANN, ACO-ANN and ANN. In 

addition, PSO-ANN and ACO-ANN have a better performance than the individual use of 

ANN. The values of adjusted R2 indicate that 99.11%, 98.66%, 98.27% and 97.03% of data 

are explained by DN-AE, ACO-ANN, PSO-ANN and ANN respectively with scatter index 

(SI) less than 0.1 and maximum error less than 3.32%. Finally, the results justify that all 

models proposed can be employed to predict the mass loss as alternative tools. 
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1. INTRODUCTION

After water, cement is the second-most consumed material 

on earth. The global cement production around the world is 

increasing about 3.3 billion tonnes in 2009 [1] and 

approximately 3.6 billion tonnes in 2012 [2]. The principal raw 

materials for the manufacture of cement are mainly limestone, 

clay (alumino-silicate silicates), sand (silica oxide) and iron 

ore (iron oxide) in definite mass percentages [3]. The 

limestone which composed mainly of calcium carbonate 

CaCO3 is thermally decomposed into lime CaO and carbon 

dioxide CO2 [4] in rotary kilns. 

The raw material mixture is heated in a rotary cement kiln 

and then cooled by fresh air. A small quantity of gypsum is 

added to obtain the final cements. The process of thermally 

decomposing raw materials is called decarbonation. In fact, 

the decarbonation process is a complex phenomenon. In reality, 

the chemical composition of raw materials, particle size 

distributions, temperature range throughout the duration of the 

decarbonation process are most important factors affecting 

mass loss due to decarbonation. The relation between the mass 

loss its influence factors is highly complex [5]. Unfortunately, 

when the problem is complex, it is difficult or even impossible 

to obtain exact relationship between target and its influence 

factors. 

In recent years, machine learning algorithms are becoming 

increasingly more important in modelling of complex 

phenomena where many factors determine the outcome of the 

process. It is so difficult, even impossible, to predict target 

outputs with simple statistical models [6]. One of the major 

advantages of machine learning algorithm is that it does not 

need the explicit knowledge of chemical and physical behavior 

of phenomena [7]. It can be used without knowing the exact 

mathematical expressions between inputs and output, it only 

needs to be trained by sufficient training data and optimal 

parameters to predict the target. 

In the present study, various models such as Deep Networks 

using Auto-Encoder (DN-AE), Artificial Neural Network 

(ANN), Artificial Neural Network combined with Particle 

Swarm Optimization algorithm (PSO-ANN) and Ant Colony 

Optimization (ACO) combined with Artificial Neural 

Network (ACO-ANN) are used to predict the mass loss of 

cement raw materials due to decarbonation process. These 

algorithms are intelligent methodologies that have shown 

successful and promising results in the domains of modelling 

and prediction [8] and can be useful and powerful alternative 

[9]. DN-AE has achieved a good prediction performance on 

limited protein phosphorylation [10]. PSO-ANN shows good 

results in the prediction of gas measurement [11] and in the 

modelling global solar radiation [12]. The ACO combined 

with ANN has strong predictive ability. It is successfully used 

to predict of NOx and soot emissions from a diesel engine [13]. 

ANN is widely used to model highly non-linear and 

complicated phenomena [14]. It can predict the pitting 

corrosion in presence of inhibitors with surprising accuracy 

[15]. 

The rest of this paper is constructed as follows. Section 2 

aims to give a brief overview about models theory. Section 3 

describes the materials and experimental methods used. The 

results obtained are discussed and compared with 

experimental results in section 4. Finally, section 5 presents 

our conclusions.

Revue d'Intelligence Artificielle 
Vol. 34, No. 4, August, 2020, pp. 403-411 

Journal homepage: http://iieta.org/journals/ria 

403

https://crossmark.crossref.org/dialog/?doi=10.18280/ria.340404&domain=pdf


 

2. THEORY OF MODELS 

 

2.1 Artificial Neural Networks (ANN) 

 

The artificial neural networks ANN are inspired from the 

morphology of biological nervous systems to emulate the 

functioning of the brain with high capability to learn and to 

predict based on learning stage. The artificial neural networks 

consist of multilayer: input layer, output layer and the layer 

between the input layer and the output layer is named the 

hidden layer [16]. Generally, there is currently no theoretical 

criteria adequate for choosing an appropriate number of 

hidden layer. In In many cases, the neural networks with a 

unique hidden layer are capable to any continuous function to 

any desired performance [17]. Each layer is formed by one or 

more simple processing units called neurons. These neurons 

are connected to every node in the next layer by some 

weighted links and bias. In addition, neurons belonging to the 

same layer are not connected with each other. There are no 

rules to calculating a suitable number of neurons in the hidden 

layer. More specifically, the default number of neurons in 

hidden layer is set to 10. The response (output) of a neuron in 

hidden layer and output is calculated by activation function 

which often called transfer function.  

The artificial neural network trained using a back 

propagation (BP) algorithm is most popular and widely used 

[18]. The evaluation of the artificial neural network is divided 

into two stages: the first one is feed forward stage and second 

one is back propagation stage. The back propagation (BP) 

algorithm is used for weight adjustment [19] to reduce error 

between experimental values and predicted values. The weight 

and the thresholds of the artificial neural network are randomly 

initialized as a value from 0 to 1. 

In general, the aim of the training is to choose the optimum 

parameters such as optimal the number of the hidden layer, 

optimum nodes number of hidden layers, transfer functions of 

both hidden and output layers. 

 

2.2 Particle Swarm Optimization - Artificial Neural 

Networks (PSO-ANN) 

 

The Artificial Neural Networks (ANN) are able efficiently 

to solve complex problems effectively and efficiently. 

However, it has some problems during the training phase such 

trapping at local minima instead of getting the global 

minimum and convergence speed is slow. In order to 

overcome this deficiency, the particle swarm optimisation 

(PSO) algorithm are used to find of the network parameters as 

weights and thresholds, and to avoid trapping in local minima. 

Particle Swarm Optimization - Artificial Neural Networks 

(PSO-ANN) is a hybrid combination of artificial neural 

network and particle swarm optimization. PSO algorithm is 

one of global search methods based stochastic optimisation 

method. It is proved that PSO algorithm is able to obtain good 

results in a faster and cheaper way compared with other 

stochastic technique. The basic idea of PSO algorithm is to 

imitate the behavior of fish schooling or bird flocking 

searching food and to guide of particles towards the best 

promising areas of the search space. PSO algorithm is 

employed to optimize and to train ANN [20]. It consists of 

number individuals, called particles. Each particle is 

considered as a solution. It is characterised by the position and 

velocity which will be changed and update to find the particle 

best value and global best value. The solution is initially 

random generated. The new solutions are updated and are 

evaluated at each iteration [21]. The operation is repeated until 

the best solution is reached or given stopping criterion is 

fulfilled. The greatest advantages of PSO algorithm are that it 

is very easy to program and has a small number of adjustable 

parameters. The most popular adjustable parameters of PSO 

algorithm are population size and iteration number. 

 

2.3 Ant Colony Optimization - Artificial Neural 

Network (ACO-ANN) 

 

Ant Colony Optimization (ACO) is combined with 

Artificial Neural Network like PSO algorithms to develop and 

to optimize ANN architectures. The risk of getting stuck in 

local optima is sharply reduced by ACO algorithm [22]. 

Ant Colony Optimization (ACO) is considered as a 

powerful optimization tool [23] which is used to solve 

different optimisations problems. It is inspired by the behavior 

of ants. In nature, ants are able to search for an optimal and 

shortest trajectory (edge) between their nest and food source. 

Each ant moves randomly through all to find the food source. 

When ant find a food leave behind a chemical substance on the 

ground, called pheromone. The quantity, the quality and the 

distance of the food source are related to the quantity of the 

laid pheromone. The pheromone evaporation of pheromone 

[24] over the time plays an important role to fall into the local 

optimum and to avoid the rapid convergence to a local optimal. 

Without evaporation of pheromone, the first paths selected by 

the first ant is extremely attractive to the other ants, and 

consequently, the research space could be limited. The path 

which contained more quantity of pheromone is becoming the 

main path. In each iteration with sufficient number of ants, the 

quantity of pheromone is updated and reinforced which help 

to attain more precise solutions. 

The main advantage of ACO algorithm is to converge 

rapidly to optimal solutions without falling into a local 

optimum. The optimal performance of the ACO mainly 

depends on suitable parameters settings. The main parameters 

of ACO are number of ants per iteration, number iterations and 

evaporation rate of pheromone. 

 

2.4 Deep Networks using Autoencoder (DN-AE) 

 

The distinction between deep learning networks and 

artificial neural networks lies in their depth and more complex 

of connecting ways between layers with more number of 

neurons. Deep Network using Auto-Encoder [25] is one of 

most popular deep neural networks which can learn the 

underlying structure of the dataset. It comprises an input layer, 

one or more hidden layer and an output layer. The training 

phase is composed by two procedures. The first one is pre-

training by one or several autoencoders layers AEs and the 

second is the training by softmax layer. These multiple layers 

are stacked together to form DN-AE by stack function. 

Autoencoder (AE) layer is a specific type of artificial neural 

network composed of an encoder and a decoder. It is used to 

extract complex feature from data complex and to generate 

new data [26] with as much accuracy and low error as possible. 

The output of the first layer AE is taken as the input of the 

following layer. The main settings pre-training parameters of 

autoencoder layers are: the number of AE layers, size of 

hidden layer, iteration number, encoder transfer function, 

decoder transfer function. Then the output of the last AEs is 

taken as input of the softmax layer. The undesired 
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performance of DN-AE may appear when the number of AE 

layers is not well selected. In some situation, using more than 

one AE layers can enhance the accuracy of results [27] 

especially when the number of inputs increases. 

Softmax layer is the last layer [28] used in deep neural 

networks. It is used to train the deep network [29] and improve 

the accuracy during the learning by minimizing the loss 

function. The most important parameters of softmax layer are 

maximum number of training iterations and type of loss 

functions. The cross entropy loss is usually used as loss 

function [30] instead of mean square error (MSE).  

 

 

3. MATERIAL AND METHODS 

 

3.1 Materials and experiments 

 

Cements are chemically composed by the main following 

oxides: calcium oxide CaO, silica SiO2 and alumina Al2O3, 

magnesium oxide MgO, and iron oxide Fe2O3 from limestone, 

clay, sand and iron ore. The raw materials used in this study 

are subjected to chemical treatments. Chemical composition 

of each raw material used is shown in Table 1. Four samples 

are carefully prepared with different combination of raw 

materials. The raw materials mix composition (% by weight) 

of each sample are summarised in Table 2. Each sample is 

separated by using a series of sieves with different mesh into 

the different particles sizes: 350µm, 250µm, 125µm and 71µm. 

 

Table 1. Chemical composition (% by weight) for each raw 

material used 

 
Raw material SiO2 CaO MgO Fe2O3 Al2O3 

Limestone 3.96 92.62 0.99 0.65 1.78 

Clay 58.61 12.53 3.49 7.43 17.94 

Sand 93.37 3.59 0.34 1.10 1.60 

Iron ore 24.12 14.94 2.03 53.34 5.57 

 

Table 2. Raw materials mixture composition (% by weight) 

of each sample 

 
Sample limestone Sand Clay Iron ore 

1 100 - - - 

2 85 15 - - 

3 83 15 2 - 

4 82.5 14.5 2 1 

 

Table 3. Every sample with different combination of grain 

size and exposed time is heated at 1000℃ 

 
Particle size (µm) Time (min) 

5 10 15 20 30 

71 + + + + + 

125 + + + + + 

250 + + + + + 

310 + + + + + 

 

 

Table 4. First and the last samples with particles size of 350 

µm are heated at various temperatures during 20-min 

 
Sample Temperature (℃) 

600 700 800 900 1000 

Sample 1 + + + + + 

Sample 4 + + + + + 

 

In practice, this study consists of two parts: first part, each 

sample with different grain size distribution is heated at high 

1000℃ during various time from 5 to 30 min in a laboratory 

muffle furnace as shown in Table 3. Second part, only the first 

sample and the last sample with grain size of 350 µm are 

subjected to a wide temperature range of 600–1000℃ with a 

step size of 100℃ during period 20-min as shown in Table 4. 

Measurements of the mass loss were carried out under the 

influence of various experimental conditions, including 

particles size distribution, exposed time, chemical 

composition and temperature. Each sample are carefully 

weighed before and after decarbonation process to quantify the 

mass loss. The mass loss was calculated as follows: 

 

100(%) 
−

=
i

fi

m

mm
ml  (1) 

 

where, mi and mf represent respectively the weight of a sample 

before and after decarbonation process as described in 

previous work [7]. 

 

3.2 Data acquisition 

 

Dataset obtained in the first case is organized in a table (20 

rows x 3 columns) for each sample. Each row presents 

experience. Two first columns namely particle size 

distributions, exposed time are chosen as the inputs of each 

model. The last column called mass loss is used as target. 

Dataset obtained in the second case is collected in the table (10 

rows x 3 columns). 

All dataset obtained in both cases are joined to form total 

dataset (90 rows x 10 columns). The columns from 1 to 9 are 

as follows: the particle size distributions of each samples, 

exposed time of each sample and temperature. The nine 

columns are the inputs. The column 10 called mass loss is 

taken as output. 

Each dataset obtained are separated into two parts: training 

dataset and testing dataset. Training dataset is exploited to 

construct the model and testing dataset (remaining data) is 

used to test its generalization capability. There are several 

percentages of training dataset and testing dataset are reported 

in the literature [31, 32]. In this study, the dataset is randomly 

separated into two subsets. The dataset for the training is 

chosen randomly from 2/3 of the dataset and the remaining of 

dataset (1/3) are used to evaluate the generalization capability 

of model. 

In this paper, all data is necessary normalized before 

training the models within a uniform interval of [0–1]. The 

normalization formula is given as follows: 

 

min

max min

norm

x x
x

x x

−
=

−  (2) 

 

where, xnorm is variable normalised, xmax is maximum value 

and xmin is minimum value. 

 

3.3 Predictive performances 

 

Some performance criteria are statistically measured to 

evaluate the prediction capacity such as R2 (coefficient of 

determination), RMSE (root mean squared error) [33], MAPE 

(mean absolute percent error) and adjusted R2 to evaluate the 

prediction capacity [34] which are defined as follows: 

405



 


=

−
=

N

i

predii

N

YY
RMSE

1

2

)((exp) )(
 (3) 

 



















−








−−= 

==

N

i

meanii

N

i

predii YYYYR
1

2

)((exp)

1

2

)((exp)

2 )()(1  (4) 

 


=

−
=

N

i i

predii

Y

YY

N
MAPE

1 (exp)

)((exp)100
 (5) 

 

where, N is the number of data, Yi(exp) and Yi(pred) indicate the 

experimental and predicted values respectively, Yi(mean) is the 

mean value of experimental data points. 

While the adjusted R2 is given by the following equation: 
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where, N is number of data, P is number of variables and R2 is 

the coefficient of determination given in Eq. (4). 

The predictions are excellent if the values of adjusted R2 and 

R2 are found very close to 1. The models are capable of 

predicting with a high accuracy when values of RMSE and 

MAPE are found very close to zero. 

In terms of scatter index (SI) [35, 36] which is given in Eq. 

(7). The performance of model is excellent when SI is inferior 

to 0.1; good if SI between 0.1and 0.2, and poor if SI is superior 

to 0.3. All performance indicators are calculated between 

experimental values and predictions values. 

 

)(meaniY

RMSE
SI =

 (7) 

 

where, RMSE is given in Eq. (3) and Yi(mean) is the mean value 

of experimental data points. 

 

 

4. RESULTS AND DISCUSSIONS 

 

In general, machine learning algorithms proposed in this 

study with adjustable parameters are usually able to 

approximate any nonlinear problems. The optimal parameters 

for each model are determined experimentally after several 

tests. The accuracy of each machine learning algorithm is 

evaluated during a phase testing, because it is much easy to 

realize a high accuracy during a phase training without 

improving generalisation capability. All machine learning 

algorithms are implemented in Matlab 2018a. 

The results and discussion are divided into parts: predicting 

totally and predicting separately. The first part discusses the 

predicted results of overall data in more detail. The second 

parts are discussed separately the predicted results obtained in 

previously parts as summarised in Tables 3 in less detail than 

first part in order to check and to confirm the accuracy of each 

model. 

 

4.1 Predicting totally 

 

As described above, total dataset at the end of experimental 

part are collected in table (90 rows x 10 columns). The number 

of inputs and output are 9 and 1 respectively. It is evident that 

the training of models is becoming more complex when the 

number of inputs increased. 

 

4.1.1 ANN result 

Generally, it is better to choose more than one hidden layer 

in this situation. The optimal architecture network of ANN is 

2 hidden layers with 12 neurons in each one (9:12:12:1), with 

‘tansig’ (hyperbolic tangent sigmoid) as activation function 

and ‘purelin’ (linear) as activation function for output layer.  

The experimentally mass loss and those predicted by 

applying ANN for both training and testing phases are 

presented in Figure 1 and Figure 2. These figures illustrate 

good agreement between experimental mass loss and predicted 

values for training and testing phases. It is also observed that 

the points are close to the straight diagonal line. The R2 values 

are 0.9905 for the training and 0.9714 for the testing phase. 

These figures with high values of R2 indicate excellent 

correlation between the experimental and predicted values of 

mass loss and approve the good predictive capability of ANN 

model. 

Table 5 illustrate the remaining criteria used. The values of 

R2 adjusted mean that ANN is able to effectively predict up to 

99% and 97.03% of training and testing data respectively with 

SI less than 0.1 and low value of MAPE and RMSE. These 

criteria indicate excellent performance of ANN. The results 

obtained is expected due to high learning capability and great 

flexibility of ANN model. 

 

 
 

Figure 1. Experimental and predicted mass loss at training 

phase of ANN 

 

 
 

Figure 2. Experimental and predicted mass loss at testing 

phase of ANN 
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Table 5. Performance criteria obtained by ANN 

 

 R² adj MAPE RMSE SI 

Train 99.04% 1.48% 0.7825 0.0213 

Test 97.03% 3.31% 1.5327 0.0413 

 

4.1.2 PSO-ANN result 

The optimal neural network structure of PSO-ANN is the 

same as for the ANN non-optimised used in the previously part 

(9:12:12:1) in order to compare the prediction accuracy. The 

main optimum parameters of the PSO-ANN algorithm are: 

population size is 18 and iteration number is 12. 

Figure 3 and Figure 4 show the results obtained of the PSO-

ANN models for the prediction of mass loss of testing and 

training. It is clearly observed that the fit line is shown 

practically superimposed on the plot of full equality. The R2 

values are equal to 0.9974 and 0.9833 for testing phase which 

reflect a good fit. The values of PSO-ANN model show high 

potential in learning training phase and good generalization 

capability. 

The other performance criteria are illustrated in Table 6. 

The adjusted R2 values indicating that the PSO-ANN 

explained 99.73% of training dataset and 98.26% of testing 

dataset. Therefore, the SI value less than 0.1 indicates 

excellent accuracy during both phases. The best result 

obtained by PSO-ANN is due to the better optimization by 

PSO and high learning capability of the ANN. 

 

 
 

Figure 3. Experimental and predicted mass loss at training 

phase of PSO-ANN 

 

 
 

Figure 4. Experimental and predicted mass loss at testing 

phase of PSO-ANN 

 

Table 6. Performance criteria obtained by PSO-ANN 

 

 R² adj MAPE RMSE SI 

Train 99.73% 1.48% 0.4236 0.01146 

Test 98.26% 3.00% 1.1822 0.03222 

 

4.1.3 ACO-ANN result 

Generally, the optimal architecture network of ACO-ANN 

is similarly to those used to design the PSO-ANN and ANN 

(9:12:12:1). The main appropriate parameters of ACO-ANN 

are: number of ants per iteration is 12, number iterations are 

14 and evaporation rate of pheromone is 0.8.  

The results obtained by applying ACO-ANN for both 

training and testing phases are presented in Figure 5 and 

Figure 6. It is clear that almost of points lie exactly on a 

straight line. The high values of R2 obtained during the both 

phases are 0.9961 for training and 0.9870 for testing phases. 

These values which are close to 1, indicate a strong and robust 

correlation between experimental and predicted mass loss. In 

addition, the regression line is generally equal to the line Y=X. 

It is clear that ACO-ANN can predict mass loss with high 

prediction precision.  

 

 
 

Figure 5. Experimental and predicted mass loss at training 

phase of ACO-ANN 

 

 
 

Figure 6. Experimental and predicted mass loss at testing 

phase of ACO-ANN 

 

The remaining of performance criteria are listed in Table 7. 

The adjusted R2 values show that there are only 0.39% of 

training and 1.34% of testing are not explained ACO-ANN 

with SI value less than 0.1 and error less than 2.53%. The best 

the predictive accuracy of ACO-ANN is related to the strong 

searching of ACO which improve and increase the learning 

ability of the ANN. 
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Table 7. Performance criteria obtained by ACO-ANN 

 

 R² adj MAPE RMSE SI 

Train 99.61% 1.33% 0.5073 0.0138 

Test 98.65 % 2.53% 1.0555 0.0286 

 

4.1.4 DN-AE result 

Similarly, the optimal parameters of the DN-AE for 

achieving a more precise accuracy is: number of AEs layers is 

2 with 20 neurons in each one and 850 iterations, encoder and 

decoder transfer function are ‘logsig’ (log-sigmoid) and 

‘purelin’ respectively, softmax layer with cross entropy as loss 

function and 750 iterations.  

The experimental versus DN-AE model predicted values of 

mass loss are represented in Figure 7 and Figure 8 respectively. 

It is clearly seen from these figures that predicted values using 

DN-AE are in suitable agreement with experimental of mass 

loss results for both phases. Moreover, the data dispersion 

generally lies around the identity line, indicating the excellent 

closeness between predicted and experimental values. The 

goodness of fit is given by the values of R2, which are 0.9912 

and 0.9914 for training and testing respectively. These R2 

values indicate an excellent correlation and confirm the 

excellent predictive ability of DN-AE. 

 

 
 

Figure 7. Experimental and predicted mass loss at training 

phase of DN-AE 

 

 
 

Figure 8. Experimental and predicted mass loss at testing 

phase of DN-AE 

 

The other performance criteria for two phases are presented 

in Table 8. According to the values of adjusted R2, there are 

99.11% of training and testing data can explain by DN-AE 

model. It is also clear that the values of R2 and adjusted R2 are 

close to 1 while the RMSE, SI and MAPE, are close 0. These 

values mean a very accurate prediction model. The robust 

learning and generalisation ability of the DN-AE is 

emphasised. This high performance mainly comes from the 

deep learning architectures, features extraction capability and 

highly representative data by autoencoders layers. 

 

Table 8. Performance criteria obtained by DN-AE 

 
 R² adj MAPE RMSE SI 

Train 99,11% 2,27% 0,7918 0,0219 

Test 99.11% 2,18% 0,6948 0,0181 

 

4.2 Predicting separately 

 

Each algorithm is applied to each sample to predict the 

effect of chemical composition as mentioned in Table 3. In the 

same way, the ACO-ANN, PSO-ANN and ANN have same 

optimal architecture network (2:6:1) with tansig and purelin 

transfer function in a hidden layer and output layer 

respectively. The other main parameters of ACO-ANN are 6 

ants, 4 iterations and 0.8 evaporation rate. The other main 

parameters of PSO-ANN are 8 particles (population size) and 

5 iterations. 

The optimal parameters of the DN-AE are as flowing: 6 

neurons in AE layer, 150 iterations, encoder and decoder 

transfer function are logsig and purelin respectively, softmax 

layer with cross entropy as loss function and 350 iterations. 

The values of MAPE and R2 of testing dataset of various 

models obtained from all samples are shown in Figure 9 and 

Figure 10.  

It is observed from these figures that there is an adequate 

agreement obtained by all models between the predicted 

values of mass loss and experimental values. The value of R2 

indicate that the mass loss predicted by DN-AE is much closer 

to then experimentally result than those predicted by other 

models. The values of MAPE and R2 of ANN are slightly 

improved when the ANN combined with PSO or ACO 

algorithms. It is clear that the best accuracy is obtained by DN-

AE. The MAPE values are varied between 0.25% as the 

smallest and 3.52% largest value. Furthermore, the R2 values 

are varied between 0.9985 as maximum value and 0.9737 as 

the minimum value. It is clear that the lowest R2 is obtained by 

ANN and the highest by DN-AE.   

The MAPE and R2 values of PSO-ANN and ACO-ANN are 

slightly better than the pure ANN. The superiority predictive 

accuracy of hybrid PSO-ANN and ACO-ANN compared to 

ANN can be attributed to its powerful search capabilities by 

PSO and ACO algorithms. ACO-ANN and PSO-ANN have 

practically same performance. The best performance obtained 

by DN-AE is due to applying the deep learning by AE layer. 

It is concluded that all models are very promising models for 

mass loss prediction in terms of predictive accuracy for each 

sample. 

The remaining performance criteria on the training and 

testing datasets for the various models are reported in Table 9. 

It can be seen that the performance accuracy obtained by four 

models are quite different. The R2 adjusted values obtained in 

the testing datasets for DN-AE, ACO-ANN, PSO-ANN and 

ANN are more than 96.84%, 97.04%, 97.65% and 98.73% 

with SI less 0.1. Consequently, the values of performance 

criteria indicate the effectiveness and high accuracy of all 

models even with small data size due to their robustness and 

flexibility. 
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Figure 9. Comparison between all models in term of R2 for 

all samples 

 

 
 

Figure 10. Comparison between all models in term of MAPE 

for all samples 

 

Table 9. Performance criteria (Perf-Crit) for testing phases of 

all models for each sample (S) 

 

S Perf-Crit  Testing phase 

ANN ACO-ANN PSO-ANN DN-AE 

1 R2 adj 97.77% 99.01% 98.54% 99.82% 

RMSE 0,9187 1.1978 0.1931 0.2230 

SI 0.0252 0.0323 0.0051 0.0061 

2 R2 adj 96.86% 97.04% 97.65% 99.13% 

RMSE 1.9449 0.6284 0.9979 0.0081 

SI 0.0525 0.0168 0.0268 0.0085 

3 R2 adj 97.14% 98.72% 98.52% 98.73% 

RMSE 1.3061 0.4501 0.5103 0.0085 

SI 0.0325 0.0113 0.0127 0.1762 

4 R2 adj 96.84% 98.97% 99.13% 99.27% 

RMSE 1.6378 0.1629 0.2688 0.1225 

SI 0.0402 0.0040 0.0066 0.0030 

 

4.3 Comparison between the different models 

 

A comparative study between DN-AE, ACO-ANN, PSO-

ANN and ANN models used to predict of mass loss of 

different raw materials are conducted of in terms of MAPE and 

R2 to compare the generalization ability of models. It includes 

all data mentioned in section 4.1 above. The results of the 

compared models are shown in Figure 11. It is clear that the 

increasing of data enlarges the complexity in adjusting 

parameters between the layers. The determination coefficient 

R2 for testing dataset by DN-AE, ACO-ANN, PSO-ANN and 

ANN are 0.9914, 0.9870, 0.9833, and 0.9714 respectively. The 

results based on R2 show an excellent concordance between 

the predicted values and experimental values. The maximum 

error value which is obtained by ANN is 3.32%, whereas the 

lowest error value from DN-AE is 2.18%. 

 

 
 

Figure 11. Comparison between all models in term of MAPE 

and R2 at testing phase of total dataset 

 

The upper predictive accuracy of DN-AE can be attributed 

to its deep learning process by two AE layers which are able 

to approximate any non-linear system. It is clear that there is 

no significant difference between ACO-ANN and PSO-ANN 

in terms of R2 and a slight difference in terms of MAPE. It 

seems that PSO-ANN or ACO-ANN is better than ANN non-

optimised. Thus, the PSO or ACO can improve the 

performance precision of ANN effectively by optimisation its 

parameters. ANN is proven to have a performance nearly 

equivalent to other models. Furthermore, it is a very 

competitive relative to other models due to high learning 

capability and easy to develop nonlinear function. 

The performance criteria of all dataset which are 

summarised in Table 5, Table 6, Table 7 and Table 8 reveal 

that more than 97% can be explained by all models. Also, the 

performance of all models is excellent with SI less than 0.1 

and error less 3.32%. Overall, the values of performance 

criteria indicate that all models are considered to be able to 

predict the mass loss of cement raw materials caused by 

decarbonation process with a high generalization capability. 

All machine learning algorithms can be used as alternative 

tools to experimental determination and are easily be applied 

on large or small datasets. 
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5. CONCLUSION 

 

In the present study, DN-AE, ACO-ANN, PSO-ANN and 

ANN are used to predict the mass loss of cement raw material 

due to decarbonation process which is influenced by 

interaction of a number of factors. The results obtained in all 

cases and under the optimum parameters of each model 

demonstrate that all models can be successfully applied to 

predict the mass loss. The prediction capability of DN-AE has 

shown its superiority over ACO-ANN, PSO-ANN and ANN 

with comparative high value of R2 and R2 adjusted with less 

value of MAPE, RMSE and SI. The predictive accuracy of 

DN-AE can be attributed to its deep learning process and 

features extraction capability of autoencoders layers. There is 

only a slight difference between ACO-ANN and PSO-ANN. 

Moreover, the performance acquired by ANN optimised by 

PSO or ACO is better compared to ANN non-optimised. It is 

expected because ACO or PSO is able to find the optimum 

parameters of ANN and to avoid converging to a local 

optimum. Furthermore, ANN is proven to have an excellent 

performance nearly equivalent to DN-AE, ACO-ANN and 

PSO-ANN. 

According to the values of R2 adjusted of DN-AE, ACO-

ANN, PSO-ANN and ANN obtained with a total dataset, there 

are only 0.89%, 1.34%, 1.73% and 2.97% of the total datasets 

respectively are not explained by this model. The highest error 

which is obtained by ANN is 3.32%, whereas the lowest error 

value from DN-AE is 2.18%. The values of SI obtained by all 

models which are small than 0.1 are indicative of the excellent 

accuracy. Finally, all machine learning algorithms proposed 

can be used as alternative tools to experimental determination 

of mass loss. 
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