
GAP: Hybrid Task Scheduling Algorithm for Cloud

Bhupesh Kumar Dewangan1*, Anurag Jain2, Tanupriya Choudhury1

1 Department of Informatics, School of Computer Science, University of Petroleum and Energy Studies, Dehradun 248007,

India
2 Department of Virtualization, School of Computer Science, University of Petroleum and Energy Studies, Dehradun 248007,

India

Corresponding Author Email: b.dewangan@ddn.upes.ac.in

https://doi.org/10.18280/ria.340413 ABSTRACT

Received: 9 March 2020

Accepted: 16 July 2020

Resource optimization is cost effective process in cloud. The efficiency of load balancing

completely depends on how the infrastructure is utilizing. As per the current study, the

resource optimization techniques are very costly and taking more convergence time to

execute the task and load distribution among different virtual machines (VM). The

objective of this paper is to develop a hybrid optimization algorithm to find the best virtual

machine based on their fitness values and schedule different task to the fittest VM so that

each task should get complete on time, and system can utilize the VM as well. The proposed

algorithm is hybrid version of genetic (GA), ant-colony (Aco), and particle-swarm (Pso)

algorithms, which is implemented and tested in amazon web service and compared with

existing algorithms based on VM utilization, completion time, and cost. The proposed

hybrid system genetic-aco-pso based algorithm (GAP) perform utmost while comparing

with the existing systems.

Keywords:

resource scheduling, completion time, cost,

VM utilization, optimization algorithm

1. INTRODUCTION

In a distributed environment, resource management is

implemented under load balancing to minimize the cost,

satisfaction of service level agreement (SLA), and efficient

utilization of resources. Work found in literature does not meet

the efficient resource scheduling parameters like server

utilization, quality of service, and cost-effective workload

balancing in minimum time collectively. The demand of users

and the number of users is never certain. Therefore, there must

be some mechanism to handle this growing and shrinking

demand of users in such a manner so that it will not impact the

quality of service, and also resources must be utilized

inefficient manner. In this paper, authors have proposed a load

balancing approach by merging the best features of Genetic [1]

Particle Swarm Optimization [2], and Ant Colony

Optimization [3] approach to ensure even load distribution,

efficient usage of resources and satisfaction of service level

agreement. Authors have also ensured that limitations of a

genetic, ant colony and particle swarm approach are not

inherited in the proposed hybrid approach (GAP). The

structure of this paper is as follows: In section 2, authors have

discussed the different scheduling algorithms to achieve load

balancing in the cloud environment. Problem definition and

methodology of the proposed new approach are discussed in

sections 3 and 4 respectively. Details of the simulation

environment, result, and their analysis are given in section 5.

It is followed by the conclusion given in section 6.

2. TASK SCHEDULING IN CLOUD

A real-time scheduling of task in cloud can be optimized

through many nature and bioinspired optimization algorithms

like Honey Bee, Particle Swarm, Ant Colony, Ant Lion, Grey

Wolf, Genetic and other evolutionary patterns. In this research

work, the best features of Genetic, Particle-swarm, and Ant-

colony have been used to propose a novel idea. Genetic-

Algorithm by Holland [4] in 1992 has given a new approach

to search by simulating the concept of human evolution. He

used the concept of crossover, mutation and recombination to

find the best option among a pool of feasible options. At the

same time, this concept has also discarded those options,

which are lying below a certain level. Based on this concept,

many modified and extended approaches are now used in

optimization problems. Another bioinspired optimization

approach is Ant-colony, it is based on the forging nature of a

group of ants. Ants are very social and they collectively find

the best path to find foods. This behavior of ant finding the

best food in the shortest path is also used in many optimization

problems. In continuation of this, another bioinspired

approach is the particle-swarm approach. Optimization

problems based upon this approach simulate the behavior of

swarm which hunting fish and searching food. The fitness

function of particles [5] can be given by the formula given in

Eq. (1).

𝑓(𝑖) =
1

ExecT
(1)

where, i is several particles and belongs to [1, S], S is the total

size of particles, and ExecT is task completion time. And

completion-time by the task can be defined as:

𝐸𝑥𝑒𝑐𝑇 = ∑ VM(m, n)

𝑘

𝑛=1

 (2)

Revue d'Intelligence Artificielle
Vol. 34, No. 4, August, 2020, pp. 479-485

Journal homepage: http://iieta.org/journals/ria

479

https://crossmark.crossref.org/dialog/?doi=10.18280/ria.340413&domain=pdf

The comparative analysis of the above-studied algorithms is

presented in Table 1.

Table 1. Comparative analysis of algorithms

Algorithm Time Complexity Space Complexity

Genetic-Algorithm O(g(nm+n) O(gnm)

Ant-Colony O(n2) O(n2)

Particle-Swarm O(n2) O(n2)

GAP nO(logn) nO(logn)

Recent advancements of resource-management in the cloud:

In past decades, many new approaches have been developed

by cloud researchers with some specific parameters. In 2020,

a recent survey conducted in cloud resource management

technique by author Dewangan et at. [6] it is categorized as

follows:

2.1.1 Cost-aware approach

This parameter has been considered to schedule the

resources at a minimal cost. This results in a low operational

cost for both service providers and cloud users [7].

2.1.2 QoS-aware approach

Quality of service attracts to the cloud users to opt cloud

services. The satisfaction ratio decides the user’s trust [8].

2.1.3 SLA-aware approach

Service level agreement approach is one of the key factors

to enhance user’s trust [9].

2.1.4 Energy-aware approach

In this approach, the authors considered the power

consumption rate, they provided novel approaches to reduce

energy consumption, which is directly connected with cost

[10].

2.1.5 Auction-based approach

Cloud user can approach the service as per demand, in this

concept, the service provider does auctions, and users can opt

for the required services [11].

2.1.6 Nature-bio-inspired approach

It is based on nature and bio-inspired algorithm to find the

optimal resource for scheduling [12].

2.1.7 Profit-based approach

Focused on the profit of both cloud users and service

providers [13].

2.1.8 Fault-tolerant approach

Avoid the unnecessary failures of scheduling the job and

load balancing approach.

2.1.9 Optimization approach

This approach is used to optimizes several parameters as

desire [14].

2.1.10 Autonomic computing

New era in resource management, using some self-

characteristics for load balancing [15].

The outcome of this extensive study is presented in Figure

1. In this figure, the different parameters used in all recent

approaches which are developed for the load balancing

approach have been presented based on its utilization. Based

on this review, the resource-utilization, cost, SLA, and

execution time parameters are widely used.

Figure 1. Extensive analysis of cloud resource management approaches based on parameters

3. PROBLEM DEFINITION

It is managing a problem diagnosed in a preceding

algorithm or previous work interconnected to the task

scheduling troubles. The sum of troubles that might be

recognized is as: Local optima, Premature convergence [16],

Parameter tuning, Stochastic procedures have trouble-based

overall performance [17], and PSO algorithm does not have

strong global seek capabilities.

3.1 Local optima

In done mathematics and laptop technological know-how, a

nearby maximum appropriate of an optimization dilemma is a

most suitable answer (either maximal or minimal) within a

neighboring set of candidate solutions. This is in assessment

to a worldwide most fine that is the choicest solution among

all viable solutions, not the ones in a specific community of

values. While the characteristic to be optimized is non-prevent,

480

it may be possible to appoint calculus to discover nearby

optima. If the primary spinoff exists anywhere, it can be

equated to zero; if the character has an unbounded domain, for

a factor to be a local premiere it's miles critical that it fulfill

this equation. Then the second one by-product check gives

enough condition for the factor to be a local highest or nearby

minimal [18].

3.2 Premature convergence

Premature convergence' [19] is common because of the loss

of diversity.

3.2.1 Diversity

The degree of the amount varies i.e. wide range of diverse

solutions [20] in the population, and the way one-of-a-type

they're (distance between possibility answers).

3.2.2 Loss of variety

After the population converges, it will become very uniform

(all answers resemble the tremendous one [21].

3.2.3 Motives

Too strong selective pressure in the direction of an awesome

solution. An excessive amount of exploitation of current

building blocks from the contemporary populace (e.g. via

recombining them, or mutating them only barely) [22].

4. GAP: METHODOLOGY

The fitness value by GAP is given by the following

condition:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) =
1

x
 (3)

where, x is total time need to complete the task, and i lies [0,1],

and x can be obtained through:

𝑥 = ∑ VM(m, n)

𝑘

𝑛=1

 (4)

where, VM (m,n) is the total time in the nth task to execute the

mth virtual machine, where K is the total task allocated to the

virtual machine. Then evaluate the value of pbest and gbest

that is local/particle best and global best, by using the above

equations.

𝑝𝑏𝑒𝑠𝑡𝑛𝑖(𝑡𝑛 + 1)

= {
𝑝𝑏𝑒𝑠𝑡𝑛(𝑡𝑛), 𝑖𝑓 𝑓(𝑝𝑛𝑖(𝑡𝑛 + 1)) ≤ 𝑓(𝑝𝑛𝑖(𝑡𝑛)

𝑝𝑛𝑖(𝑡𝑛 + 1), 𝑖𝑓 𝑓(𝑝𝑛𝑖(𝑡𝑛 + 1) ≥ 𝑓(𝑝𝑛𝑖(𝑡𝑛)

(5)

𝑔𝑏𝑒𝑠𝑡𝑛𝑖(𝑡𝑛)

= {
max (𝑝𝑏𝑒𝑠𝑡𝑛(𝑡𝑛)), 𝑖𝑓 𝑓(𝑚𝑎𝑥(𝑝𝑛𝑖(𝑡𝑛))) ≥ 𝑓(𝑔𝑏𝑒𝑠𝑡(𝑡𝑛))

𝑒𝑙𝑠𝑒 𝑔𝑏𝑒𝑠𝑡(𝑡𝑛)
 (6)

After finding the 2 high-quality values, the particle updates

its speed and positions with the following equations:

𝑉𝑖(𝑡𝑛 + 1) = 𝑤. 𝑉𝑖(𝑡𝑛) + 𝐶1. 𝑅1. (𝑝𝑏𝑒𝑠𝑡𝑛𝑖(𝑡𝑛)
− 𝑝𝑖(𝑡𝑛) + 𝐶2. 𝑅2. (𝑝𝑏𝑒𝑠𝑡𝑛𝑖(𝑡𝑛)
− 𝑝𝑖(𝑡𝑛)

(7)

𝑝𝑛𝑖(𝑡𝑛 + 1) = 𝑝𝑛𝑖(𝑡𝑛) + 𝑉𝑖(𝑡𝑛) (8)

where, tn is total iteration, w is weight, C1 and C2 are train and

learn facts, and generally C1= C2 =2, R1 and R2 is a random

value within [0, 1], f(pni (tn)) denotes particles fitness function,

f(pni (tn+1)) denotes as fitness function during next iteration.

In each iteration the particles rang is specific to (1 ≤ pni(tn)

≤ M) then calculate its velocity then calculate and update the

position of particles, then terminate if criteria are satisfied and

show the gbest optimal value. If criteria are not satisfied then

again go back to the second process and calculate the fitness

value and execute the whole loop and repeat the process to

optimize solution achieve.

4.1 Task initiation

The tasks are submitted to the cloud service provider for

pertaining services. The task initiation process is presented

through algorithm-01.

Algorithm-01

Start

Submit taks T←T1, T2, T3, … Tn

For each T do

 for each T do

 Calculate the priority value

 If priority≤ threshold then

 Swap T with consecutive task

 End if

 Enf for

End for

End

4.2 Service monitor

Initially, Service Monitor has collected the information

from Task Initiation to monitor continuously the task value

based on priority (exaction time in this research) as shown in

Algorithm-02: Service Monitor (SM).

Algorithm-02

Start

Set Taks T←T1, T2, T3, … Tn

for each T do

 if ExecT(t1) ≤ ExceT(tn) then

 Start Swap T with consecutive task

 End if

 Alert

End for

End

A proposed hybrid method is a novel approach based on GA,

ACO, and PSO to find the optimal solutions. Therefore the

objective function of the proposed method is:

𝑚𝑖𝑛. 𝑓(𝐸𝑥𝑒𝑐𝑇) (9)

Subjected to: 0 ≤ ExecT ≤ 1.

481

4.3 GAP scheduling

The scheduling approach is presented in Algorithm 3.

Algorithm-03

Start

The pseudo code of the procedure is as follows

For initiate each particles do

 For repeat the following for each particle do

 Calculate the fitness score of each particle

 If there is any improvement in the futness score

 relative to best fitness score(pbest) in the history then

 update new value as the latest pbest

 end if

 end for

end for

Select the particle having best fitness score of all the particle

as gbest

For every particle do

 Compute particle velocity according to equation (7)

End for

If crossover particle ≥ 0.5 then

 Apply one point crossover and update position of particle

 Evaluvate the newly generated crossover particle

End if

Repeat until minimum error or maximum iteration criterion is

not attained.

For every particle do

 Arrange particles (VM’s) in order

 If particles value ≤ threshold then

 Separate from group

 End if

 Produce Optimal particles (VM’s)

End for

End

In the above algorithm, each particle is a virtual machine in

this research.

4.4 Service executer and scheduling

The task initialized in task initiation are monitored and

managed by service monitor, and ready to be scheduled with

the virtual machine. The virtual machine is processed through

GAP algorithm which is presented in algorithm 3, and the

optimal VM is obtained for scheduling. The service executer

executes the task and virtual machine and based on the priority

value virtual machine assigned to the tasks through a round-

robin algorithm.

5. RESULTS AND ANALYSIS

The proposed algorithm is initialized with 10 virtual

machines and 600 tasks. The virtual machines, which have

different weight values as per CPU, and RAM value in the

current state. The following analysis has been done to evaluate

proposed research work.

5.1 Waiting time

Waiting time represents the time for which task remains in

the queue. Higher waiting time indicates the poor performance

of the system in terms of load balancing and resource

management. The average waiting time of tasks is judged

when there are 100, 200, 300, 400, 500, and 600 tasks in the

system. From Table 2, it can be concluded that the proposed

approach GAP is performing better in the context of waiting

time relative to its parent approach. This has also shown

graphically in Figure 2. The waiting time is calculated through

the following equation:

𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 𝑡𝑢𝑟𝑛𝑎𝑟𝑜𝑢𝑛𝑑 𝑡𝑖𝑚𝑒 − 𝑏𝑢𝑟𝑠𝑡 𝑡𝑖𝑚𝑒 (10)

Figure 2. Waiting time (sec)

Table 2 shows the test results of the waiting time.

Table 2. Comparative analysis of waiting time (sec.)

Tasks GAP PSO ACO GA

100 16 23 26 18

200 21 34 35 32

300 36 50 37 45

400 43 64 65 54

500 60 70 72 62

600 65 75 79 54

5.2 Execution time

Execution time represents the time taken by the virtual

machine to process the task. Less execution time represents

that task is mapped with a suitable virtual machine in terms of

its resource requirement. The average execution time of tasks

is judged when there are 100, 200, 300, 400, 500, and 600 tasks

in the system. From Table 3, it can be concluded that the

proposed approach GAP is performing significantly better in

the context of execution time relative to its parent approach.

This has also shown graphically in Figure 3. Table 3 shows the

execution time. The execution time is calculated through the

following equations:

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 = 𝑒𝑥𝑖𝑡 𝑡𝑖𝑚𝑒 − 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 (11)

482

Figure 3. Execution time

Table 3. Comparative analysis of execution time (sec.)

Tasks GAP PSO ACO GA

100 146 176 209 232

200 195 287 309 328

300 329 430 464 495

400 440 525 577 626

500 540 578 636 688

600 593 647 695 716

5.3 Completion time

Completion time represents the sum of response time,

waiting time, and execution time. Less completion time

represents that the load balancing approach is performing

better at all fronts. The average completion time of tasks is

judged when there are 100, 200, 300, 400, 500, and 600 tasks

in the system. From Table 4, it can be concluded that the

proposed approach GAP is performing significantly better in

the context of completion time relative to its parent approach.

This has also shown graphically in Figure 4.

Figure 4. Completion time

While Table 4 shows the completion time of each algorithm.

The completion time is calculated through the following

equation:

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 = 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 (12)

Table 4. Comparative analysis of completion time (sec.)

Tasks GAP PSO ACO GA

100 162 199 235 250

200 216 321 344 360

300 365 480 501 540

400 483 589 642 680

500 600 653 708 750

600 658 717 774 790

All three graphs shown in Figures 2, 3, and 4 are

demonstrating that the proposed approach (GAP) is outshining

the other three on the scale of waiting time, execution time,

and completion time. This has happened due to better mapping

of tasks with resources. Also, the proposed approach GAP map

different tasks to different resources based on their need. This

is resulting in less execution time of the proposed approach

relative to the other three approaches. Moreover, better

performance of the proposed approach GAP on the scale of

waiting time and execution time is also resulting in better

completion time relative to the other three approaches

5.4 Cost analysis

Cost is estimated based upon the time for which resources

are used by the task. As it has analyzed from Figures 4, 5, and

6 that the proposed approach GAP is taking less waiting,

execution, and completion time, this implies that it will also

use the resources for less time. This has reflected in Table 5

for 100, 200, 300, 400, 500, and 600 tasks in the system. It has

reflected graphically in Figure 5.

Table 5. Comparative analysis of cost ($)

Tasks GAP PSO ACO GA

100 4.8 5.1 5.9 7

200 6.4 6.9 7 10

300 10 12 13 15

400 14 15 17 19

500 16 19 21 22

600 19 21 23 24

Figure 5. Cost analysis

5.5 VM utilization

In the proposed approach GAP, while mapping the task with

a VM, the fitness value of VM is considered. The fitness value

483

is calculated based upon the present load and resources VM

has. So in this manner, it ensures that all VM is used efficiently

and no VM is overloaded. This results in better utilization of

VM. This has reflected through the data shown in Table 6 for

100, 200, 300, 400, 500, and 600 tasks in the system. It has

reflected graphically in Figure 6. Table 6 shows VM

utilization.

Table 6. Comparative analysis of VM utilization (sec.)

VM Id GAP PSO ACO GA

1 5 4 3 2

2 5 4 4 3

3 4 4 3 3

4 5 3 4 4

5 5 4 5 4

6 6 5 4 5

7 6 4 5 4

8 4 4 4 5

9 4 4 5 5

10 6 5 5 5

Figure 6. VM utilization

5.6 Throughput analysis

Throughput represents the number of tasks completed per

unit time. Lesser the sum of response time, waiting time, and

execution time, more will be the throughput. Now due to better

performance shown on the scale of waiting time and

completion time, it is obvious that the proposed approach GAP

will also show better performance on the scale of throughput.

This has reflected through the data shown in Table 7 for 100,

200, 300, 400, 500, and 600 tasks in the system. It has reflected

graphically in Figure 7. While Table 7 shows throughput

analysis of each algorithm.

It shows the comparison of different approaches for

different number of tasks on the scale of throughput. Better

performance on the scale of waiting time, completion time,

execution time, resource utilization, cost and throughput

results in satisfaction of service level agreement. It also creates

a win-win situation for customer as well as cloud service

provider.

Table 7. Comparative analysis of throughput (sec.)

Tasks GAP PSO ACO GA

100 0.6 0.5 0.4 0.4

200 0.9 0.6 0.6 0.6

300 0.8 0.6 0.6 0.6

400 0.8 0.7 0.6 0.6

500 0.8 0.8 0.7 0.7

600 0.9 0.8 0.8 0.8

Figure 7. Throughput analysis

By embedding the proposed load balancing approach GAP

in hardware like IP server, we can improve the performance

and availability of the system. This will provide the capability

to handle sudden traffic burst.

6. CONCLUSION

In cloud environment, satisfaction of SLA is prime

objective. It can be achieved by providing services in

minimum time in an efficient manner on a lowest cost by

utilizing the resources in efficient manner. This will create a

win-win situation to not only cloud user but also for cloud

service provider too. In this paper, authors have proposed a

hybrid load balancing approach for cloud environment by

incorporating the best features of genetic, ant colony and

particle swarm optimization algorithms. Authors have tested

and compared the proposed algorithm GAP with existing GA,

ACO & PSO algorithms in cloud environment developed

using 10 virtual machines created in Amazon Web Service

environment. It has found that proposed algorithm GAP has

outperformed than GA, ACO & PSO based load-balancing

algorithm on all the popular parameters.

REFERENCES

[1] Ma, J., Li, W., Fu, T., Yan, L., Hu, G. (2016). A novel

dynamic task scheduling algorithm based on improved

genetic algorithm in cloud computing. Wireless

Communications, Networking and Applications,

Springer, New Delhi, pp. 829-835.

https://doi.org/10.1007/978-81-322-2580-5_75

[2] Jana, B., Chakraborty, M., Mandal, T. (2019). A task

scheduling technique based on particle swarm

optimization algorithm in cloud environment. In Soft

Computing: Theories and Applications, 742: 525-536.

https://doi.org/10.1007/978-981-13-0589-4_49

[3] Azad, P., Navimipour, N.J. (2017). An energy-aware task

scheduling in the cloud computing using a hybrid cultural

and ant colony optimization algorithm. International

Journal of Cloud Applications and Computing (IJCAC),

7(4): 20-40. https://doi.org/10.4018/IJCAC.2017100102

[4] Holland, J.H. (1992). Genetic algorithms. Scientific

American, 267(1): 66-73.

484

[5] Engelbrecht, A.P. (2013). Particle swarm optimization:

Global best or local best? 2013 BRICS congress on

computational intelligence and 11th Brazilian Congress

on Computational Intelligence, Ipojuca, pp. 124-135.

https://doi.org/10.1109/BRICS-CCI-CBIC.2013.31

[6] Dewangan, B.K., Agarwal, A., Choudhury, T., Pasricha,

A., Chandra Satapathy, S. (2020). Extensive review of

cloud resource management techniques in industry 4.0:

Issue and challenges. Software: Practice and Experience,

1-20. https://doi.org/10.1002/spe.2810

[7] Dewangan, B.K., Agarwal, A., Choudhury, T., Pasricha,

A. (2020). Cloud resource optimization system based on

time and cost. International Journal of Mathematical,

Engineering and Management Sciences, 5(4): 758-768.

https://doi.org/10.33889/IJMEMS.2020.5.4.060

[8] Naseri, A., Navimipour, N.J. (2019). A new agent-based

method for QoS-aware cloud service composition using

particle swarm optimization algorithm. Journal of

Ambient Intelligence and Humanized Computing, 10(5):

1851-1864. https://doi.org/10.1007/s12652-018-0773-8

[9] Dewangan, B.K., Agarwal, A., Pasricha, A., Chandra

Satapathy, S. (2019). Sla-based autonomic cloud

resource management framework by antlion

optimization algorithm. International Journal of

Innovative Technology and Exploring Engineering

(IJITEE), 8(4): 119-123.

[10] Dewangan, B.K., Agarwal, A., Venkatadri, M., Pasricha,

A. (2019). Energy-aware autonomic resource scheduling

framework for cloud. International Journal of

Mathematical, Engineering and Management Sciences,

4(1): 41-55.

https://dx.doi.org/10.33889/IJMEMS.2019.4.1-004

[11] Zaman, S., Grosu, D. (2013). A combinatorial auction-

based mechanism for dynamic VM provisioning and

allocation in clouds. IEEE Transactions on Cloud

Computing, 1(2): 129-141.

https://doi.org/10.1109/TCC.2013.9

[12] Dewangan, B.K., Agarwal, A., Venkatadri, M., Pasricha,

A. (2019). Design of self-management aware autonomic

resource scheduling scheme in cloud. International

Journal of Computer Information Systems and Industrial

Management Applications, 11: 170-177.

[13] Dewangan, B.K., Agarwal, A., Pasricha, A. (2016).

Credential and security issues of cloud service models.

2016 2nd International Conference on Next Generation

Computing Technologies (NGCT), Dehradun, pp. 888-

892. https://doi.org/10.1109/NGCT.2016.7877536

[14] Dewangan, B.K., Agarwal, A., Venkatadri, M., Pasricha,

A. (2019). Self-characteristics based energy-efficient

resource scheduling for cloud. Procedia Computer

Science, 152: 204-211.

https://doi.org/10.1016/j.procs.2019.05.044

[15] Dewangan, B.K., Agarwal, A., Venkatadri, M., Pasricha,

A. (2018). Autonomic cloud resource management. In

2018 Fifth International Conference on Parallel,

Distributed and Grid Computing (PDGC), Solan

Himachal Pradesh, India, pp. 138-143.

https://doi.org/10.1109/PDGC.2018.8745977

[16] Zhong, Z., Chen, K., Zhai, X., Zhou, S. (2016). Virtual

machine-based task scheduling algorithm in a cloud

computing environment. Tsinghua Science and

Technology, 21(6): 660-667.

https://doi.org/10.1109/TST.2016.7787008

[17] Xu, G. (2013). An adaptive parameter tuning of particle

swarm optimization algorithm. Applied Mathematics

and Computation, 219(9): 4560-4569.

https://doi.org/10.1016/j.amc.2012.10.067

[18] Sivaram, M., Batri, K., Amin Salih, M., Porkodi, V.

(2019). Exploiting the local optima in genetic algorithm

using tabu search. Indian Journal of Science and

Technology, 12(1): 9.

https://doi.org/10.17485/ijst/2019/v12i1/139577

[19] Zhao, D., Zhang, H., Pan, J. (2019). Solving optimization

of a mine gas sensor layout based on a hybrid GA-

DBPSO algorithm. IEEE Sensors Journal, 19(15): 6400-

6409. https://doi.org/10.1109/JSEN.2019.2909277

[20] Neumann, A., Gao, W., Wagner, M., Neumann, F. (2019).

Evolutionary diversity optimization using multi-

objective indicators. In Proceedings of the Genetic and

Evolutionary Computation Conference, pp. 837-845.

https://doi.org/10.1145/3321707.3321796

[21] Bharathan, G., Fernandez, T.T., Ams, M., Woodward,

R.I., Hudson, D.D., Fuerbach, A. (2019). Optimized

laser-written ZBLAN fiber Bragg gratings with high

reflectivity and low loss. Optics Letters, 44(2): 423-426.

https://doi.org/10.1364/OL.44.000423

[22] Raju, M., Gupta, M.K., Bhanot, N., Sharma, V.S. (2019).

A hybrid PSO–BFO evolutionary algorithm for

optimization of fused deposition modelling process

parameters. Journal of Intelligent Manufacturing, 30(7):

2743-2758. https://doi.org/10.1007/s10845-018-1420-0

485

