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In recent years, China has been expanding domestic demand and promoting the service 

industry. This is a mixed blessing for the further development of tourism. To make accurate 

prediction of tourist flow, this paper proposes a tourist flow prediction model for scenic 

areas based on the particle swarm optimization (PSO) of neural network (NN). Firstly, a 

system of influencing factors was constructed for the tourist flow in scenic areas, and the 

factors with low relevance were eliminated through grey correlation analysis (GCA). Next, 

the long short-term memory (LSTM) NN was optimized with adaptive PSO, and used to 

establish the tourist flow prediction model for scenic areas. After that, the workflow of the 

proposed model was introduced in details. Experimental results show that the proposed 

model can effectively predict the tourist flow in scenic areas, and provide a desirable 

prediction tool for other fields. 
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1. INTRODUCTION

In recent years, China has been expanding domestic demand 

and promoting the service industry. This is a mixed blessing 

for the further development of tourism [1-4]. Faced with 

changing market, emerging conflicts, and growing demand for 

high-quality management, the tourism industry in China needs 

to undertake several challenging tasks: optimizing the 

industrial structure, renovating the growth mode, and 

improving development quality. It is urgent for the industry to 

transform from extensive operation to precise operation, from 

expanding the number of tourists to the rational allocation of 

tourist resources, and from meeting the basic needs of tourists 

to providing high-quality tourism services [5-8]. To balance 

the tourist flow and streamline the resource allocation in scenic 

areas, it is of great necessity to build an effective prediction 

model for tourist flow in scenic areas. The prediction results 

are important reference for scenic areas to implement 

development and planning, perform maintenance and repair, 

and provide smart tourism services. 

In the early days, the long- and mid-term tourist flows of 

scenic areas are mostly forecasted by classic time series 

prediction methods, including linear regression models, 

autoregressive moving average (ARMA) models, and 

autoregressive integrated moving average (ARIMA) models 

[9-13]. For instance, Lim et al. [14] constructed a seasonal 

ARMA model for tourist flow prediction, which captures the 

obvious seasonal features in tourist flow. Based on GIOWHA 

operator, Cenamor et al. [15] combined least squares support 

vector regression (LSSVR) and ARMA into a hybrid model, 

selected such three indices as expected number of tourists, per-

capita consumption of citizens, and the number of overnight 

tourists as the inputs of the model, and proved the good 

prediction effect of the hybrid model. To reduce constraints 

and speed up computation, Kotiloglu et al. [16] integrated 

ARMA model with the improved grey Markov model to 

project the number of tourists and foreign exchange income of 

Mount Taishan. Inspired by multivariate time series analysis, 

Mir [17] established an ARMA model based on the relevance 

between tourist flow and Baidu index of tourist spots, and 

applied the model to predict the tourist flow of a section of the 

Great Wall in Beijing.  

However, many scholars argued that the traditional time 

series prediction methods are not suitable for predicting tourist 

flow in scenic areas, because the tourist flow is affected by 

various external factors, namely, weather and holidays [18-22]. 

With the rapid development of artificial intelligence (AI), 

many highly adaptive and self-learning models have been 

introduced to tourist flow prediction, including artificial neural 

network (ANN), random forest (RF), and support vector 

regression (SVR). Del Vecchio et al. [23] optimized the least 

squares support vector machine (LSSVM) with a self-

designed improved fruit fly optimization (FOA) algorithm, 

and applied the FOA-LSSVM model to forecast the daily 

tourist flow in West Lake Scenic Area. Wise and Heidari [24] 

coupled SVR model with particle swarm optimization (PSO) 

algorithm into a PSO-SVR algorithm based on seasonal 

adjustment index, and carried out single- and multi-step 

predictions of monthly tourist flow in Beijing from 2000 to 

2013. 

For two reasons, the existing tourist flow prediction models 

for scenic areas often suffer from overfitting or underfitting, 

and thus fall into the local optimum trap: the tourist flow in 

scenic areas is affected by various external factors, which 

carry complex nonlinear features; the choice of kernel function 

and free parameters need to be further improved. To make 

accurate prediction of tourist flow, this paper probes deep into 

and further optimizes the existing AI methods, and develops a 

tourist flow prediction model for scenic areas based on the 

PSO of neural network (NN). 

The remainder of this paper is organized as follows: Section 

2 sets up a system of factors affecting the tourist flow in scenic 
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areas, and eliminates the factors with low relevance through 

grey correlation analysis (GCA); Section 3 optimizes the long 

short-term memory (LSTM) NN with adaptive PSO, and then 

builds up a tourist flow prediction model for scenic areas; 

Section 4 explains the prediction workflow of the proposed 

model; Section 5 verifies the effectiveness of our model; 

Section 6 puts forward the conclusions. 

 

 

2. SYSTEM OF INFLUENCING FACTORS 

 

2.1 System construction 

 

The tourist flow in a scenic area is influenced by various 

factors, which can be roughly divided into three categories: the 

external factors at the macro level, the internal factors about 

the service attributes of the scenic area, and other factors like 

objective aspects and relevant government policies.  

The external factors mainly involve gross domestic product 

(GDP), personal disposable income, household consumption 

level, total population of the country, population mobility, the 

total investment in fixed assets, and the total retail sales of 

consumer goods. With the improvement of national economy, 

living standards, and consumption level, the residents will 

have greater demand for outings, sightseeing, and 

entertainment, pushing up the tourist flow in tourist areas. 

The internal factors basically cover the data on historical 

tourist flow, the category and level of the scenic area, the 

current state and development trend of the scenic area, etc. 

Among them, the attractiveness of the scenic area and the 

planning of relevant projects directly bear on the tourist flow. 

In addition, the tourist flow in the scenic area can be 

bolstered by objective factors like advertising and holidays. 

On this basis, a hierarchical system of influencing factors can 

be established as follows: 

Layer 1 (Subject): V={Tourist flow in scenic area}. 

Layer 2 (Primary factors): V={V1, V2, V3}={External 

factors, Internal factors, Other factors}. 

Layer 3 (Secondary factors): 

V1={V11, V12, V13, V14, V15, V16}={GDP, Personal 

disposable income, Total population, Household consumption 

level, Total retail sales of consumer goods, Total investment 

in fixed assets}; 

V2={V21, V22, V23, V24, V25, V26}={Historical tourist 

flow, Category of scenic area, Level of scenic area, Scale of 

scenic area, Traffic convenience of scenic area, 

Comprehensive management of scenic area};  

V3={V31, V32, V33, V34, V35}={Air quality, Body comfort 

index, Travel emergencies, Advertising, Distribution of 

weekends and holidays}. 

When making travel plans, tourists often refer to the travel 

logs or strategies of other travellers. Therefore, the data on 

historical tourist flow of a scenic area can, to a certain extent, 

reflect the future trend of tourist flow in that scenic area. 

Besides, the tourist flow in most scenic areas obey periodic 

distribution in units of weeks, months, seasons, and years. As 

a result, the secondary factor of historical tourist flow V21 can 

be split into four tertiary factors: 

V21={V211, V212, V213, V214}={Historical annual tourist 

flow, Historical seasonal tourist flow, Historical monthly 

tourist flow, Historical weekly tourist flow}. 

Scenic areas in China can be allocated to the following 

categories: sites with certain cultural or historical value; scenic 

areas with unique scenery, relics, and cultural customs; scenic 

areas with beautiful natural environment; scenic areas that 

combine red tourism resources with green natural landscape. 

Therefore, the secondary factor of historical tourist flow V22 

Category of scenic area can be broken down into four tertiary 

factors: 

V22={V221, V222, V223, V224}={Cultural and historical 

sites, Scenic spots, Natural scenery, Red tourism}. 

The National Tourism Scenic Area Quality Rating 

Committee, under the China National Tourism Administration, 

has formulated a standard quality rating system for scenic 

areas across the country. The scenic areas will receive a high 

rating if they excel in tourist-friendliness and other details, and 

satisfy the psychological needs of tourists. There are 12 

detailed rules under three rating criteria, namely, the score of 

service and environmental quality, the score of landscape 

quality, and the score of tourist opinions. Hence, the secondary 

factor of level of scenic area V23 can be divided into five 

tertiary indices, which are ranked in descending order as: 

V23={V231, V232, V233, V234, V235}={5A, 4A, 3A, 2A, 

A}. 

 

2.2 GRA 

 

In the short term, the tourist flow in scenic areas is 

distributed unevenly and randomly in time and space. In the 

midterm and long term, however, the tourist flow distribution 

exhibits a certain regularity. Figure 1 presents the distribution 

of tourist flow in a scenic area in 2019. It can be seen that the 

tourist flow fluctuated obviously, due to the transitions 

between off-season and peak season, between weekdays and 

weekends, and between non-holidays and holidays. Judging 

by the trend of tourist flow, the off-season (April to 

November) differed sharply from the peak season (December 

to the next March) in tourist flow. In addition, the tourist flow 

was significantly affected by statutory holidays (e.g. New 

Year’s Day, Spring Festival, Labour Day, Dragon Boat 

Festival, National Day, and Mid-Autumn Festival), as well as 

the winter and summer vacations of students.  

The above analysis shows that the daily tourist flow in 

scenic spots is featured by nonlinearity, periodicity, uneven 

distribution between off and peak seasons, and uneven 

distribution between holidays and non-holidays. To mitigate 

the randomness and solve the uneven distribution of short-

term tourist flow in scenic areas, it is necessary to make 

rational classification of the factors affecting the tourist flow.  

In order to eliminate the correlation between the influencing 

factors, this paper performs feature compression, extraction, 

and GRA in the following steps: 

(1) Quantitative analysis of all factors 

V11, V15, and V16 were set to numeric type, and measured 

in unit of 100 million yuan; V12, and V14 were set to numeric 

type, and measured in unit of yuan; V13, V211, V212, V213, 

and V214 were set to numeric type, and measured in unit of 

person-time; V221, V222, V223, V224, V231, V232, V233, 

V234, and V235 were one-hot encoded to digitalize the 

discrete categorical and hierarchical features; V24, V25, and 

V26 were set to numeric type, and rated according to the 

detailed rules on the rating of service and environmental 

quality; V11, and V12 were set to numeric type, and collected 

from the real-time weather information released by the 

weather station (the latter is rated against a 9-point scale from 

-4 to 4, where -4 means strongly uncomfortable due to extreme 

coldness, 0 means strongly comfortable, and 4 means strongly 

uncomfortable due to extreme hotness); V13, V14, and V15 
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were binarized, where 1 indicates that travel emergency occurs, 

the advertisement has been served, and the current day is a 

weekend/holiday, and 0 indicates the otherwise. 

(2) Setting up data series 

Two data series were set up: the data series of tourist flow 

in the scenic area reflecting tourist behaviors A={ak|k=1, 2, …, 

K}, and the data series of factors affecting tourist behaviors 

B={blk|l=1, 2, …, L; k=1, 2, …, K}. 

 

 
 

Figure 1. The distribution of tourist flow in a scenic area in 2019 

 

(3) Nondimensionalization 

From Step (1), it can be seen that the factors in data series 

B differ in magnitude and dimension, owing to the difference 

in measuring unit. This may cause errors in the comparison 

process. To solve the problem, the dataset was initialized by: 
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Then, the min-max normalization was introduced to 

standardize the deviation of the data:  
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where, 𝑏𝑙𝑘
′  is the initialized data; 𝑏𝑙𝑘-max

′  and 𝑏𝑙𝑘-min
′  are the 

maximum and minimum of all data. 

(4) Calculation of correlation coefficient 

The maximum and minimum absolute differences between 

data series A and B were computed. Let α be the identification 

coefficient. Then, the correlation coefficient can be obtained 

by: 
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The correlation coefficient can also be expressed as the 

Pearson’s correlation coefficient:  
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where, μa and μb are the means of data series A and B, 

respectively. 

(5) Calculation of relevance 

The relevance ri of data series B is the arithmetic mean of 

the correlation coefficients in the series: 
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The relevance ri is a number greater than 0 and smaller than 

1. The closer its value is to 0, the weaker the relevance between 

data series A and B; the closer its value is to 1, the stronger the 

relevance between the two. The relevance of each factor in 

data series B relative to tourist flow in scenic areas can be 

derived from the results of formula (5) (Table 1). 

 

Table 1. The relevance of each factor and tourist flow 

 
Factor Relevance Factor Relevance Factor Relevance 

V11 0.6689 V212 0.7542 V234 0.6745 

V12 0.6446 V213 0.7145 V235 0.7015 

V13 0.6813 V214 0.6563 V24 0.6944 

V14 0.6246 V221 0.6456 V25 0.6547 

V15 0.6941 V222 0.6834 V31 0.6745 

V16 0.6752 V223 0.6845 V32 0.7145 

V24 0.6146 V224 0.6954 V33 0.6541 

V25 0.6436 V231 0.7154 V34  

V26 0.7262 V232 0.6852 V35  

V211 0.6468 V233 0.7891   

 

 

3. PREDICTION MODEL BASED ON PSO OF NN 

 

3.1 LSTM NN 

 

LSTM NN adds three gating units to each neuron, namely, 

input gate, forget gate, and output gate. Figure 2 shows the 
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internal structure of LSTM neurons. The forget gate enables 

LSTM NN to selectively memorize and store important 

information, overcoming the long-term dependence of 

traditional NN. Hence, LSTM NN is suitable for processing 

data series B mentioned in the above section. 

 

 
 

Figure 2. The internal structure of a LSTM neuron 

 

The forget gate determines with a certain probability which 

information to discard from the neuron state. Let Ot-1 be the 

output of the previous neuron, and It be the input of the current 

neuron in LSTM NN. Then, the forget gate will read Ot-1 and 

It, and output a number between 0 and 1. The output number 

will be assigned to the state of the previous neuron St-1, 

indicating the probability of discarding the neuron state. If the 

number is 1, the neuron state will be retained fully; if the 

number is 0, the neuron state will be completely discarded. 

 

1( [ , ] )t f t t ff Sigmoid W O I −=  +   (6) 

 

Unlike the forget gate, the sigmoid activation function of 

the input gate determines which information needs to be 

updated and added to the neuron. A state vector St is generated 

by the tanh function to replace the state of the previous neuron 

St-1: 

 

1t t t t tS f S u S−=  + 
 

  (7) 

 

1( [ , ] )t i t t iu Sigmoid W O I −=  +   (8) 

 

1tanh( [ , ] )t C t t CS W O I −=  +
 

  (9) 

 

The output gate determines which information needs to be 

filtered and which needs to be output. The neuron state is 

processed by the tanh function. The output number, which falls 

between -1 and 1, is multiplied with the output of the sigmoid 

activation function. The final output can be expressed as 

formula (11): 

 

1( [ , ] )t h t t hh Sigmoid W O I −= +   (10) 

 

tanh( )t t tO h S=    (11) 

 

Through the above analysis, this paper builds a 4-layer 

LSTM NN, including an input layer, an LSTM layer, a fully-

connected layer, and an output layer. Among them, the input 

layer has three dimensions: the number of samples, the time 

step, and features. The LSTM layer contains n neurons with 

three gated units (forget gate, input gate, and output gate). 

Both the LSTM layer and the fully-connected layer use 

random orthogonal matrices for weight initialization. The 

difference is that the fully-connected layer adopts a linear 

activation function to synthesize the features extracted from 

the LSTM layer. The data series B obtained through GRA were 

taken as new features, and input to the LSTM NN for training 

and prediction. 

The constructed model was trained in three steps: acquire 

valuable information through forward propagation and 

compute the prediction result based on reasonably set 

parameters; calculate the loss value; constantly correct the 

learning parameters through backpropagation of the loss. The 

loss function can be described as: 
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where, ylk is the output of the LSTM NN. To improve the 

distribution width of activation values in each layer, enhance 

the expressiveness of the network, and overcome vanishing 

gradients, batch normalization was added to each layer during 

the training, using the batches in the learning process, that is, 

the mean and variance of data series B, which were input in p-

dimensional batches, were respectively calculated by: 
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Let γ be a small value. Then, the data series B can be 

normalized with mean of ηB and variance of σB:  
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3.2 PSO 

 

In the traditional PSO algorithm, N particles are randomly 

initialized. After t iterations, the i-th particle will move at the 

velocity of {vi1(t), vi2(t), …, viD(t)} in the D-dimensional 

search space. At this time, the particle position is {xi1(t), 

xi2(t), …, xiD(t)}. Starting with the current velocity and position, 

the i-th particle will search for the best-known individual 

solution pbest and the best-known global solution gbest. Let vid(t) 

be the velocity of the i-th particle at the t-th iteration in the d-

th dimension subspace; r1, and r2 be any numbers from 0 to 1. 
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Then, the velocity and position of particles in the swarm can 

be respectively updated by: 

 

 
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1 1
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id id best id

best id

v t v t c r p t x t

c r g t x t

+ = + −

+ −
  (16) 

 

( 1) ( ) ( 1)id id idx t x t v t+ = + +   (17) 

 

where, c1 and c2 are acceleration factors; ω is the inertia weight; 

pbest is the best-know position of the i-th particle at the t-th 

iteration; gbest is the best-known position of the swarm at the t-

th iteration. 

In the traditional PSO algorithm, the particles may converge 

prematurely with the growing number of iterations t: 
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where, β is a preset threshold; σPSO is the variance of swarm 

fitness. To limit the variance, a normalization factor called 

fitness λ is introduced: 
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The particles need to be disturbed more intensely to prevent 

premature convergence. The exploration and search abilities 

of particles can be controlled by adjusting the inertia weight ω, 

such that the particles could get out of the local optimum trap. 

Let tmax be the maximum number of iterations for the swarm. 

Then, ω can be expressed as: 
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where, ωmin and ωmax are the minimum and maximum of 

inertia weight, respectively. Traditionally, ω is adjusted 

nonlinearly with the Gaussian function:  
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However, this gradual adjustment approach will weaken the 

optimization performance of the swarm. In the early iterations, 

the particles have relatively weak local search ability, and 

converge rather slowly. It is difficult for a particle to make 

detailed searches in the global best-known area. In the later 

iterations, the particles have relatively weak global search 

ability, failing to jump out of the local optimum trap. To solve 

the problems, the adjustment method for ω was optimized as 

follows, considering the difference between the variances of 

swarm fitness in adjacent iterations: 
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  (22) 

 

where, λi(t+1) is the fitness of the i-th particle at the t+1-th 

iteration; λ is the mean fitness of the swarm at the t-th iteration. 

It can be seen that, if ΔσPSO is relatively large, the particle 

distribution is dispersed, and ω needs to be reduced to 

accelerate the convergence; if λi is greater thanλ, the particle 

is outside the best-known area, and ω needs to be increased to 

relocate the optimal solution; if λi is smaller than λ, the particle 

has good learning ability, and ω needs to be further reduced to 

find the optimal solution quickly; if ΔσPSO is extremely small, 

the particle swarm will converge prematurely, and the particles 

need to be disturbed, making the swarm more diverse. 

 

 

4. WORKFLOW OF PREDICTION MODEL  

 

Figure 3 illustrates the structure of the LSTM NN optimized 

by the adaptive PSO algorithm, in which the inertia weight is 

based on log function. Firstly, the LSTM NN parameters are 

adjusted by the adaptive PSO algorithm, that is, the global 

best-known position is transferred to the Ot-1 and It of the 

LSTM for calculation. Then, the loss function of LSTM is 

taken as the fitness of the adaptive PSO algorithm, and used to 

update the velocity and position of each particle in the swarm. 

The specific workflow of the proposed model is as follows: 

(1) Initialize the parameters of the adaptive PSO algorithm: 

swarm size, maximum number of iterations, acceleration 

factors, minimum inertia weight, maximum inertia weight, 

initial velocity, and initial position. 

(2) Define the parameters of LSTM NN, and transfer the 

initial position of each particle to the Ot-1 and It of the LSTM. 

Take the loss function value on the test set as the initial fitness 

λ0 of the particle, calculate the value of λ, and search for the 

best-known individual and global solutions pbest and gbest. 

(3) Calculate the inertia weight by formula (22), and update 

the velocity and position of each particle by formulas (16) and 

(15), respectively. Judge whether the updated velocity and 

position surpass the limit: If xid(t+1)>xmax, vid(t+1)>vmax, then 

xid(t+1)=xmax, vid(t+1)=vmax; if xid(t+1)<xmin, vid(t+1)<vmin, then 

xid(t+1)=xmin, vid(t+1)=vmin. 

(4) Recalculate λi(t+1), and update pbest and gbest. If λi(t+1) 

is better than pbest, replace pbest with λi(t+1); If λi(t+1) is better 

than gbest, replace gbest with λi(t+1). 

(5) Judge if the termination condition is satisfied. If not, 

return to Step 3 and repeat Steps 3-5 until the condition is 

satisfied; if yes, terminate the iteration, and output the global 

optimal solution. 

(6) Import the global optimal solution to the LSTM NN, 

kicking off a new round of training and prediction. 
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Figure 3. The structure of the proposed model 

 

 

5. EXPERIMENTS AND RESULT ANALYSIS 

 

 
(a) 30 iterations 

 
(b) 150 iterations 

 

Figure 4. The particle distribution in the search process 

 

The particle distributions of the traditional PSO algorithm 

and the proposed adaptive PSO algorithm were recorded, 

aiming to demonstrate the ability of our algorithm to optimize 

NN. The particle distributions after 30 and 150 iterations are 

presented in Figures 4(a) and 4(b), respectively. Compared 

with the traditional PSO algorithm, the proposed algorithm 

expands the search range of particles in the early and later 

iterations, during the search for the optimal solution. In this 

way, our algorithm effectively prevents particles from falling 

into local optimum trap and avoids premature convergence. 

Moreover, the particles of our algorithm clustered around the 

optimal solution in the early phase of the search, indicating 

that our algorithm ensures fast and effective convergence. 

To verify the performance of the proposed LSTM NN, this 

paper carries out simulations on Matlab2010, with the dataset 

of daily tourist flow in a scenic area from 2018 to 2019 as the 

training set, and the dataset of daily tourist flow in that scenic 

area from January to September 2020 as the test set. The 

original data series exist as a 3×1,578 matrix. 

The convergence of loss function in the LSTM NN is 

displayed in Figure 5. Obviously, the loss values on test set 

and training set both tended to be stable at around 30 iterations, 

indicating that the network has basically converged. Thus, the 

maximum number of iterations was set to 40. The loss values 

on test set and training set were about 0.0342 and 0.0328, 

respectively. 

Figure 6 provides the prediction results of our NN on the 

tourist flow in the scenic area. It can be seen that the predicted 

values basically overlapped with the actual values. The 

prediction accuracy was still desirable, even if the tourist flow 

surged up on holidays in May and October. 

Furthermore, our model was compared with several time 

series prediction methods, including RF, SVM, recurrent 

neural network (RNN), the LSTM optimized by traditional 

PSO (PSO-LSTM). The prediction results and errors of these 

methods are given in Tables 2 and 3, respectively. As shown 

in Table 2, the peak season of the scenic area lasts from April 

to October, according to the prediction results of all 

contrastive methods. Hence, the predictions are basically 

consistent with the actual situation. 
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Figure 5. The convergence of loss function in the LSTM NN 

 

 
 

Figure 6. The prediction results of our model 

 

Table 2. The comparison of prediction results 

 

Month RF SVM RNN 
PSO-

LSTM 

Our 

model 

January 2,765 2,846 2,798 2,754 2,854 

February 2,697 2,721 2,654 2,665 2,754 

March 2,865 2,789 2,795 2,855 2,841 

April 3,965 3,843 3,836 3,912 3,979 

May 6,589 7,635 8,754 7,513 9,549 

June 4,258 4,167 4,379 5,290 4,947 

July 5,659 5,477 5,275 5,145 5,096 

August 5,258 5,159 5,359 5,058 5,357 

September 6,059 5,541 6,214 6,145 6,248 

October 10,978 10,845 11,012 10,956 
10,98

8 

November 4,245 4,169 4,354 5,214 4,558 

December 3,895 3,954 3,125 3,732 3,854 

 

Table 3. The prediction errors of different models 

 
Method RMSE MAE MAPE R2 

RF 1,645.89 1,187.36 98.65 -2.65 

SVM 502.62 293.15 56.89 0.98 

RNN 384.26 157.38 16.58 0.94 

PSO-LSTM 321.85 208.65 26.54 0.96 

Our method 193.21 96.46 6.98 0.93 
Note: RMSE, MAE, MAPE, and R2 are short for root mean square error, mean 

absolute error, mean absolute percentage error, and coefficient of 
determination, respectively. 

As shown in Table 3, the RF, which is based on random 

sampling, had the greatest prediction error. This means RF is 

not a good choice for the prediction of tourist flow with strong 

nonlinear features. The PSO-LSTM had lower errors than 

SVM and RNN, indicating that LSTM NN can effectively 

overcome the long-term dependence in time series data. Our 

model boasted the smallest errors, because the redundant 

information is removed through GRA of influencing factors. 

This dimensionality reduction treatment ensures the extraction 

of important information from the data series, while improving 

the training effect of the NN. The ultralow MAPE (<6.98) 

fully demonstrates the effectiveness of our model. 

 

 

6. CONCLUSIONS 

 

This paper fully explores and further optimizes the existing 

AI methods, and comes up with a tourist flow prediction model 

for scenic areas based on the PSO of NN. Firstly, the authors 

built up a system of factors affecting the tourist flow in scenic 

areas, and eliminated the factors with low relevance through 

GCA. On this basis, the LSTM NN was optimized with 

adaptive PSO, creating a tourist flow prediction model for 

scenic areas. The workflow of the proposed model was 

detailed. Experimental results show that the proposed adaptive 

PSO algorithm can effectively prevent particles from falling 
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into local optimum trap and avoids premature convergence. 

Furthermore, our model was compared with time series 

prediction methods like RF, SVM, RNN, and PSO-LSTM. 

The comparison shows that our model can greatly enhance the 

prediction accuracy of tourist flow in scenic areas, and achieve 

desirable effect in peak season and on holidays. 
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