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 Due to the temperature dependent properties, evaluation of heat transfer performance 

parameters of a polymer composite material through experimentation is difficult as it needs 

sophisticated measurement techniques. In this article, to meet the current requirements, a 

simple semi-analytical method is proposed to investigate the performance of convective 

straight fins with temperature dependent thermal conductivity. The Adomian Decomposition 

Method (ADM) was adopted to solve the non-linear energy equation and Newton-Raphson 

method was used for optimization of the fin problem. After the analysis, the effect of 

convective-geometric fin parameter and thermal conductivity parameter is introduced in this 

problem to interpret the physical significance of such parameters. A parametric analysis was 

carried out to depict the dependency of heat transfer phenomena on various parameters. The 

informative plot on the gradient field of the fin efficiency negotiates the direction of 

maximum performance. 
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1. INTRODUCTION 

 

The requirement of the present day heat exchanging 

equipment is a high surface area to volume ratio, light weight, 

compactness, manufacturability and low manufacturing-

maintenance cost. Particularly, in case of atmospheric air 

dependent cross flow heat exchangers like plate fin heat 

exchangers and tube finned heat exchangers need high surface 

area to volume ratio of the fin structures to improve air side 

heat transfer rate [1-2]. In the past decade, a lot of research 

work was carried out to overcome air side resistance during 

the heat transfer process by varying the geometry of the fin 

structures. To improve the heat transfer rate, the adoption of 

the newly developed fin structures is mandatory.  

The manufacturing, material and maintenance (MMM) 

flexibility and cost plays a major role during the production of 

new fin structures.  With the help of the high conductivity 

polymer composite materials, the MMM flexibility can be 

maintained under required limits compared with conventional 

metals due to the good mechanical-economical values of the 

polymers. 

Polymer composite materials are widely used in various 

engineering applications to enhance the mechanical properties, 

life of the product and also to reduce the global cost 

consumption in the product development stream. The thermal 

properties of the polymer composite materials are very poor 

whencompared with all other metals, metalloids [3]. Polymer 

composite materials exhibit low thermal properties due to poor 

phonon energy transfer in the sub-atomic level and the heat 

transfer capacity depends on the qualitative and quantitative 

nature of the reinforcing materials [4, 6]. For developing a 

high thermal conductivity polymeric composite material, the 

investigation on heat transfer behavior of such material is a 

necessary one to execute inverse heat transfer problem to 

design such a composite. Experimental investigation on heat 

transfer behavior of composite material is complex method 

because it requires sophisticated measurement techniques due 

to the anisotropic behavior of the material. Thermal 

conductivity of the composite material is a dynamic property 

which varies with respect to temperature due to the anisotropic 

nature [5-6]. 

In fact, a considerable amount of research has been 

conducted considering temperature dependent thermal 

conductivity parameter which is associated with metal fins 

operating in practical situations. But the investigations on the 

thermal performance of variable thermal conductivity material 

based fins showed poor information regarding design 

parameters of such a fin system. The governing equation for 

fin model with variable thermal conductivity is a non-linear 

differential equation and in most of the cases, numerical 

schemes are adopted to solve the problems. Initiatively, Hung 

and App [7] investigated on variable thermal conductivity 

system with internal heat generation. Unal [8] announced a 

solution based on series of studies on an extended surface of 

non-uniform heat transfer coefficient with limited number of 

cases.Later, Meyers [9] analyzed on the steady periodic heat 

conduction in a semi-infinite medium and extended it by the 

method of complex combination. Muzzio [10] explored 

approximate solutions for the temperature dependent thermal 

conductivity fin problem based on the Galerkin method, which 

involves selection of suitable basis function. The parametric 

performance analysis and optimization of the fin design 

parameter are being major voids in the past research progress. 

The direction for achieving maximum performance per 

minimum design constraints is also not interpreted in the 

literatures. 

In most cases, these kinds of problem do not declare 

analytical solution, so these nonlinear equations can be solved 
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by special techniques. The integral transform methods, 

Laplace transforms and Fourier transforms were successfully 

adopted for these kinds of problem [11-15] with linear 

equations. But for nonlinear problems, these methods result in 

more complex and difficult solutions. Recently, the Adomian 

Decomposition Method (ADM) [16-17] has emerged as a 

semi-analytic scheme to solve a non-linear problems whose 

mathematical models possesses algebraic [18], differential and 

partial differential equations [19, 20]. The main advantage of 

the decomposition method is that it solves both deterministic 

and stochastic non-linear problems without any linearization 

scheme [21].  

In this communication, analytical solution of parametric 

performance analysis of temperature dependent thermal 

conductivity straight fins with convective environment has 

been studied by Adomian decomposition method. For this 

purpose, after portrayal of the problem statement-assumptions 

and brief introduction of Adomian Decomposition Method 

(ADM), ADM was adopted to produce approximate solution 

for the given problem. For an isotropic fin case study, 

procurement of result and comparing it with exact solution 

reveals the compatibility, effectiveness and adherence of 

ADM for such a kind of problems. The efficiency and non-

dimensional heat transfer rate of the fin is derived and the 

direction for maximum performance with minimum design 

requirement was identified using optimization technique. 

 

 

2. MATHEMATICAL MODEL AND ASSUMPTIONS 

 

One dimensional composite extended surface (fin) with a 

temperature dependent thermal conductivity k(T), perimeter P, 

length L, thickness t and fixed cross-sectional area Ac was 

considered. The uniform bottom surface of the straight fin is 

attached with an isotropic metal surface of uniform 

temperature Tb and the tip of fin is insulated which roots to 

adiabatic nature. Figure 1 depicts an illustration of the fin 

geometry, where the axial distance x is measured from the tip 

end. The fin is exposed to the convective environment of a 

temperature Ta and a convective heat transfer coefficient of h. 

The following assumptions were considered to solve the 

present composite fin problem: 

 

 
 

Figure 1. Illustration of a rectangular straight fin 

 

1. Composite fin material is heterogeneous in nature and it 

exhibits variable thermal conductivity. 

2. The physical properties of the surrounding fluid medium 

are invariable and fixed. 

3. Temperature variation inside the fin is one-dimensional 

(preferably longitudinal direction). 

4. Thermal conductivity k is the dependent variable and a 

function of a single variable temperature T at each point of the 

fin. 

5. There is no bond resistance at the fin base and there are 

no heat producing sources in the fin itself. 

6. Heat transferred through the outer most edge of the fin is 

negligible compared with its sides (Adiabatic tip condition). 

In this study, total heat transfer from the composite fin is 

calculated as the summation of convection due to motion of 

the fluid flowing around the fin and conduction in the fin. By 

employing an energy conservation law, mathematically it 

represents  

 
∂

∂x
(k

∂T

∂x
) −

hP

Ac
(T − Ta) = 0           (1) 

 

The temperature dependent thermal conductivity of the 

composite material is defined by  

 

k(T) = ka  [1 + Ω(T − Ta)]                        (2) 

 

and the boundary conditions can be detailed as 

 
∂T

∂x
|
x=0

= 0        and    T|x=L = Tb                        (3) 

 

by employing equations (2), (3) and the following 

dimensionless variables, parameters and constants, 

 

θ =
T−Ta

Tb−Ta
, γ =

x

L
, ζ =

kb−ka

ka
= Ω(Tb − Ta), N

2 =
hPL2

kaAc

                                        (4) 

 
d2 θ

dγ2
+  ζθ (

d2 θ

dγ2
) + ζ (

dθ

dγ
)
2

− N2θ = 0          (5) 

 

subjected to the boundary conditions of 

 
dθ

dγ
|
γ=0

= 0,       θ|γ=1 = 1            (6) 

 

We consider the range of dimensionless composite fin 

parameters as 

 

0 ≤ N ≤ 1.5 and 0 ≤ γ ≤ 1.           (7) 

3. DECOMPOSITION METHOD FOR NONLINEAR 

EQUATION 

The general nonlinear equations cannot be solved with the 

help of usual analytical techniques. Currently, application of 

decomposition method is popular for solving the nonlinear 

sorts of equations. The Adomian decomposition method was 

introduced and elaborated in late 1980s to solve boundary 

based physical problems. The general non-linear equation 

represented by the Adomian decomposition method is in the 

form of  

(L + R)σ + nσ − g = 0.            (8) 

 

The linear and non-linear terms of an algorithm were 

decomposed into (L+R)σ and nσ operators respectively [21]. 

The higher order term of the linear operators is considered as 

L term to avoid complex integration problem involving 

difficult green’s function, and the remaining is termed as 

remainder R. The define integration from 0 to σ is used to 

develop the inverse operator L-1 of the linear operator L, i.e. 

 

[L−1f](σ)  = ∫ f(σ1)dσ
σ

0
            (9) 

 

If L is an nth order differential operator, then L-1 will be an 
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n-fold indefinite integral, i.e. 

L−1(Lσ) = L−1 (
dnσ

dλn
) =

∫ ∫ ∫ ………… . ∫ (
dnσ

dλn
)  d

σ

0

σ

0

σ

0

σ

0
λ dλ dλ dλ……dλ.            (10) 

 

for a two-fold indefinite integration, it will be written as 

L−1(Lσ) = L−1 (
d2σ

dλ2
) = ∫ ∫ [(

d2σ

dλ2
) dλ]

σ 

0

σ

0
dλ =  σ − σ(0) −

λ
∂σ

∂λ
(0).                                                    (11) 

 

based on the equation (8), the required formulation is  

 

L−1(Lσ) = L−1g − L−1Rσ − L−1Nσ,         (12) 

 

and reduces to  

 

σ = σ(0) + λ
∂σ

∂λ
(0) + L−1g − L−1Rσ − L−1Nσ.        (13) 

 

For boundary value problems, above equation is further 

reduced into  

 

σ = σ0 − L
−1Rσ − L−1Nσ,          (14) 

 

whereσ0 =  σ(0) + λ
∂σ

∂λ
(0)  + L−1g .         (15) 

 

Based on decomposition method, a series solution of the 

equation (14) is written as  

 
∑ σm
∞
m=0 = σ0 − L

−1R∑ σm
∞
m=0 − L−1∑ Am

∞
m=0 ,       (16) 

 

where Am are Adomian’s polynomials of  

𝜎0,𝜎1,𝜎2,………..,𝜎𝑚. 

 

 

4. PARAMETRIC TEMPERATURE DISTRIBUTION 

 

From decomposition analysis, the non-linear differential 

equation (5) of given fin problem can be detailed as follows: 

 

Lγθ =  N
2θ − ζθ (

d2 θ

dγ2
) − ζ (

dθ

dγ
)
2

.         (17) 

 

Using equations (12) and (16), the above problem can be 

written as 

∑ θm
∞
m=0 = θ0 + L

−1N2∑ θm
∞
m=0 − L−1ζ∑ Am

∞
m=0 −

L−1ζ∑ Bm
∞
m=0  ,                                      (18) 

 

reduced into 

 
∑ θm+1
∞
m=0 = N2 L−1∑ θm

∞
m=0 − ζ L−1∑ Am

∞
m=0 −

ζ L−1∑ Bm
∞
m=0 ,                                     (19) 

 

where θ0 =  θ(0) + γ
∂θ

∂γ
(0) , the non-linear terms in the 

equation are decomposed into 

 

θ (
d2 θ

dγ2
) =  ∑ Am

∞
m=0 , 

(
dθ

dγ
)
2

= ∑ Bm
∞
m=0  . 

 

Temperature distribution of the given well-posed fin 

problem can be sentenced as (from Eq. 19) 

 

θ(γ) =  ∑ θi
m−1
i=0 = θ0 + θ1 + θ2 + θ3 +⋯+ θm−1 , for 

m ≥ 0                                       (20) 

 

and the first term in the series is derived from equation (15), 

other are followed by recursive iteration 

 

θm+1 = N
2 L−1θm − ζ L

−1Am − ζ L
−1Bm.        (21) 

 

The decomposed non-linear terms in the given problem are 

represented by using Adomian’s polynomials as 

 

A0 = θ0 (
d2 θ0

dγ2
), 

A1 = θ1 (
d2 θ0

dγ2
) + θ0 (

d2 θ1

dγ2
), 

A2 = θ2 (
d2 θ0

dγ2
) + θ1 (

d2 θ1

dγ2
) + θ0 (

d2 θ2

dγ2
),………..        (22) 

 

similarly, 

 

B0 = (
dθ0

dγ
)
2

, 

B1 = 2(
dθ0

dγ
) (

dθ1

dγ
), 

B2 = 2(
dθ0

dγ
) (

dθ2

dγ
) + (

dθ1

dγ
)
2

,…………..        (23) 

 

Based on equation (21), temperature distribution in the 

variable thermal conductivity composite fin is written in 

decomposed form as 

 

𝜃0 = 𝜏, 

𝜃1 =
1

2
𝜏𝑁2𝛾2, 

𝜃2 =
1

24
𝜏𝑁4𝛾4 −

1

2
𝜁𝜏2𝑁2𝛾2,          

𝜃3 =
1

720
𝜏𝑁6𝛾6 −

5

24
𝜁𝜏2𝑁4𝛾4 +

1

2
𝜁2𝜏3𝑁2𝛾2, 

𝜃4 =
1

40320
𝜏𝑁8𝛾8 −

1

45
𝜁𝜏2𝑁6𝛾6 +

1

2
𝜁2𝜏3𝑁4𝛾4 −

1

2
𝜁3𝜏4𝑁2𝛾2,……………                                                    (24) 

 

From equation (20), by summing up all the decomposed 

elements, temperature distribution of the fin as a function of 

dimensionless parameters can be expressed as 

 

𝜃(𝛾) = 𝜏 +
1

2
𝜏𝑁2𝛾2 +

1

24
𝜏𝑁4𝛾4 −

1

2
𝜁𝜏2𝑁2𝛾2 +

1

720
𝜏𝑁6𝛾6 −

5

24
𝜁𝜏2𝑁4𝛾4 +

1

2
𝜁2𝜏3𝑁2𝛾2 +

1

40320
𝜏𝑁8𝛾8 −

1

45
𝜁𝜏2𝑁6𝛾6 +

1

2
𝜁2𝜏3𝑁4𝛾4 −

1

2
𝜁3𝜏4𝑁2𝛾2 +⋯,       (25) 

 

where 

 

θ0 =  θ(0) + γ
∂θ

∂γ
(0) = 𝜏.           (26) 

 

The co-efficient 𝜏  is determined by solving non-linear 

algebraic equation (27) using Newton-Raphson method with 

the help of specific boundary conditions as described in 

equation (6).  

The required non-linear algebraic equation is  
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(
1

2
𝜁4𝑁2) 𝜏5 − (

1

2
𝜁3𝑁2 + 

5

6
𝜁3𝑁4) 𝜏4 + (

1

2
𝜁2𝑁2 + 

1

2
𝜁2𝑁4 +

49

360
𝜁2𝑁6) 𝜏3 − (

1

2
𝜁𝑁2 + 

5

4
𝜁𝑁4 +

1

45
𝜁𝑁6 +

37

20160
𝜁𝑁8) 𝜏2 +

(1 +
1

2
𝑁2 +

1

24
𝑁4 +

1

720
𝑁6 +

1

40320
𝑁8 +

1

3628800
𝑁10) 𝜏 −

1 = 0.                                                                                 (27) 

 

The above equation (25), (26) and (27) gives the 

approximate analytical solution of θ for assigned values of 

parameters, fin parameter N, thermal conductivity parameter ζ. 

With the help of all, therefore the temperature distribution of 

the fin in axial direction is expressed explicitly as a function 

of γ(x)and the performance analysis of fin can be easily 

exhibited by the use of above mentioned equations. 

The values of co-efficient τ expressed in terms of thermal 

conductivity parameter ζ and fin parameter N is calculated and 

plotted in figure 2 based on respective boundary conditions. 

The temperature distribution profile over the length of the fin 

depends on the characteristic value τ and the characteristic 

value increases at fin tip as the thermal conductivity parameter 

ζ of the fin increases. As expected, temperature at the tip of the 

fin is in reducing nature as the fin length increases. The above 

mentioned interpretations are shown clearly in figure 2. 

 

 

Figure 2. The variation of co-efficient τ for various values of 

N and ζ  

 

 
3(a) 

 
3(b) 

 
3(c) 

 
3(d) 

 
3(e) 
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3(f)  

Figure 3. Convergence chart based on no. of terms in the 

series for various fin parameters (a) N=1, ζ =0 (b) N=1, ζ = -

0.4 (c) N=1, ζ = 0.4 (d) N=1.5, ζ =0 (e) N=1.5, ζ = -0.4 (f) 

N=1.5, ζ =0.4 

 

The convergence of the solution for a given fin problem is 

greatly depends on the thermal conductivity parameter ζ 

compared with the convective-geometric property parameter 

N as depicted in figures 3 (a), (b) and (c). Equations (5) and (7) 

provided the information that the temperature distribution of 

the given fin problem is hardly influenced by the non-linear 

terms in that equations. The nonlinearities in the solutions of 

those equations are demonstrated in figures 3 (a), (b), (c), (d), 

(e) and (f) and it concludes the influence of the nonlinear terms 

over the solutions via various trends of convergence chart. 

The number of terms required to obtain converged solution 

also depends on the thermal conductivity parameter as shown 

in figure sets 3 (b), (e) and 3 (c), (d) and the number of 

decompositions in nonlinear terms or the number of Adomian 

polynomials have to be improved for higher positive values of 

ζ. Here, for given problem, boundary conditions and input 

parameter values, the solution obtained was better and it does 

not require more numbers of decomposition or Adomian 

polynomials. 

 

 
4(a) 

 
4(b)  

Figure 4. Error in estimated values of dimensionless 

temperature of an isotropic fin at various axis lengths in a 

vector plot for different values of N (a) from N=0.5 to N = 

1.0 (b) from N = 1.0 to N = 1.5 

 
Figure 5. Comparison of present semi-analytical solutions 

with exact solutions of an isotropic fin for various value of 

geometric parameter N 

 

The exact solution of an isotropic fin was calculated based 

on the given boundary conditions and was used for error 

estimation of the present decomposition method based 

solutions. The error values of the estimated dimensionless 

temperature of the given problem are plotted in figure 4 (a) and 

(b). The vector plot represents the error values for an isotropic 

fin and exhibits the very less polluted prediction nature of the 

decomposition method. 

For the given values of geometric-convective property 

parameter N, the dimensionless temperature of an isotropic fin 

at various axis lengths based on both exact and decomposition 

methods was plotted in figure 5 and it shows the coincidence 

of the present solution with the exact solution. The plot shows 

the merit of decomposition method and the future scope of the 

method for an anisotropic material based heat conduction 

problems. 
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5. PERFORMANCE ANALYSIS AND OPTIMIZATION 

 

For performance analysis and optimization, the convective-

geometric property parameter N can be represented as a 

function of heat diffusion term Biot number and geometry 

design parameter ψ. The effect of design parameter over the 

heat transfer rate and efficiency of the fin can be analyzed and 

the optimum value of ψ for maximum heat transfer rate is 

arrived by the method of conventional optimization for various 

Biot number 

 

N2 =
4Bi

ψ2
                                                                              (28) 

  

where 

 

Bi =  
hLc

ka
 and ψ = 

t

L
                                                          (29) 

      

The relationship between Biot number, convective-

geometric parameter and geometry design parameter was 

expressed in the following informative figure 6. 

 

 

Figure 6. Relationship between N, Bi and ψ 

 

The required dimensionless form of heat dissipation rate 

and efficiency of the fin is derived from the following 

conservative equations (30) and (31) and the steps are 

represented in the equations (32) and (33).  

 

Qfin = L(Tb − Ta) ∫ Phθ(γ)
1

0
dγ                                        (30) 

  

ηfin =
Qfin

hAfin(Tb−Ta)
 .                                                            (31) 

  

The efficiency η of given fin model [Appendix A] is 

represented with the help of dimensionless parameters as  

 

η = ∫ θ(γ)dγ
1

0
.                                                                   (32) 

  

Similarly, non-dimensional heat transfer rate per unit 

volume and unit width of fin is represented as  

 

𝑄𝑛𝑑 = (2𝐵𝑖)
4/3 (√

1

ψ5
)
2/3

∫ θ(γ)dγ
1

0
                                (33) 

  

where Biot number and geometry design parameter are 

calculated based on equations (28) and (29). 

The maximum heat dissipation rate occurs at optimum fin 

design characteristics and it can be achieved by searching 

optimum fin geometry design parameter based on heat 

diffusive parameter Biot number for the present problem. The 

optimization procedure is also executed to identify fin 

geometry design parameter ψ where maximum heat 

dissipation occurs by expressing non-dimensional heat 

transfer rate as a function of Bi and ψ or convective-geometry 

fin parameter N. For a given Biot number, the optimized value 

of fin geometry design parameter ψ was calculated based on 

Newton-Raphson method. The optimization problem of both 

maximizing heat transfer rate and minimizing fin volume is 

formulated by Euler-Lagrange equation [15]. The 

dimensionless form of fin volume is represented as 

 

𝑉 =
4𝐵𝑖2

ψ
                                                                              (34) 

 

The dimensionless form of heat transfer rate at fin base as 

per Fourier’s law of heat conduction is  

 

𝑄 =
𝑄𝑏𝑎𝑠𝑒

𝑘𝑏(𝑇𝑏−𝑇𝑎)
= ψ

𝜕𝜃

𝜕𝛾
|
𝛾=1

                                                  (35) 

  

The optimality criteria for present problem is constructed 

with Euler-Lagrange equation after eliminating Lagrange 

multipliers and represented as 

 

(
𝜕𝑄

𝜕𝐵𝑖
) (

𝜕𝑉

𝜕ψ
) − (

𝜕𝑄

𝜕ψ
) (

𝜕𝑉

𝜕𝐵𝑖
) = 0                                             (36) 

  

From the equations (34), (35) & (36), the functions for 

optimization problem set as  

 

𝑆(𝐵𝑖, ψ) = Bi
𝜕

𝜕𝐵𝑖
(
𝜕𝜃

𝜕𝛾
|
𝛾=1

) + 2ψ
𝜕

𝜕ψ
(
𝜕𝜃

𝜕𝛾
|
𝛾=1

) +

2(
𝜕𝜃

𝜕𝛾
|
𝛾=1

) = 0                                                                   (37) 

  

𝑅(𝐵𝑖, ψ) =

{
 

 ψ(
𝜕𝜃

𝜕𝛾
|
𝛾=1

) − 𝑄 = 0

4𝐵𝑖2

ψ
− 𝑉 = 0

                                    (38) 

  

The above non-linear equations are solved by Newton-

Raphson method and the optimized values of Bi, ψ or N for 

given thermal conductivity parameter is calculated based on 

this iterative procedure. 

 

[
(𝐵𝑖)𝑗+1
(ψ)𝑗+1

] = [
(𝐵𝑖)𝑗
(ψ)𝑗

] − [

(
𝜕𝑆

𝜕𝐵𝑖
)
𝑗

(
𝜕𝑆

𝜕ψ
)
𝑗

(
𝜕𝑅

𝜕𝐵𝑖
)
𝑗

(
𝜕𝑅

𝜕ψ
)
𝑗

]

−1

[
𝑆(𝐵𝑖𝑗 ,  ψ𝑗)

𝑅(𝐵𝑖𝑗 , ψ𝑗)
]  (39) 

  

The converged results of the above iterative problem were 

demonstrated in following section and the effect of thermal 

conductivity parameter on optimized fin convective-geometry 

parameters has been discussed elaborately in the following 

sections. 

 

 

6. RESULTS AND DISCUSSION 

 

The following sets of plot in figure 7 designate the 

importance of thermal conductivity parameter in fin designing 
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of temperature dependent soft materials. The dimensionless 

temperature profile of the temperature dependent thermal 

conductivity fin follows the diminishing nature for the 

increasing nature of the convective-geometric property 

parameter N as stated in figure 7. Lower value of N describes 

the high convective nature and smaller design parameters of 

the fin and it shows good effectiveness compared with higher 

values of N. The dimensionless temperature distribution over 

the longitudinal axis of the fin is plotted in the figures 7(a), 7(b) 

and 7(c). At fin base θ value is maximized and it decreases in 

the direction of fin tip due to the effect of conductive resistance 

of the fin material. Due to the rise in N value, the 

dimensionless temperature at different axis length along the 

longitudinal axis direction falls and follows the reducing 

nature as displayed in figure 7. 

The major effect of thermal conductivity parameter ζ was 

elaborated in figure 7(a) for lower value of N (substantially a 

shorter fin). The negative slope of thermal conductivity value 

ζ has greater effect on the performance of fins for smaller value 

of N. The significant amount of drop in temperature has 

occurred as a result of decreasing nature of negative slope of 

thermal conductivity ζ and it has been clearly displayed in 

figure 7(a). In the same figure 7(a), the effect of positive slope 

value of thermal conductivity ζ has been addressed and 

strongly stated that the positive slope value of thermal 

conductivity does not supplements the considerable amount of 

performance improvement to the fin system. 

 

 
7(a) 

 
7(b) 

 
7(c) 

 

Figure 7. Dimensionless temperature distribution in axial 

direction of the fin based on different ζ values (a) For N = 0.5 

(b) For N = 1.0 and (c) For N = 1.5. 

 

For higher values of N, the effect of thermal conductivity 

parameter ζ on the fin performance is not much significant 

compared with lower value of N as shown in figure 7(b) and 

7(c). The longer fins are exhibiting very minor changes in its 

performance for various values of thermal conductivity 

parameter ζ. The longer fins can accommodate high heat flux 

on its volume and the average temperature of the system is 

considerably lower than shorter fins. The effect of temperature 

dependent thermal conductivity on fin performance can be 

tackled with the help of longer fins with high convective 

environment but the longer fins have less effectiveness which 

affects the heat transfer performance of the system. So, for 

heat transfer enhancement problems, shorter fins can be 

accommodated with high convective environment to meet the 

variable thermal conductivity nature of the fins. 

For a fixed value of thermal conductivity parameter ζ with 

given specified perimeter of a fin, the dimensionless heat 

transfer rate per unit volume increases and then marginally 

decreases with respect to an increase in N value as shown in 

figure 8. After optimum fin length L, heat transfer rate 

decreases due to hike in overall heat transfer resistance. The 

optimum fin length value gradually increases for higher values 

of thermal conductivity parameter ζ. 

 

 

Figure 8. Dimensionless heat transfer rate per unit volume 

for various N and ζ values.  
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Figure 9. Contour plot of heat transfer rate for various N and 

ζ values 

 

Figure 10. 3D surface plot of heat transfer rate for various N 

and ζ values 

 

Figure 11. Efficiency contour plot 

The effect of thermal conductivity parameter ζ and 

convective-geometric parameter N on overall heat transfer rate 

of the fin system has been clearly demonstrated in the 

following figures 9 and 10 as 2D and 3D contour plots. 

The figure 11 depicts the efficiency of the fin system based 

on independent fin parameters N and ζ. The efficiency of fin 

increases as the value of thermal conductivity parameter ζ 

increases and then it decreases as the value of N increases. The 

shorter fin with lower N value has greater efficiency compared 

with longer fins for a fixed value of negative slope of thermal 

conductivity parameter ζ. And also the gradient field of the 

efficiency of the fin shows the direction of maximum 

performance as the location of lower N value with higher ζ 

value. 

The higher values of geometry design parameter ψ 

(considerably very thin fin with shorter length in nature), the 

required optimum Biot number was significantly fluctuated 

for negative directional values of ζ and has no effect for larger 

positive values of ζ as shown in figure 12. 

 

 
 

Figure 12. Effect of thermal conductivity parameter on 

optimum Biot number of the fin for regulated fin geometry 

design parameter 

 

Similarly, a smaller value of geometry design parameter, the 

value of ζ has no effect of optimized Biot number values. For 

a fixed convective environment, the required optimum fin 

geometry design parameter ψ considerably increases for 

negative directional flow of slope value of thermal 

conductivity ζ as stated in plot 13. 

 

 
 

Figure 13. Effect of thermal conductivity parameter on 

optimum fin geometry design parameter for various heat 

transfer zones 
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From the figure 13, the requirement of fin geometry 

modification for negative value of ζ has been clearly depicted 

and for a fixed convective environment, the further 

improvement of geometry design parameter for larger values 

of ζ does not add any value to the system performance. 

 

 

7. CONCLUSION 

 

The Adomian Decomposition Method (ADM) was used to 

analyze the heat transfer performance of a nonlinear, 

convective, straight, rectangular fin with temperature 

dependent thermal conductivity property. This ADM method 

provides an approximate exact solution of the nonlinear 

equations without any linearization scheme. The results 

obtained from this method have a nature of fast convergence, 

high accuracy and significantly in explicit form. 

From the present analytical investigation, the following 

ultimate interpretations can be pinched: 

1. The temperature distribution in the temperature 

dependent thermal conductivity fin greatly depends on 

the parameters N and ζ. The negative value of ζ has high 

impact on the temperature distribution in the fin 

compared with positive values of ζ. Similarly, the lower 

value of N leads to very high temperature distribution 

in the fin along the longitudinal axis direction compared 

with higher values of N. 

2. For a fixed N value, the dimensionless heat transfer rate 

increases rapidly with the increasing nature of ζ. 

Similarly, for a fixed value of ζ, heat transfer rate of the 

fin increases up to optimum N value and then decreases 

for further enlargement in N value. 

3. For a fixed perimeter of the fin, the optimum length of 

the fin increases with respect to positive flow nature of 

the thermal conductivity parameter ζ. 

4. The shorter fin with higher thermal conductivity 

parameter ζ has very high fin efficiency and for a 

negative value of ζ, optimum fin length is minimum 

compared with positive values of it.  

5. Finally, the present optimized values of fin geometry 

design parameter ψ may help to design a fin with above 

mentioned nature and boundary conditions. 

. 
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NOMENCLATURE 

 

Ac    fin cross sectional area in m2 

Bi   Biot number 
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h    convective heat transfer co-efficient in W/m2-K 

k     thermal conductivity in W/m-K 

L    length of the fin in m     

N   convective-geometry parameter / fin parameter 

P    perimeter of the fin in m 

Q   dimensionless heat transfer rate 

T    temperature in K 

t     fin thickness in m      

V   dimensionless fin volume 

x     axial direction 

 

Greek symbols 

 

Ω     ratio of slope of thermal conductivity – temperature plot 

        and thermal conductivity ka                              

θ     dimensionless temperature distribution 

γ     dimensionless axial length 

ζ /𝜁 thermal conductivity parameter 

σ     temporary function 

λ     independent variable of temporary function 

τ     co-efficient value formed by constant terms of the 

       solution due to given boundary condition          

ψ    fin thickness to length ratio 

η    fin efficiency 

 

Subscripts 

 

a     ambient 

b     base   

c     characteristic 

nd   non-dimensional 

 

 

APPENDIX A 

 

The efficiency of the fin η as a function of independent 

variables N and ζ 

 

η = 𝜏 +
1

6
𝜏𝑁2 +

1

120
𝜏𝑁4 −

1

6
𝜁𝜏2𝑁2 +

1

5040
𝜏𝑁6 −

1

24
𝜁𝜏2𝑁4

+
1

6
𝜁2𝜏3𝑁2 +

1

362880
𝜏𝑁8 −

1

315
𝜁𝜏2𝑁6

+
1

10
𝜁2𝜏3𝑁4 −

1

6
𝜁3𝜏4𝑁2 +

1

39916800
𝜏𝑁10

−
37

181440
𝜁𝜏2𝑁8 +

7

360
𝜁2𝜏3𝑁6 −

1

6
𝜁3𝜏4𝑁4

+
1

6
𝜁4𝜏5𝑁2 +

1

6227020800
𝜏𝑁12

−
19

3326400
𝜁𝜏2𝑁10 +

407

181440
𝜁2𝜏3𝑁8

−
5

72
𝜁3𝜏4𝑁6 +

31

120
𝜁4𝜏5𝑁4 −

1

6
𝜁5𝜏6𝑁2

+
1

128314368000
𝜏𝑁14

−
1.943144305

10000000
𝜁𝜏2𝑁12

+
2.205337101

10000
𝜁2𝜏3𝑁10 −

677

40320
𝜁3𝜏4𝑁8

+
317

1680
𝜁4𝜏5𝑁6 −

47

120
𝜁5𝜏6𝑁4 +

1

6
𝑁2 +
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