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ABSTRACT 

  

 Propagation of cylindrical shock wave in a rotational axisymmetric non-ideal gas with axial 

magnetic field, radiation heat flux and the components of vorticity vectors are investigated. 

The axial magnetic field and the fluid velocity in the ambient medium are assumed to vary 

and obey the power laws. An exact similarity solution is obtained. The total energy of the 

shock wave is not constant but increases with time. The effects of variation of parameter 

of non-idealness of the gas, the Alfven-Mach number and the adiabatic exponent of the gas 

are investigated. It is shown that an increase in the non-idealness of the gas or the ratio of 

specific heats of the gas or strength of initial magnetic field decreases the shock strength 

but increases the shock velocity. Further it is observed an increase in the value of parameter 

of non-idealness of the gas and adiabatic exponent of the gas have same behavior on the 

flow variables and the shock strength.  
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1. INTRODUCTION 

 

The problem of propagation of magnetogasdynamics shock 

waves in a rotating interplanetary atmosphere assumes special 

significance in the study of astrophysical phenomena. The 

experimental studies and astrophysical observations show that 

due to rotation of the planets and stars the outer atmosphere of 

the planets and stars rotates. Macroscopic motion with 

supersonic speed occurs in an interplanetary atmosphere with 

rotation and shock waves are generated. Thus, the rotation of 

planets or stars considerably affects the process taking place 

in their outer layers, therefore question connected with the 

explosions in rotating gas atmospheres are of definite 

astrophysical interest. 

Chaturani [1] studied the propagation of cylindrical shock 

waves through a gas with solid body rotation and obtained 

solutions using the similarity method adopted by Sakurai [2]. 

Nath et al. [3] derived similarity solutions for the flow behind 

the shock waves propagating in a non-uniform rotating 

interplanetary atmosphere with increasing energy. Gangualy 

and Jana [4] studied a theoretical model for the propagation of 

strong spherical shock waves in a self-gravitating atmosphere 

with a radiation flux in the presence of a magnetic field. They 

also considered that the medium behind the shock rotated, but 

neglected rotation of the undisturbed medium. In all the works 

mentioned, the medium is taken to be a gas satisfying the 

equation of state of a perfect gas. 

In recent years the problems of radiative energy transfer in 

fluids have received extensive attention as a consequence of 

the increasing speed of bodies through the atmosphere and the 

very high temperatures attained by gases in motion. The 

influence of radiation on a shock wave and on the flow-field 

behind the shock front has always been of great interest, for 

instance, in the field of nuclear power and space research. 

Similarity solutions in radiation-gas-dynamics have been 

given by Marshak [5], Elliott [6] and Wang [7] in which the 

flow is headed by a shock wave. Elliot [6] considered the 

explosion problem, solved earlier by Taylor [8] by introducing 

the radiation flux in its diffusion approximation. Wang [7] has 

discussed 'piston problem' with radiation energy transfer in the 

thick limit and thin limit, and also the general case with the 

idealized 'two direction' approximation. Ashraf and Sachdev 

[9] did not explicitly use the radiation transfer equation but 

evaluated the radiation flux from the conservation equations. 

Their solutions, therefore, hold without any restrictions 

imposed on optical properties of the medium. Verma and 

Vishwakarma [10] extended the problem treated by Ashraf 

and Sachdev [9] to take into account the effects of transverse 

magnetic field. 

Because of high pressure and density that usually occur 

behind a shock wave, produced by an explosion, the belief that 

the gas is perfect is no longer valid. In recent years, several 

studied are performed regarding the problem of shock waves 

in non-ideal gases, specifically, by Anisimov and Spiner [11], 

Ranga Rao and Purohit [12], Vishwakarma and Nath [13-14], 

Nath [15] and many others. The popular alternative to the 

perfect gas might be a simplified van der Waals model. Wu 

and Roberts [16], Roberts and Wu [17] adopted this model to 

discuss the shock wave theory of sonoluminescence.   

In the present work, we also adopt this model of a non-ideal 

gas to obtain a self-similar solution for the flow behind a 

magnetogasdynamics cylindrical shock wave. Shock wave is 

assumed to be propagating in a non-ideal gas permeated by an 

axial magnetic field in a rotational axisymmetric flow of a gas 

with constant density, which has variable azimuthal and axial 

fluid velocities [18-20]. The fluid velocities and the axial 

magnetic field in the ambient medium are assumed to vary as 

some power of the distance from the symmetry axis. Also, the 
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angular velocity of rotation of the ambient medium is assumed 

to be obeying a power law and to be decreasing as the distance 

from the axis increases. It is expected that such an angular 

velocity may occur in the atmospheres of rotating planets and 

stars. 

In the present problem we have extended the problem 

treated by Vishwakarma and Patel [21] by taking into account 

the axial component of fluid velocity and components of 

vorticity vectors. Also, we have study the effect of adiabatic 

exponent of the gas on the flow variables. The exact similarity 

solutions are obtained with the general shock conditions in 

place of strong shock conditions and the shock is assumed to 

be transparent. We have taken the similarity form for energy 

and radiative heat flux [9] and the ‘Product Solutions’ of Mc. 

Vittie [22] is used to evaluate it. We have evaluated radiation 

flux from conservation equations. 

The effects of variation of parameter of non-idealness of the 

gas, the Alfven-Mach number, and the ratio of specific heats 

of the gas are investigated. It is shown that an increase in the 

value of adiabatic exponent of the gas or in the parameter of 

non-idealness of the gas or the presence of magnetic field have 

decaying effect on shock strength. An increase in the value of 

Alfven-Mach number and parameter of non-idealness of the 

gas have opposite behaviour on pressure and axial magnetic 

field; whereas they have same behaviour on radial component 

of fluid velocity, density, radiation heat flux and the azimuthal 

component of vorticity vector.  

2. FUNDAMENTAL EQUATIONS OF MOTIONS AND

BOUNDARY CONDITIONS

The fundamental equations governing the one-dimensional, 

unsteady adiabatic and cylindrically symmetric rotational flow 

of a non-ideal gas in the presence of an axial magnetic field in 

which the effect of radiation heat flux may be significant, in 

Eulerian coordinates, can be expressed as [15, 18-20, 23-25] 
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where r and t are the independent space and time coordinates; 

𝑢, 𝑣, and 𝑤 are the radial, azimuthal and axial components of 

the fluid velocity �⃗�  in the cylindrical coordinates (𝑟, 𝜃, z) ; 

𝜌, p,  𝑒, ℎ  and 𝐹  are the density, the pressure, the internal 

energy per unit mass, the axial magnetic field and the radiation 

heat flux respectively.  

The general figure showing the velocity components in 

Eulerian coordinate in the case of rotational axisymmetric one-

dimensional flow is shown in Figure A [19].  

Figure A. Show the directions of velocity vector 

The relation between angular velocity of the medium and 

the azimuthal component of fluid velocity is given by 

v C r=
,           (7) 

where ‘𝐶 ’ is the angular velocity of the medium at radial 

distance r from the axis of symmetry. In this case the vorticity 

vector 𝜍 =
1

2
𝐶𝑢𝑟𝑙�⃗� has the components 

1 1
0, , ( ),
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The system of equations (1) - (6) should be supplemented 

with an equation of state. Most of the phenomena associated 

with shock wave arise in extreme conditions under which the 

ideal gas is not a sufficiently accurate description. To discover 

how deviations from the ideal gas can affect the flow behind a 

shock wave, we adopt a simple model. We assume that the gas 

obeys a simplified van der Waal equation of state of the form 

(Nath [15], Wu and Roberts [16], Roberts and Wu [17], Nath 

and Vishwakarma [26])  

( )*
,

T
p
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=

−

( )
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,
1

v

p b
e C T
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

−
= =

−  (9) 

where 𝛤 is the gas constant, 𝛾 is the ratio of specific heats, 𝑇 

is the temperature of the gas, 𝜈∗ = 1/𝜌 is the specific volume,

𝐶𝑣 is the specific heat at constant volume, constant 𝑏is the van

der Waals excluded volume. 

The relation between the shock velocity 𝑊 (=
𝑑𝑅

𝑑𝑡
)  and 

shock radius 𝑅 is assumed to be given as (Ashraf and Sachdev 

[9]) 

2 2
1

W a R
−

=
,         (10) 

where ‘𝒂𝟏’ and ‘𝝀’ are constants.

A diverging cylindrical shock wave is assumed to be 

propagating outwards from the axis of symmetry in the 

undisturbed non-ideal gas with constant density in the 

presence of an axial magnetic field. In order to obtain the 

similarity solution, it is assumed that initial angular velocity of 

the medium varies as 𝐶0 = 𝐶𝑎𝑅𝛿 , where 𝐶𝑎  and 𝛿  are

constants. The flow variables immediately ahead of the shock 

front are  

𝒖 = 𝒖𝟎 = 𝟎, 𝝆 = 𝝆𝟎 =constant, 𝒗 = 𝒗𝟎 = 𝑪𝒂𝑹𝜹+𝟏, (−𝟏 <
𝜹 < 𝟎), 𝒘 = 𝒘𝟎 = 𝒘𝒂𝑹𝜶, 𝒉𝟎 = 𝒉𝒂𝑹−𝝈,
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where 𝑤𝑎 , ℎ𝑎 , 𝛼  and 𝜎  are constants; 𝝈 = −(𝜹 + 𝟏),  and 

subscript ‘0’ refers the conditions immediately ahead of the 

shock front. The initial pressure 𝑝0 is positive if 1 + 𝛿 > 0. 

Ahead of the shock, the components of the vorticity vector, 

therefore vary as 
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We assume the shock surface to be transparent; therefore, 

the radiation heat flux is continuous across it. Thus, the jump 

conditions across the magnetogasdynamics shock propagating 

into rotating non-ideal gas are given by (Vishwakarm and 

Patel [21], Vishwakarma et al. [25] 
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where 𝐿 = [(1 − 𝛽) +
1
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the shock Mach number referred to the frozen speed of sound 

(
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𝜌0
)

1

2  and 𝑀𝐴 = (
𝜌0𝑊2

𝜇ℎ0
2 )

1

2  is the Alfven- Mach number, and 

the subscript ‘1’ denotes the condition immediately behind the 

shock front. The density ratio 𝛽(0 < 𝛽 < 1) across the shock 

is obtained by the  
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where 𝑏 = 𝑏𝜌0. 

Following Levin and Skopina [18] and Nath [15, 19, 20], 

we get the jump conditions for the components of vorticity 

vector across the shock front as 
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3. SELF-SIMILARITY TRANSFORMATIONS 

 

To obtained the similarity solutions, the field variables 

describing the flow pattern can be written in terms of the 

dimensionless functions of 𝜉  such that (Vishwakarma et al. 

[25], Vishwakarm and Patel [21]) 
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( )2 ,e W E =
           

( )0
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where 𝑼, 𝜙, 𝑉,𝐺, 𝑃 𝑃, 𝐻, 𝐸, and 𝐹 are the function of 𝝃 only, 

𝝃 = 𝒓/𝑹 is the dimensionless quantity. 

For existence of similarity solutions 𝑀 and 𝑀𝐴  should be 

constants, therefore,  
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By using similarity transformations from equation (16), 

equations (1)-(6) can be transformed and simplified to  
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Using the similarity transformations (16), the shock 

conditions (13), transforms into 

 

1 10 0

1 1
(1) (1 ), (1) , (1) , (1) ,

(1) , (1) ,                        a a
A A

a a

A

U G P L H
M

C w
M V M

h h


 

 


 

− −

= − = = =

= =

                         (25) 

 

where 𝛼 = (𝛿 + 1) = −𝜎was necessary to use to obtain the 

similarity solution.  

 We assume the product solution of the ‘progressive wave’ 

in the form (c.f. Mc. Vittie [22]) 
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where 𝒙 = 𝒓𝒕−𝜺 , 𝑑  and 𝜀  are constants, and 𝒂, 𝒇, 𝒃𝟎 𝒂𝒏𝒅 𝒄 

are functions of 𝑡 that satisfy the following equations:  
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It can be easily seen that these equations satisfy the 

equations (1) to (5) identically. After changing this solution to 

a similarity one, from which it follows that a  should be 

constant 𝑎 = (
2(1−𝛽)

𝜆+2
), we apply boundary conditions (25) and 

obtain the solution of the considered problem 
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Substituting equations (9) – (10) and (29) in equation (24), 

we evaluate the value of 𝐹(𝜉) as 
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Substituting equations (29) into equations (19) and (20) we 

obtain 
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From equations (21) – (23) and (29), we obtain 

 

2(1 2 ) 2and   = − = −                                     (32) 

 

It is obvious that a contradiction arises and therefore it is 

impossible for the solutions (29) to satisfy (19) – (24), though 

they can satisfy (19), (20) and (24) (i.e. conservation of mass, 

linear momentum and energy (c.f. Mc. Vittie [22])). For the 

existence of solution, we consider the physical conditions of 

the problem to avoid the contradiction. Since 𝜆 < 0 and 0 <
𝛽 < 1; therefore for the existence of solution we have taken 

𝜆 = 2(1 − 2𝛽), thus 𝛽 should be greater that 1/2. Then, from 

(17) we have 
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Total energy 𝐸𝑇 of the flow field behind the shock front is 

given as 
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Using equations (16) and (29), equation (34) becomes 
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and 𝐵 is constant. This equation shows that the total energy 

behind the shock increases with time. Such an increase may be 

obtained by time-dependent energy release from an explosive 

material along the symmetry axis. 

Applying the similarity transformations (16) on equation (8) 

and using equations (19) - (24), (29), we obtain the non-

dimensional components of vorticity vector 𝑙𝑟 =
𝜍𝑟
𝑊

𝑅

,  𝑙𝜃 =

𝜍𝜃
𝑊
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𝑅

 in the flow-filed behind the shock as   
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4. RESULTS AND DISCUSSION 

 

For the density to remain finite at the center and the 

radiative heat flux not to be negative anywhere, the 

inequalities obtained from equations (26) and (30) should hold: 
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Inequality (37) is not only a necessary condition for the 

density to remain finite at the center but must also be satisfied 

for the existence of a shock wave. We have calculated the 

values of flow variables from equations (29), (30), (36) - (38) 

and the results are shown in figures 1, 2 and Table 1. The 

values of the physical parameters for calculations are taken to 

be 𝛾 = 4/3,5/3;  𝑀𝐴
−2 = 0.3,0.35;  and 𝑏 = 0,0.05,0.1;  ([14, 

15, 20, 26-33]). For fully ionized gas 𝛾 = 5/3 and for 

relativistic gases 𝛾 = 4/3. These two values of 𝛾  mark the 

most general range seen in stars. Therefore, it is applicable to 

stellar medium. The above values of 𝑀𝐴
−2 are taken for 

calculations in the present problem as the effects of magnetic 

field on the flow-field behind the shock are significant when 

𝑀𝐴
−2 ≥ 0.01 ([29]). The value 𝑏 = 0 corresponds to the ideal 

gas case. Our solution is the generalization of the solution 

obtained by Vishwakarma and Patel [21] by considering the 

components of vorticity vectors and the axial component of 

fluid velocity (see Figs. 1 (c, h, i). Also, we have study the 

effect of adiabatic exponent of the gas on the flow variables.   

The obtained solutions show that the component of fluid 

velocity, density, pressure, axial magnetic field and radiation 

heat flux tend to zero as the symmetry axis is approached.  

Also, the values of all this physical quantities decrease from 

the highest at the shock to zero at the symmetry axis, except 

for the radiation heat flux in the case of 𝛾 = 5/3 and 𝑏 = 0.1. 

For 𝛾 = 5/3, 𝑏 = 0.1 the radiation heat flux first increases, 

attains a maximum, and then decreases and tends to zero as the 

symmetry axis is approached. But the azimuthal and axial 

components of vorticity vector remain constant throughout the 

flow field. 

From Table 1 and Figs. 1 and 2, it is found that the effects 

of an increase in the value of 𝑀𝐴
−2 (i.e., in the strength of the 

initial magnetic field) are 

(i) to increase significantly the value of 𝛽 (see Table 1), i.e., 

decreases the shock strength; 

(ii) to decrease the flow variables 𝑈(𝜉), 𝑃(𝜉), 𝐹(𝜉) and 𝑙𝜃; 

whereas to increase the flow variables 𝜙(𝜉), 𝑉(𝜉), 𝐻(𝜉) and 

𝑙𝑧 at any point in the flow field behind the shock (see Figures. 

2 (a-c, e-i)); 

(iii) the density 𝐺(𝜉) decrease near shock but increase near 

inner boundary surface (see Fig.1(d));  

(iv) increases the shock velocity 𝑊/𝑎1 (see Figure. 1).  

The effects of an increase in the value of the parameter of 

non-idealness of the gas 𝑏 are 

(i) to increase the value of β (see Table 1), i.e., decreases the 

shock strength; 
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(ii) to decrease the flow variables 𝑈(𝜉), 𝐻(𝜉), 𝐹(𝜉) and 𝑙𝜃; 

whereas to increase the pressure 𝑃(𝜉) at any point in the flow 

field behind the shock (see Figs. 1 (a, e, f-h));  

(iii) the density 𝐺(𝜉)  decreases near shock but increases 

near inner boundary surface (see Fig. 1(d)); 

(iv) the flow variables 𝜙(𝜉), 𝑉(𝜉) and 𝑙𝑧 remain unaffected 

(see Fig. 1 (b, c, i)); 

(v) increases the shock velocity 𝑊/𝑎1  (see Figure. 1 and 

table 1). 

 

 

Table 1. Variations of the density ratio 𝛽 across the shock front, indices of shock velocity 𝜆, total energy 2(2 − 𝜆)/(2 + 𝜆) and 

initial angular velocity indices 𝛿 for different values of 𝑀𝐴
−2, 𝛾 and 𝑏. 

 

𝑀𝐴
−2  γ  𝑏 𝛽 𝜆 = 2(1 − 2𝛽) 2(2 − 𝜆)/(2 + 𝜆) 𝛿 = −2(1 − 𝛽) 

0.3 

4/3 

0 0.5296 -0.1187 2.2524 -0.9406 

0.05 0.5362 -0.1448 2.3123 -0.9275 

0.1 0.5440 -0.1762 2.3864 -0.9119 

5/3 

0 0.5522 -0.2091 2.4670 -0.8954 

0.05 0.5608 -0.2433 2.5540 -0.8783 

0.1 0.5708 -0.2833 2.6602 -0.8583 

0.35 

4/3 

0 0.5714 -0.2857 2.6666 -0.8571 

0.05 0.5770 -0.3082 2.7287 -0.8458 

0.1 0.5837 -0.3349 2.8046 -0.8325 

5/3 

0 0.5898 -0.3592 2.8756 -0.8203 

0.05 0.5970 -0.3880 2.9628 -0.8059 

0.1 0.6054 -0.4216 3.0684 -0.7891 

     

       
 

Figure 1. Variation of the flow variables with the distance in 

the region behind the shock front 

 

(a) radial component of fluid velocity 𝑈(𝜉), (b) azimuthal 

component of fluid velocity 𝜙(𝜉), (c) axial component of fluid 

velocity 𝑉(𝜉), (d) density 𝐺(𝜉), (e) pressure 𝑃(𝜉), (f) axial 

magnetic field 𝐻(𝜉) , (g) radiation flux 𝐹(𝜉) , (h) non-

dimensional azimuthal component of vorticity vector  𝑙𝜃, (i) 

non-dimensional axial component of vorticity vector lz :1. 

𝑀𝐴
−2 = 0.3 , 𝛾 =4/3, 𝑏 = 0 ; 2. 𝑀𝐴

−2 = 0.3 ,  γ =4/3,  𝑏 = 0.1 ; 

3.  MA
-2 = 0 ,  γ =5/3, b = 0 ; 4. MA

-2 = 0.3 ,  γ =5/3, b = 0.1 ; 

5. MA
-2 = 0.35, γ=4/3, b = 0; 6. MA

-2 = 0.35,  γ=4/3, b = 0.1; 

7. MA
-2 = 0.35,  γ=5/3, b = 0; 8. MA

-2 = 0.35,  γ=5/3, b = 0.1. 

      

    
 

Figure 1. (Continued) 

 

 
 

Figure 1. (Continued) 
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Figure 2. Variation of the shock velocity with the shock 

radius 

 

1. MA
-2 = 0.3, γ=4/3, b = 0; 2. MA

-2 = 0.3, γ=4/3, b = 0.05; 

3. MA
-2 = 0.3, γ=4/3, b = 0.1; 4. MA

-2 = 0.3, γ=5/3, b = 0;  

5. MA
-2 = 0.3 , γ=5/3, b = 0.05 ; 6. MA

-2 = 0.3 , γ=5/3, b =
0.1;  

7. MA
-2 = 0.35,  γ=4/3, b = 0;           8. MA

-2 = 0.35, γ=4/3, 

b = 0.05; 

9. MA
-2 = 0.35, γ=4/3, b = 0.1; 10. MA

-2 = 0.35, γ=5/3, b =
0; 

11. MA
-2 = 0.35, γ=5/3, b = 0.05; 12. MA

-2 = 0.35, γ=5/3, 

b = 0.1. 

The effects of an increase in value of adiabatic exponent 𝛾 

are 

(i) increases the value of β, i.e., decreases the shock strength 

(see Table 1); 

(ii) to increase the pressure 𝑃(𝜉); whereas to decrease the 

flow variables 𝑈(𝜉), 𝐻(𝜉),  𝐹(𝜉) and 𝑙𝜃  at any point in the 

flow field behind the shock (see Figs. 1 (a, e, f-h));  

(iii) the density 𝐺(𝜉)  decreases near shock but increases 

near inner boundary surface (see Fig. 1(d)); (iv) the flow 

variables 𝜙(𝜉), 𝑉(𝜉) and 𝑙𝑧 remain unaffected (see Fig. 1 (b, 

c, i));  

(v) increases the shock velocity 𝑊/𝑎1 (see Fig.2). 

 

 

5. CONCLUSION  

 

The similarity solutions for the propagation of 

magnetogasdynamics cylindrical shock waves in a rotational 

axisymmetric non-ideal gas with radiation heat flux have been 

obtained. The radiation heat flux and other flow variables in 

the flow field behind the shock have been evaluated from the 

equations of motion without using the radiation heat transfer 

equations explicitly. On the basis of this work, we may draw 

the following conclusions: 

 (i) The shock strength decreases and the shock velocity 

increases with an increase in the strength of the ambient 

magnetic field or the adiabatic exponent or the non-idealness 

of the gas. 

(ii) An increase in the value of the parameter of non-

idealness of the gas 𝑏 decrease the radial    component of fluid 

velocity, the axial magnetic field, the radiation flux and the 

azimuthal component of vorticity vector; whereas reverse 

behaviour is observed for the pressure. The density increases 

near shock but decreases near inner boundary surface with an 

increase in the value of parameter 𝑏 . Moreover, azimuthal, 

axial components of fluid velocity and axial component of 

vorticity vector remains unaffected with an increase in 𝑏. 

(iii) An increase in the strength of the ambient magnetic 

field MA
-2 and value of parameter of non-idealness of the gas 𝑏 

have same behaviour on radial component of fluid velocity, 

density, the radiation flux and the azimuthal component of 

vorticity vector; whereas they have opposite behaviour for the 

pressure and the axial magnetic field. 

(iv) An increase in the value of adiabatic exponent  γ and 

parameter of non-idealness of the gas 𝑏 have same behavior 

on all the flow variables. 
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NOMENCLATURE 

 

𝑎 function of t 

𝑎1 constant 

𝐵 constant 

𝑏 Van der Waals excluded 

volume 

𝑏0 function of t 

𝐶 angular velocity of the 

medium 

𝐶𝑎 constant 

𝐶𝑣 specific heat at constant 

volume 

𝑐 function of t 

𝑑 constant 

𝑒 internal energy per unit mass 

𝐸 non-dimensional internal 

energy per unit mass 

𝐸𝑇 total energy of the flow-field 

behind  

shock front 

𝐹 radiation flux 

𝐹  non-dimensional radiation 

flux 

𝑓 function of t 

𝐺 non-dimensional density 

𝑔 function of t 

𝐻 non-dimensional azimuthal 

magnetic field 

ℎ azimuthal magnetic field 

ℎ𝑎 constant 

𝐽 abbreviation 

𝐿  abbreviation 

𝑀 shock Mach number 

𝑀𝐴 Alfven- Mach number 

𝑚 function of t 

𝑃 non-dimensional fluid 

pressure 

𝑝 pressure 

�⃗� fluid velocity 

𝑅 Shock radius 

𝑟 independent space 

coordinate 

𝑇 temperature of the gas 

𝑡 independent time coordinate 

𝑈 non-dimensional radial 

component of fluid velocity 
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𝑢 radial component of  fluid 

velocity 

𝑉 non-dimensional axial 

component of  fluid velocity 

𝑣 azimuthal component of fluid 

velocity 

𝜈∗ the specific volume 

𝑊 shock velocity 

𝑤 axial component of  fluid 

velocity 

𝑤𝑎  constant 

(𝑟, 𝜃, 𝑧) cylindrical coordinates 

 

Greek Letters 

 

𝜌 the fluid density 

𝛿 constant 

𝜙 non-dimensional azimuthal 

component of  fluid velocity 

𝛼 constant 

𝛽 ratio of density across the 

shock front 

Γ gas constant 

𝛾 ratio of specific heats 

𝜎 magnetic field variation 

index. 

𝜇  magnetic permeability 

𝑥 arbitrary function of r and t 

𝜆 constant 

𝜀 constant 

𝜉 similarity variable 

𝜁 vorticity vector 

(𝜁𝑟 , 𝜁𝜃 , 𝜁𝑧) components of vorticity 

vector 

Subscripts 

 

0 immediately ahead the shock 

1 immediately behind the 

shock 

Superscript 

 

'  derivative with respect to t 
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