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Abstract 

As an important detection index in the carbonization process, wood carbonization furnace 

temperature ensures the reliability of wood carbonization control system. In this paper, a 

data-fusion-based method was proposed for fault detection and its improvements of carbonization 

furnace temperature sensor. By applying the data fusion algorithm to the control system of wood 

carbonization furnace, we obtained the modified data fusion method, with which we judged the 

working status of the temperature sensor in addition to the usage of the comprehensive 

supporting degree of sensors within the same group. A limited number of hardware backups were 

employed to guarantee the reliability of temperature measurement. The experiment result shows 

that our method performs effectively in enhancing the reliability and stability of wood charring 

furnace. 
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1. Introduction 

Deeply-carbonized wood, also known as fully-carbonized wood or homogeneous carbonized 

wood, is born of ordinary wood processed at the high temperature of 200℃ or so. As its 

nutritional ingredients are destroyed, deeply-carbonized wood has good anti-corrosion and 

insect-resist properties. With restricted absorbent, functional group hemicellulose, the product has 

good physical properties. The real green products of deeply-carbonized wood prevent itself from 

corrosion and insects without relying on any harmful substances. In this way, not only has its 

service life been prolonged, but the carbonized wood will not exert any negative effect on human 

kinds, animals and the environment either during its lifespan or in the post-process of waste 

treatment [1]. The history of deeply-carbonized wood approaches a decade in Europe as the 

major displacement of the forbidden product of CCA anti-corrosion wood. Deeply-carbonized 

wood is widely used in aspects of wall panels, outdoor flooring, kitchen decoration, sauna room 

decoration, and furniture [2-4]. 

 

2. The Significance of Temperature Monitoring in Wood Carbonization 

Furnace 

The wood carbonization technology is a kind of physical modification technology, by which 

the wood is placed in high temperature, anaerobic or low oxygen environment for a period of heat 

treatment. Such class of wood products is called carbonized Wood, of which the method differs 

from that of the conventional approaches of wood drying and charcoal-burning [5]. Carbonization 

temperature is usually controlled between 160℃ to 240℃. In the process of wood carbonization, 

steam is used to prevent the wood from burning, and the oxygen content in the treatment 

environment is controlled below 3% ~ 5%. The process of this technique is generally divided into 

three steps: (1) Temperature rising phase, including preheating, high-temperature drying and 

reheating stage; (2) Heat-treatment phase; (3) Cooling and balancing phase. During the process of 
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wood carbonization, parameters of wood color, density, size, degree of carbonization and color 

uniformity of wood present significant temperature-varying properties. Hence, it is necessary to 

monitor the temperature changes in the furnace and the work of the heating tube, and regulate the 

in-furnace heat distribution, so as to ensure the reliability of the furnace temperature [6]. 

One of the premises of the reliable operation of wood carbonization control system is to 

ensure the reliability and accuracy of data collected at each of the in-furnace temperature points. 

However, electron devices may fail or work abnormally in such poor conditions of in-furnace 

environment as extra high initial moisture at the temperature-rising phase, high temperature in the 

heat-treatment phase, and the frequent in-furnace transportation of materials of wood panels, 

aluminum plates, etc. The question is raised about the way to identify sensor failure and to render 

the measured temperature closer to the actual one. Improper solutions to the problem will lead to 

the bad consequences of the rise in power consumption and the deviation from the reliable 

measurement results. 

The carbonization furnace is not huge in dimension, while temperature is characterized by 

continuous variation, and thus there will never be abrupt temperature change. Instead, the 

temperature change is constrained by the limited furnace space, especially for monitoring points 

at relatively short distance from each other. Therefore, adjacent temperature monitoring points 

can serve as the points of reference. The temperature monitoring points are divided into several 

groups, each of which contains adjacent temperature sensors. Every temperature sensor measures 

its own temperature point parameters at the same time when providing reference for the 

measurement of the rest of temperature point members. The observed values of other sensors in 

the same group helps with comprehensive determination of the reliability of observed values of 

every sensor in the group----which indicates that whether sensors are in working order or not. If 

so, the temperature value of the spot will be determined with the observed value of sensor on 

original test points; if the sensor is regarded as in abnormal condition, the backup sensor will be 

started for measured temperature value of this test point. 

In this paper, we propose a fast and effective way to diagnose faulty sensors in real time, and 

use software and hardware backup to improve the reliability of temperature. With this method, 

the redundant design for all temperature measurement points, thus ensuring the reliability of 
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temperature measurement and improving the accuracy of the wood carbonization control system 

[7]. 

 

3. Calculation of The Confidence Degree Of Measured Temperature Based On 

Data Fusion 

Multi-sensor information fusion is the process of information processing and data 

processing, which is based on the computer technology. According to some specific criteria, 

information and data from multi-sensor or multi-source are analyzed and synthesized 

automatically to complete the target of decision-making and estimation. For a certain feature of 

the environment, it is possible to obtain multiple copies of information from multiple sensors, 

which are redundant and reliable at different degrees [8]. By using the multi-sensor information 

fusion method, we are able to extract more accurate and reliable information from raw data. In 

addition, the redundancy of information can improve the system stability, so that the operation of 

the whole system will not be interrupted by the failure of a single sensor. Multi-sensor data fusion 

technology is widely used in various fields such as military, satellite, aerospace and industrial 

applications [9, 10]. 

As carbonization furnace temperature sensors are of the same model, the homogeneous 

sensor fusion method is adoptable in our research. We have more than one temperature points to 

be measured, and thus the temperature difference varies with the distance between points. 

Therefore, the spatial distance between sensors is one of our indexes of data fusion [11]. The 

longer the spatial distance between a pair of sensors is, the greater the allowed temperature 

difference is, and the smaller the weight of the comprehensive support degree is. 

The spatial distance between a set of N sensors is measured as Cij (i= 1, 2, …, N; j=1, 2, …, 

N). The shortest spatial distance is set as 0.4 and the longest as 1; we normalize the matrix C and 

converted the normalized matrix C into matrix Y. Therefore, Yij denotes the standard spatial 

distance between the ith sensor and the jth sensor [12-14]. 
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We let the measured temperature of the N sensors be respective x1, x2, …, xN. The measured 

temperature of an arbitrary sensor is obtained randomly, obeying normal distribution. In this case, 

the measured temperature of the ith sensor can be expressed by Gaussian probability density 

function as follows: 
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The jth sensor related support degree dij of the ith sensor is expressed as: 
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According to equation (2), as σi≠σj, we have dij≠ dji. Considering that all the sensors are 

homogeneous, i.e. their support degree is asymmetric, we also have dij=dji. Meanwhile, the spatial 

distance between sensors should be substituted into equation (3) as an influencing factor: 
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The confidence matrix is obtained as 
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According to the confidence distance between sensors, we acquire their support matrix R= 

I-D, in which I is the unit matrix at the size of n×n. D and R are both asymmetric positive real 

matrixes. Therefore, the maximum eigenvalue of R  > 0. We let the corresponding 

characteristic vector be η= (η1, η2, …, ηn,), and thus Rη= η. The formula is expanded as: 

nkrrr nknkkk ,...,2,1,...2211 =+++=                                         (6) 
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Where k  is the sensor’s comprehensive support degree of the kth sensor. To normalize 

the support degree, we define the normalized comprehensive support degreeαk: 
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According to expert experience and the results of multiple tests, we determine the thresholdβ 

and the temperature value at every temperature point as 
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Where xk represents the output of the kth sensor, yk is the last measured value of the kth 

temperature point. As can be seen from equation (8), for the kth temperature point, the measured 

value has 2 types of expression: if the kth sensor at this point works normally, the temperature of 

the point will be decided by the measured value of the kth sensor; if the kth sensor works 

abnormally, the corresponding backup equipment will be launched. The same method will be 

used to judge the confidence degree of the backup equipment. The backup equipment will replace 

the failed equipment if the confidence degree is high enough.  

 

4. Historical Data Validation Cases 

In this paper, all the temperature sensors in the furnace are divided according to groups. 

Wood charring furnace is usually composed of 3-5 groups of sensors. Each of the groups contains 

5 to 6 neighboring sensors and 2 sets of temperature measurement hardware backup. Figure 1 is 

the distribution map of a measurement sensor and a backup sensor within the same group, where 

● represents the measurement sensor, ○ for the backup sensor. Sensor No.6 provides backups of 

sensors No.1-3, while sensor No.7 provides backups of sensors No.4-5. If sensors 1-5 are 

working, the backup sensor data will be ignored by the system. The measured value of each 

sensor depends on the support and its degree of the measured values of the rest of sensor 

members in the same group. If its support degree is low, the sensor may fail. In this case, the 

corresponding backup equipment will be launched. The same method will be used to judge the 
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confidence degree of the backup equipment. The backup equipment will replace the failed 

equipment if the confidence degree is high enough. 

The process of temperature measurement is: (1) according to the expectations, variances and 

spatial distances of each sensor, we calculate the confidence distance matrix D and the support 

matrix R. (2) We calculate the maximum eigenvalue of the R matrix and the corresponding 

eigenvector; (3) We calculate the comprehensive support of each sensor; (4) We calculate the 

maximum support vector of the sensor matrix; ) We determine the output of the test points based 

on the relationship between the overall support and the threshold. Table 1 is the measured data 

obtained from all the normally working sensors in the group[15]. 

 

 

Fig.1. Sensor Layout 
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Fig.2. The Flow Chart of Sensor Temperature Measurement 

Table 1 lists the historical data of a group of sensors when the carbonization furnace is in the 

heat-treatment phase. 
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Tab.1. The Historical Data at Normal Work 

Sensor 1 2 3 4 5 

Expectation 202.18 203.45 204.05 204.26 202.03 

variance 0.23 0.31 0.23 0.41 0.44 

According to the position of the sensor, we obtain the spatial distance matrix L as 
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L                                          (9) 

With the parameters of spatial distance matrix L, and the expectations and variances of the 

measured temperature of each sensor in the group, we obtain the confidence distance matrix as 
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We calculate the eigenvalue of the matrix as 2.7884, and the corresponding eigenvector as 

[-0.30, -0.54, -0.63, -0.65, -0.50]T, where the values of 1 ～ 5 are 0.07, 0.21, 0.25, 0.27 and 

0.12, respectively. The threshold is defined as 0. As can be seen from the said data, the 

comprehensive support degree of sensors No.2-4 is relatively large, which conforms to the actual 

situations of matrix L, the measured data (see Table 1), and the spatial layout (see Figure 1). The 

fusion-based calculation results show that none of the 5 sensors in this group work abnormally or 

fail. The temperature measured points of sensors No.1-5 are determined according to sensor 

outputs (202.18, 203.45, 204.56, 204.26, 202.03, respectively). 

 

Tab.2. The Historical Data Measured by the 5 Sensors When the Sensor No.3 Cannot Work 

Normally 

Sensor 1 2 3 4 5 

Expectation 202.45 202.38 240.56 203.34 203.38 

variance 0.26 0.33 2.28 0.43 0.31 
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According to equation (3), the confidence distance matrix D is 
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We calculate the eigenvalue of the matrix as 4.3662, and the corresponding eigenvector as is 

[0.57,0.61,0,0.28,0.32]T, where the values of 1 ～ 5 are 0 0.29, 0.31, 0, 0.14,and 0.15, 

respectively. The threshold is defined as 0. The result of the fusion calculation shows that the 

sensor No.3 fails, which invalidates its measured value. The corresponding backup sensor No. 6 

sensor is started, whose measured value and variance are 203.51 and 0.23, respectively. The 

comprehensive support degree is also obtained through the data fusion. The result shows that the 

measured value of sensor b is valid, and thus sensor No.3 is replaced by sensor b. Therefore, the 

five temperature measured points’ outputs are 202.45, 202.38, 203.51, 203.34, and 203.28, 

respectively. 

Figure 3 is a set of broken lines of the temperature measured at the heat-treatment stage 

within 12 minutes, without the use of data fusion technology. As can be seen from Figure 3, there 

appear some catastrophe points in the unsmooth red line. What is more, the temperature errors 

have been inputted in the carbonization control system, which renders the technical process 

control less accurate. The blue line shows the temperature monitored by the backup sensor, which 

basically complies with the actual carbonization process [16]. 

 

Fig.3. The Comparison Diagram of Temperature Monitoring 
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5. Case Verification 

The experiment object is 650mm × 80mm × 20mm fraxinus mandshurica. The targeted 

carbonization depth and color are 6mm and dark brown, respectively. Figure 4 shows the layout 

of a single slice of wood specimen and the sensors. The proposed method in the paper is used to 

optimize temperature data processing, while the traditional PID method is used for output control. 

The carbonization test spends the total of 220 minutes, constituting three stages. The test begins 

at 10:20, at the initial temperature of 27.4℃. Electric heaters and steam heaters provide heat 

simultaneously (there are four groups of electric heaters whose gross power is 60kw; all of them 

are angle joint). Wind from the draught fan blows towards the gate. After the temperature rises to 

104.4 ℃, the steam heaters stop working; after the temperature reaches 201.6 ℃ in 11:33 am, the 

electric heaters stop working. At 80 ℃, the moisture content of wood should be increases 

manually. The whole test lasts 73 mins. In the early stage of the temperature-rising process, the 

temperature rockets according to requirements; in the latter stage, the temperature rises smoothly. 

The heat change rate is a direct contributing factor to the carbonization effect in the latter stage of 

wood carbonization. Figure 5 shows the furnace temperature change at the continuous 

temperature-rising process, where the x coordinate is the carbonization time, and the y coordinate 

is the monitored furnace temperature. 

 

 

Fig.4. The Sensor Layout of Wood Carbonization Test 
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Fig.5. The Curve of Temperature Change in the Temperature-Rising Process 

At 11:33, the temperature reaches 201.6℃. The heat-treatment timespan is 10mins, during 

which the temperature is required to remain at around 200℃. Great temperature change is 

forbidden, or otherwise the depth or color of carbonized wood will deviate from the targeted one. 

Figure 6 is the furnace temperature change in the continuous heat-treatment process. 

 

Fig.6. The Furnace Temperature Change in the Continuous Heat-Treatment Process 

 

At 11:43 am, all the electric heaters are turned off, and the vent hole is opened for thermal 

discharge in the cooling stage, during which the drought fan continues working. In this stage, the 

temperature should be reduced slowly and controllably. Figure 7 is the curve of temperature 

change in the temperature-decreasing process. 

The carbonized wood has uniform color and depth, as a result of the satisfactory 

carbonization technique control. Figure 8 is the appearance of carbonization wood. 
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Fig.7. The Curve of Temperature Change in the Temperature-Decreasing Process 

 

 

Fig.8. The Appearance of Carbonization Wood 

 

6. Conclusion 

The experimental results show that our design method combines software backup and 

hardware backup, and handles the redundancy design of temperature measurement with a limited 

number of hardware apparatuses. In this way, the temperature measurement and control system is 

rendered more reliable. Moreover, it lessens the seriousness of the problems of power loss, 

cumbersomeness and oversize which are raised in redundancy design. 

 



55 
 

Acknowledgements 

This work was supported by the Fundamental Research Funds for the Central Universities 

(2572015BB22) and National Science and Technology Project (2014BAF11B01) and 

Fundamental Research Funds for the Central Universities (DL11AB01). 

 

References 

1. P.F. Li, Y.P. Yang, Research on improving measurement accuracy of solar heat pump system 

of temperature sensor, 2014, Journal of Sensors and Actuators, vol. 8, pp. 1017-1021. 

2. W. Li, J.Y. Zhang, Study of multi-model soft close-loop fault-tolerant control with sensor 

faults, 2015, Application Research of Computers, vol. 4, pp. 447-450. 

3. Y.L. Zhou, H.Y Li, H.W. Li, Application of improved LVQ neural network in fault diagnosis 

of fans, 2013, Control and Instruments in Chemical Industry, vol. 40, no. 1, pp. 610-615. 

4. X.Z. Zuo, J. Kang, H. Li, L.W. Tang, Overview of fault prediction technology, 2010, Fire 

Control and Command Control, vol. 35, no. 1, pp. 1-5. 

5. J.Q. An, K. Peng, W.H. Cao, M. Wu, A soft-sensing method for missing temperature 

information based on dynamic neural network on BF wall, 2016, Journal of Chemical 

Industry and Engineering, vol. 67, no. 3, pp. 903-911. 

6. W. Li, Y.L. Yu, D.R. Sheng, J.H. Chen, Suppression technology for pressure fluctuation in 

hanger pressure test based on impedance method, 2016, Vibration test and diagnosis, vol. 36, 

no. 4, pp. 694-699. 

7. D.S. Liu, The modeling of wood drying schedule based on mult-model data fusion modeling 

algorithms, 2007, Northeast Forestry University, vol. 26, no.7, pp. 82-84. 

8. D.S. Liu, J.W. Zhang, Modeling of wood drying schedule based on multimode1data fusion 

modeling algorithms, 2007, Transducer and Microsystem Technologies, vol. 26, no. 7, pp. 

82-84. 

9. J.Q. An, M. Wu, Y. He, W.H. Cao, Temperature detection method of blast furnace burden 

surface based on the reliability of multi-source information, 2012, Journal of Shanghai 

University, vol. 46, no. 12, pp. 1945-1950. 



56 
 

10. F. Ruan, Research on small target recognition method based on optical sensor data fusion, 

2016, Electronic Test, vol.8, no.12, pp. 85-89. 

11. X.Y. Zhang, S. Zheng, H.C. Zhou, H.J. Xu, Visualizaion of pipe temperature distribution in 

tubular furnace based on radiation imaging model solving, 2015, Journal of Chemical 

Industry and Engineering, vol.6, no.15, pp. 965-971. 

12. J.W. Zhang, R.L. Guo, Research on determining effective working state of sensor during 

wood drying process, 2009, Transducer and Microsystem Technologies, vol. 28, no. 5, pp 

55-57. 

13. J Bin, L Cui, Adaptive weighted fusion method for detecting wood drying kiln temperature, 

2013, Journal of Anhui Agricultural Sciences, vol. 22, no. 22, pp. 9361-9362. 

14. X.L. Wang, J.L. Pei, R.Z. Liu, X.K. Yi, Research of south xinjiang intelligent control of 

greenhouse based on multi-sensor data fusion, 2017, Journal of Agricultural Mechanization 

Research, vol. 39, no.7, pp 45-50  

15. J.H. Du, L.Y. Sun, Y.K. Zhang, Z.S. Shang Ye, F.X., ChuanMan, A study of technological 

parameters for agricultural three-step carbonization equipment, 2010, Machinery Design and 

Manufacture, vol. 24, no. 9, pp. 191-193. 

16. H. Biao, X.R. Chen, M.S. Jiang, X.P. Tang, S.Y. Gao, Effect of carbonization temperature on 

microporous structure of charcoal firm Chinese fir wood, 2006, Chemistry and Industry of 

Forest Products, vol. 26, no. 1, pp. 70-74. 

 


