
48 

 

AMSE JOURNALS-AMSE IIETA publication-2017-Series: Advances C; Vol. 72; N°1; pp 48-66 

Submitted Jan. 2017; Revised March 15, 2017, Accepted April 15, 2017 

https://doi.org/10.18280/ama_c.720104 

 

Singular Value Decomposition aided Robust Cubature Quadrature 

Kalman Filter in GPS/INS Integrated Navigation System 

 

Wei Zhao, Huiguang Li, Liying Zou  

 

School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China 

(zhwei19800@163.com, ysulihuiguang@163.com, zouliying2007@126.com)  

 

Abstract  

The paper presents a singular value decomposition aided H-∞ Cubature Quadrature Kalman 

filter (SVD-HCQKF) in GPS/INS integrated navigation system to satisfy the high requirements 

of the precision and robustness of aircraft integrated navigation system. The Cubature Quadrature 

Kalman filter (CQKF) uses the hyper-sphere cubature rule and two-order Gauss-Laguerre 

quadrature rule to generate Cubature Quadrature points to calculate multiple moment integral that 

is different from the Cubature Kalman filter (CKF) using cubature points. The robustness of the 

system is also guaranteed by the addition of the H-∞ algorithm. In numerical simulation, it is 

verified that the accuracy and robustness of the proposed algorithm and SVD aided CQKF are 

better than those under CKF frame. Finally, the proposed algorithm is applied in GPS/INS 

integrated navigation system, and the simulation results show it can greatly improve the accuracy 

and robustness of the system.   

 

Keywords  

Integrated navigation system, Robust filter, Cubature Quadrature Kalman filter, Singular value 

decomposition 

 



49 

 

1. Introduction 

For aircraft navigation system, there are a variety of options, such as the global positioning 

system (GPS), BeiDou navigation satellite system (BDS), inertial navigation system (INS), 

Doppler navigation system (DNP), etc.. Among these systems, GPS and INS are the most 

common. The GPS calculates the position and the speed of the aircraft according to the received 

navigation satellite signals, and has good positioning accuracy, but its anti-disturbance ability is 

poor. The INS relies entirely on its own sensors to get the position and speed information with 

strong anti-interference ability, but the navigation error will accumulate over time [1]. So the 

main idea of GPS/INS integral navigation system is to combine the two systems to make best use 

of their advantages and bypass their disadvantages, which will improve the overall performance 

of the navigation system. Now GPS/INS integral navigation system is the world’s recognized best 

solution [2]. 

The integrated navigation system using Kalman filter is termed optimal integrated navigation 

system [3]. As an important part of the integrated navigation system, Kalman fiter uses 

probability statistics to estimate the error of the navigation system in the optimal angle to correct 

the system. For decades, the optimal integrated navigation system has been developed greatly, 

and a lot of filtering algorithms under the Kalman filter framework arise for improving the 

positioning accuracy. The most simple and common used algorithm is the extended Kalman filter 

(EKF) in integral navigation system [4]. Due to the EKF using the first-order Taylor expansion, it 

is obviously insufficient for the high performance of precision navigation. Then the people put 

forward unscented Kalman filter (UKF)[5], Cubature Kalman filter (CKF)[6], particle filter 

(PF)[7] algorithm to improve the performance of the integrated navigation system. In [8], a 

UKF-based integrated navigation for GPS/INS provides precise position and orientation to the 

photogrammetric adjustment. In turn, the photogrammetric adjustment provides position updates 

to the UKF. The CKF filtering principle is applied as the INS/GPS integrated filter in [9] to 

simulate nonlinear model based on the platform misalignment angle and the observation model 

described by the velocity error and position error. The literature [10] presents a new particle filter 

algorithm and this new filter uses the difference filter and the latest observed measurements to 

generate the importance-density in the importance sampling. 
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In [11], Sahoo and Dash give the Cubature Quadrature Kalman filter (CQKF) algorithm, 

which is the more generalized form of CKF. The difference of CQKF compared to CKF is mainly 

reflected in a more accurate calculation method for the numerical integration. In CQKF, the 

multiple moment integration is divided into two parts, the surface integral over an n-dimensional 

hyper-sphere which could be calculated using spherical cubature rule and the line integral which 

could be evaluated using the n’-order Gauss-Laguerre quadrature rule of integration. When n’=1, 

the accuracy of CQKF generally coincides with the CKF. The accuracy of the filter depends on 

the order of Gauss-Laguerre quadrature rule. The higher the order, the more accurate the 

estimator would be. In addition, the CQKF with 2nn’ sampling points has better computational 

efficiency than the PF with 2n^n sampling points, and slightly higher than the UKF with 2n+1 

points and CKF with 2n points [12]. 

In order to deal with indeterminacy data involving uncertainty and randomness, robust 

algorithm is investigated by many scholars [13]. H-∞ filter introduces the H2 norm into the 

filtering problem, and build a filter to minimize the H2 norm from the input of disturbance to the 

output of filter error, so that minimize estimation error under the worst case of interference. In 

recent years, in order to overcome the uncertainty of the system or gross errors, many scholars 

combines H-∞ with these nonlinear filtering algorithms, such as EKF [14], UKF [15] and CKF 

[16], in integrated navigation system.  

While using the Cholesky decomposition during the process of filtering using CKF or CQKF, 

the covariance matrix P  may lose positive definite affected by the abnormal situation. The use 

of alternative corresponding matrix through singular value decomposition to replace covariance 

matrix of cubature points as characteristics covariance matrix can improve the stability of 

numerical calculation.  

In this paper we design a singular value decomposition aided H-∞ Cubature Quadrature 

Kalman Filter (SVD-HCQKF) in GPS/INS integrated navigation system where the two-order 

Gauss-Laguerre quadrature rules is applied to improve the filtering accuracy compared to the 

SVDCKF. At the same time, the H-∞ filtering algorithm can also enhance the robustness of the 

system.  

The organization of the remaining part is as follows: Section2 introduces the principle of 
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GPS/INS integrated navigation system and establishes its discrete mathematics model by the 

analysis of the error models of the system; In dection3, after introducing the basic principle of 

H-∞ and calculation method for cubature quadrature points (CQ points), the SVD-HCQKF 

algorithm is given. The numerical simulation and GPS/ins navigation system simulation with 

analysis are shown in section4; Conclusions are made in section 5. 

 

2. The principle and mathematical model of GPS/INS integrated navigation 

system  

2.1 The principle of GPS/INS integrated navigation system 

According to the different requirements of the application level, there are two categories of 

GPS/INS integrated navigation system, the tight coupling and the loose coupling system.. The 

tight coupling system is characterized by design of two systems (GPS and INS) together as one. 

However, the two systems work independently in the loose coupling system, which makes the 

structure simple and easy to achieve, and GPS in here only plays the role of auxiliary to INS. In 

this paper, the loose coupling GPS/INS integrated navigation system is used. 

In the loose coupling system, the difference of position and velocity information between the 

outputs of GPS and INS is used as the output of the Kalman filter. Then the filter can estimate the 

error of inertial navigation system, and realize the correction of the INS. The principle diagram of 

the loose coupling system is as shown in Fig. 1. 

 

Fig.1 The principle diagram of the loose coupling GPS/INS integrated navigation system 

 

2.2 Mathematical model of GPS/INS integrated navigation system 

As mentioned before, the GPS/INS integrated navigation system uses the system error 
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between GPS and INS as the state. In this paper, we select the 18 errors as the filter state, which 

consists of the following four parts. 

1. The platform error angles: the pitch angle ФE, the roll angle ФN and the heading angle ФU 

When the flying height of the aircraft is h and the earth is a rotating ellipsoid, we have 
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where )sin321( 2 LffRR eM +−= is the curvature radius of each points at the principal 

vertical circle of the reference ellipsoid.  )sin1( 2
N LfRR e +=  is the curvature radius of each 

points at the prime vertical circle of the reference ellipsoid of the earth. eR , iew  and f are the 

long radius, the angular velocity and the oblateness of the earth, respectively.  

2. The velocity errors: the error of east velocity EV , the error of north velocity NV , the error 

of up velocity UV  
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3. The position errors: the latitude error L , the longitude error  and the height error h  
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4. The gyro drift errors: the gyro drifts of three axial, bx , by and bz , and the first-order 

Markov process drift of three axial, rx , ry and rz  

The gyro drift is usually taken as 

grb w++=                                                                (10) 

where gw is the white noise. 

Assuming the gyro drift error models of three axial are the same, they can be obtained as 

follow 
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where gT is the relevant time, and rw is the white noise. 

5. The accelerometer errors: the accelerometer errors of three axial, x , y and z  

Assuming that the accelerometer error models of three axial are the same. Taking x for 

example, it can be expressed as 
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where gT is the relevant time, and xw is the white noise. 

As a result, the state of the GPS/INS integrated navigation system can be set as 

T
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According to Eqs. (1) - (14), the state equation of GPS/INS integrated navigation system can 
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be obtained. The general time-continuous form of the system can be expressed as 

)()()()()( ttGtxtFtx +=                                                      (15) 

where F(t), G(t) and )(t  are the state equation, measurement equation, and process noise, 

respectively. 

The observation object are the east, north and up position errors and velocity errors of in the 

integral navigation system, and the corresponding measurement equation can be obtained in 

Eq.(16). 

)()()()( tvtxtHty +=                                                          (16) 

where H(t) is the measurement matrix, and v(t) is the measurement noise. 

The corresponding discrete model is obtained by discretization of the time-continuous model 

of Eq.(15) and Eq.(16). 

kkkkk BxAx +=+1                                                            (17) 

kkkk vxCy += ++ 11                                                             (18) 

where ),0(~ kk QN is the process noise, and ),0(~ kk RNv is the measurement noise. 

The above two equations Eq.(17) and Eq.(18) are the discrete model of GPS/INS integrated 

navigation system used in this paper. 

 

3 The SVD aided robust CQKF 

3.1 The principle of H-∞ filtering algorithm 

Taking into account the above discrete system, assume that the vector to be estimated is 

111 +++ = kkk xLz                                                                (19) 

where 1+kL  is known. 

Define the cost function as follow 
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where   denotes the estimated value of the corresponding matrix. 

H-∞ filtering for 1+kz  can be converted to calculate 1+



kz that satisfies the inequality. 

2sup J                                                                   (21) 

where γ is the specified boundary constraint level. 

Alternatively, γ should meet the Raccati inequality. 
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where 1+kP  is the covariance matrix of state 1+kx . 

The value of γ affects the accuracy and robustness of the H-∞ filter. If γ approaches infinity, 

H-∞ filter will be simplified to Kalman filter. The smaller γ, the better the robustness would be. If 

γ is too small, however, sometimes the Raccati inequality is no longer valid, resulting in that the 

H-∞ filter does not exist. Generally we will give a determinate constraint level, which leads to the 

H-∞ filter may not reach the optimal and in fact become a suboptimal filter. So in the actual use 

of H-∞ control, we can continue to reduce the value of γ to make the suboptimal filter approach 

to the solution of the optimal H-∞ filter. 

 

3.2 Cubature quadrature points and their corresponding weights  

The CQKF algorithm uses hyper-sphere cubature rule and multiple orders Gauss-Laguerre 

quadrature rule to generate cubature quadrature points (CQ points) to calculate the moment 

integral. More precisely, the supported CQ points and the corresponding weights approximate the 

integrals by weighted sum of the functions evaluated at those points. It is obtained by the product 

of CQ points and their corresponding weights to approximate the product of multiple moments. 

The multiple moment integration is divided into two parts, the surface integral and the line 

integral. The first integral is over an n-dimensional hyper-sphere which could be calculated using 

spherical cubature rule, while the other could be evaluated using the n’-order Gauss-Laguerre 

quadrature rule of integration. 

The step for calculating cubature quadrature points and their corresponding weights is as 

follow 

1) According to the dimension of state, give the cubature points i]1[ , ni 2,...2,1= . 
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where  i1  is the i-th column of the points set  1 . 

2) Solve the n’-order Chebyshev-Laguerre polynomial in Eq.(23) to obtain the quadrature 

points j , ',...2,1 nj = . 
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where 12/ −= n . 

When n and n’ are determined, the CQ points and their corresponding weights are 

determined too. Taking the numerical simulation to be carried out for the 4-dimension system for 

example, when the two-order Gauss-Laguerre quadrature rule is adopted, the results of 16 CQ 

points and their corresponding weights are calculated in Eq.(26) and Eq.(27), respectively. 

 4444 *5929.1*5929.1*0764.3*0764.3 IIII −−                               (26) 

])8,1(*0986.0)8,1(*0265.0[ onesones                                            (27) 

 

3.3 The SVD-HCQKF algorithm 

In the CQKF or CKF algorithms, the covariance matrix P may lose positive definite when 

using the Cholesky decomposition. So the use of alternative corresponding matrix through 

singular value decomposition can improve the stability of numerical calculation. These 

algorithms here are called SVD aided CQKF (SVD-CQKF) and SVD aided CKF (SVD-CKF), 

respectively. Through the analysis in 3.1 and 3.2, the SVD aided H-∞ CQKF algorithm, referred 

to as SVD-HCQKF, is given below. 

A. initialization 

1) Initialize with )( 00 xEx =


 and )))((( 00000, Tx xxxxEP


−−=   
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2) Obtain the CQ points and calculate their corresponding weights by Eqs.(23)-(25) 

2. Time update 

1) Obtain the new CQ points by singular value decomposition for kxP ,
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2) These CQ points are propagated through the state equation shown in Eq.(30). 
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3. Measurement update 

1) Obtain the new CQ points by singular value decomposition for kkxP /1, +
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2) These CQ points are propagated through the measurement equation. 
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3) Calculate the measurement estimation. 
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4) Calculate the measurement prediction kkyP /1, +
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4. State update 

1) The observer gain Kk+1 can be obtained as 
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2) Calculate the state estimation.  
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3) Calculate covariance matrix for H-∞ filtering. 
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4. Simulation and analysis 

4.1Numerical simulation and analysis  

In this section, we use a high non-linear model to simulate and verify the effectiveness of the 

proposed algorithm. The system is described as follows. 
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where

)())()(cos(6.24))(cos(82.81))(5.0)()())((sin(12.2)( 1433
2
2214 kukXkXkXkXkXkXkXkz ++−−+= ,

)())()(cos(6.24))(sin(06.1)( 2434 kukXkXkXkb ++−−= , )()(71.0)( 2 kekdkc −= , ))(cos(12.282.3)( 4 kXkd += ,

))(cos(06.171.0)( 4 kXke += , ))2.0exp(5120)(1 kku −+=  , ))2.0exp(10115)(2 kku −+= , 

The process noise ),0(~)( QNk with zero-mean and the covariance Q. 

])1.0,1.0,1.0,1.0([diagQ =                                                         (43) 

The measurement equation is shown in Eq.(44). 
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where the measurement noise ),0(~)( RNkv  with zero-mean and the covariance R. 

]),0.01,0.01diag([0.01=R                                                         (45) 

Before filtering, the true values of )0(X is T0.1], 0.1,0.1, [-0.2 , the initial estimated values 

of )0(ˆ +X is T0],0.,0, [0 , the initial associated covariance 1,1])diag([1,1,)0( =P . 

While to estimate the state of X2, the four algorithms, SVD-CKF, SVD-CQKF, SVD-HCKF 

and SVD-HCQK, are used in two scenes. These two kinds of scenes are that the system has the 

uncertainty or not. 

Scene1: System with no uncertainty  

The estimations of X2 by the four algorithms are shown in Fig. 2. The constraint level γ of 

SVD-HCKF and SVD-HCQKF is equal to 2. As can be seen in Fig.2, each of the four algorithms 

can be a good estimation of X2. The root mean square error (RMSE) of estimated X2 can be seen 

in Table 1. The RMSE using SVD-CQKF with two-order Gauss-Laguerre quadrature rule is 

slightly smaller than that of the SED-CKF. Due to the introduction of γ, the RMSE is much 

higher in SVD-HCKF and SVD-HCQKF algorithm for the system without uncertainty. We can 

also see that the SVD-HCQKF has a higher accuracy relative to SVD-CKF. 

 

Table 1. RMSE of X2 in numerical simulation 

Algorithm 

RMSE of X2 

Scene1 Scene2 

SVD-CKF 0.1719 3.9144 

SVD-CQKF 0.1708 3.4660 

SVD-HCKF(γ=2) 0.2204 1.569 

SVD-HCQKF(γ=2) 0.2185 1.219 

In order to analyze the accuracy for these four algorithms, the RMSE of estimated X2 with 

different γ in scene 1 is as shown in Table2. We can adjust γ to reduce the RMSE, and get the 
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same conclusion in Table 1. 

 

Table 2. RMSEs of X2 with different γ 

Algorithm 

RMSE of X2 

γ=0.1 γ=0.13 γ=0.25 γ=0.5 γ=1 γ=2 γ=5 γ=50 γ=100 

SVD-HCKF 

in Scene1 

0.1836 0.1751 0.2118 0.2812 0.3015 0.2204 0.2134 0.2032 0.2032 

SVD-HCQKF 

in Scene1 

0.1813 0.1742 0.2114 0.2805 0.2972 0.2185 0.2057 0.2032 0.2032 

SVD-HCKF 

in Scene2 

4.1530 3.3545 1.8177 0.5374 0.4407 1.569 2.1767 1.6345 1.6358 

SVD-HCQKF 

in Scene2 

3.7788 3.2008 1.3514 0.5026 0.3982 1.219 1.5403 1.6161 1.6174 

Scene2: System with uncertainty that X2 increased by 50 during instant 50-150 

Fig. 3 shows the estimation of X2 by the four algorithms when the uncertainty happens in the 

system. It is not difficult to see that the robust algorithms (SVD-HCKF and SVD-HCQKF) have 

better robustness compared to the other two algorithms in scene2. The RMSE of estimated X2 

with different γ in scene 2 is also shown in Table2 in which the RMSEs of two kinds of robust 

algorithms are much smaller, and especially SVD-HCQKF shows the best accuracy in four 

methods. 

       

Fig.2 The estimated X2 in scene1 (γ=2) 
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Fig.3 The estimated X2 in scene2(γ=2) 

 

4.2 Simulation and analysis in GPS/INS integrated navigation system  

Assume that the initial position of an aircraft is at 5000 meters altitude with latitude 30° and 

longitude 110°. The initial pitch angle, roll angle and heading angle are 5°, 50°and 0°, respectively. 

The gyro constant drift is 0.01°/h, the constant zero offset of accelerometer is 10-4g, and the 

random zero offset is 10-3g. The aircraft flies 500 seconds from the initial position with 10m/s. 

The trajectory parameter table with the changed parameters in the motion process is shown in 

Table 3, and the other parameters that do not arise in the table are unchanged. The Actual flight 

path is shown in Fig. 4.  

Figs.5-10 draw out the curves of the east, north and up position error and velocity error using 

SVD-CKF and SVD-HCQKF (γ=1.5) in GPS/INS integral navigation system. It can be seen that 

the accuracy of estimated errors by SVD-CQKF is better than SVD-CKF. In addition, the Table 4 

gives RMSE of the errors, and also shows that the filtering effect of SVD-HCQKF for the 

integrated navigation system is very good where the RMSE of the east, north and up velocities 

are reduced by 5.4%, 10.1% and 8.6% compared to SVD-CKF, respectively. 

Table 3. The trajectory parameter table at time t 

t(s) pitch(º) head(º) roll(º) 

0-100 5 50 0 

101-110 5+(t-100) 50+(t-100) 0 

111-210 15 60 0 
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211-220 15-0.5*(t-211) 15+0.5*(t-211) 0 

221-500 5 55 0 

 

Fig.4 The actual flight path 

 

Fig.5 Error of east position 

 

Fig.6 Error of north position 
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Fig.7 Error of up position 

 

 

Fig.8 Error of east velocity 

 

 

Fig.9 Error of north velocity 
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Fig.10 Error of up velocity 

 

 

 

Table 4. RMSEs of positions and velocities in GPS/INS simulation 

State 

RMSE 

SVD-CKF SVD-HCQKF (γ=1.5) 

Error of east position (m) 4.8009 4.601 

Error of north position (m) 4.8616 4.6296 

Error of up position (m) 5.2759 5.2357 

Error of east velocity(m/s) 0.0967 0.0915 

Error of north velocity (m/s) 0.0949 0.0853 

Error of up velocity (m/s) 0.0962 0.0879 

 

5. Conclusion 

In this paper a robust filtering algorithm, SVD-HCQKF, is designed for the GPS/INS 

integrated navigation. The proposed algorithm uses hyper-sphere cubature rule and two-order 

Gauss-Laguerre quadrature rule to generate CQ points to calculate the moment integral, which 

can improve the accuracy of the filter. At the same time, the application of H-∞ algorithm 

enhances the robustness of the proposed algorithm. Simulation results show that the 

SVD-HCQKF has a good robustness to the system uncertainties, and the filtering accuracy is 
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significantly improved compared with the SVD-CKF, SVD-HCKF and other algorithms. Due to 

the influence of γ on the robust algorithm, how to choose the optimal constraint level γ is the 

work that needs further research. 
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