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Abstract  

The soft fault diagnosis of nonlinear analog circuits is an important guarantee of the stable 

and reliable operation of electronic products. In view of the low accuracy and heavy computation 

load of current soft fault diagnosis methods for nonlinear analog circuits, this paper presents a 

soft fault diagnosis method for nonlinear analog circuits based on fractal theory. Analyzing the 

single-fractal and generalized multi-fractal diagnosis mechanisms, and taking the fault signal as 

an example, the proposed method calculate the fractal dimension of the fault signal by the single-

fractal box dimension and generalized multi-fractal dimension calculation method, and analyzes 

the influence of different frequency input signals on the features of the fault state signal through 

experimental simulation. It is concluded that the increasing frequency of the input signal has little 

effect on the fractal characteristics of the fault signal. Comparing the single-fractal and the 

generalized multi-fractal diagnosis method, the author discovers that the effect is better when 

generalized multi-fractal dimension sequence is used to diagnose the circuit fault. 
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1. Introduction 

In spite of its extensive use in all aspects of our daily life, the nonlinear analog circuits are 

facing a major obstacle against its development, i.e. the outdated fault diagnosis. The traditional 

diagnosis method often handles the nonlinear analog circuits as linear circuits. Simple as it is, the 
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diagnosis method has a low reliability. The nonlinear factor must be taken into account in order 

to fully grasp the various situations in the circuit. In essence, the circuit fault diagnosis is pattern 

recognition and fault location. The key lies in identifying the fault features of the fault signal of 

the circuit. At present, the artificial intelligence is the major means for feature extraction and 

diagnosis. Typical examples are Volterra-kernel analysis, Wiener-kernel analysis, and wavelet-

based feature extraction, etc. 

The Volterra series model describes the features of a stable causal time-invariant nonlinear 

system. The variation of Volterra series usually indicates the existence of a fault [1][2]. Similar to 

the transfer function of the linear system, Volterra series has nothing to do with the input and 

output. This property can be used to diagnose fault and identify the circuit state. Curse of 

dimensionality poses a great challenge to Volterra series model. Since the order of Volterra series 

grows rapidly during the calculation process, the data dimension would also grow exponentially, 

which brings tremendous difficulties to the calculation [3]. If the order of Volterra series is 

reduced, the fault features of the nonlinear analog circuit would not be fully expressed. Therefore, 

the future of Volterra series model rests in accurate measurement of the soft fault state of non-

linear analog circuits and the Volterra series of the system of all orders [4]. Lin et al. [5] adopted 

Wiener series to solve the curse of dimensionality. They applied Gaussian white noise excitation 

to the nonlinear system with unknown characteristic parameters, and expanded its response by 

orthogonal functional series to obtain a set of functions which characterize the system features. 

Besides, they used the time dependent function as the estimation of the correlation functions of 

all orders to solve the Wiener kernel of the system, and employed the BP neural network to 

realize the fault diagnosis. The Wiener kernel description of the nonlinear analog circuit boasts 

high diagnostic accuracy. Nevertheless, the large amount of information of the Wiener kernel is 

not conducive to computing. There is still room for improvement in how to obtain more efficient 

and accurate Wiener kernel of the circuit. The most commonly used theory for analog circuit fault 

diagnosis is the wavelet-based feature extraction. The wavelet transform analysis retains the 

advantages of Fourier transform, and overcomes its shortcomings in time-dependent problems. 

With time-frequency characteristics, the method is very suitable for analysis of non-steady-state 

signals [6]. However, in the nonlinear analog circuit fault diagnosis, the wavelet transform 

analysis has a low diagnostic accuracy, and the wavelet analysis alone cannot solve all the 

problems, especially in locating fault components [7][8]. 

With the development of fault diagnosis technology, scholars have proposed a new 

diagnostic method, i.e. the fault diagnosis based on fractal theory. Mao et al. first proposed a 
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method based on fractal features and support vector machines to diagnose the faults of analog 

circuits. Taking the single-fractal grid dimension as the fault feature and using support vector 

machine as the feature classification of the fault diagnosis, the method has yielded fruitful results 

[9]. Zhou et al. proposed analog circuit fault feature extraction method based on the fractal 

dimension of fractional Fourier transform [10]. With this method, they mapped the original fault 

signal to different fractional spaces, calculated the single-fractal dimension of the fault response 

signal of different fractional orders, and treated the results as the fault feature. Finally, they used 

the neural network to carry out classification and diagnosis, obtaining a good diagnosis effect. 

Despite the above efforts, the research of circuit fault diagnosis based on fractal theory is mainly 

based on single-fractal analysis, which only reflects the irregularity of the whole signal rather 

than all the local features of the signal [11-15]. As a result, the researchers should focus on the 

improvement of the fineness of signal feature expression at present and in the near future. 

In light of these problems, this paper digs deep into the fault diagnosis method based on 

fractal theory, analyzes mechanisms of single-fractal and multi-fractal fault diagnosis, and 

provides an effective method to improve the accuracy of circuit fault diagnosis. 

 

2. Basic Principles of Fractal Theory 

2.1 Single Fractal Box Dimension 

The dimension of a single multi-fractal box is known as the capacity dimension or the 

volume dimension. It is the most widely used dimension calculation method in dimensional 

measurement. Featuring good accuracy and high efficiency, it is particularly suitable for simple 

fractal. Cover the fractal body F with small boxes (length of the side  ). As there are cavities 

and cracks on various levels within the fractal body, some of the small boxes are empty, and 

some cover part of the fractal body. Denote the total number of non-empty boxes as ( ),FN , and 

define the box dimension D as: 

( )




ln

,ln
lim

0 −
=

→

FN
D

r
                                                                                                                  (1) 

Plus, a set of double-logarithmic coordinates is often used. That is to say, take ln  as the x-

axis, and ( ),ln FN  as the y-axis. When   changes, mark the log value of ( ),FN , the number 

of boxes recorded each time, on the coordinates. If these markers present a straight line on the 

coordinates, the slope of the line is the fractal dimension of the fractal body. In addition to the 

measurement of the Euclidean space, the sing-fractal box dimension can also be used for data 

measurement. 
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2.2 Generalized Multi-fractal Dimension 

Assuming there is a fractal set F and the measure is  , the order of the probability 

distribution q  is defined as: 

( ) ( )=
i

q

iq p                                                                                                                       (2) 

Where,  is the unit measure used to decompose F , ip  is the probability distribution of the i -th 

unit. 

The generalized measure of the r -th dimension is defined as 

( ) ( )qMqM rr
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Assume that the critical exponent ( )q  is: 
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Where, ( )q is the quality index. 

If ( )qr = , ( )qM r is a non-zero finite value. According to Formulas (5), it is obtained that 
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Then, introduce the generalized multi-fractal dimension ( )qD : 
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From the above formula, it is obtained that: 
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Based on the concepts of multi-fractal spectrum ( )f  and singular intensity  , ( )  ~f  

and ( ) qqD ~  are associated through Legendre transform: 

( ) ( ) ( )

( ) ( ) 
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




−=

−−=

qDq
dq

d

qDqqf

1

1





                                                                                                 (9) 

3. Research on Mechanisms of Fault Fractal Diagnosis 

3.1 Mechanism of Single-fractal Fault Diagnosis 

Single-fractal fault diagnosis is a diagnostic method that takes the fractal dimension of the 

fault signal of a certain measure as the fault state eigenvalue. In essence, the diagnosis process is 

to calculate the dimension of the nonlinear analog circuit fault signal, and get a dimension point 

value. In the single-fractal fault diagnosis, the outputted state space of fault state signal is viewed 

as a large closed space, and different states in the closed space are expressed as closed subspaces. 

See Fig.1 for the spaces at different states in the fault space of the nonlinear analog circuit. 

 

State 1
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State N

State space S

……

 

Fig.1. Fault State Space of Single-fractal Fault Diagnosis 

 

From Fig.1, assuming that the non-linear analog circuit has N states, including the normal 

state, the state space should contain N closed subspaces. In the single-fractal fault diagnosis, the 

different fault states are distributed in the N closed subspaces within the state space, and each 

subspace interval contains all the values between the minimum and maximum fractal dimensions 

of the state. Taking fault state 1 as an example, the fractal dimension intervals in the state space 

are [ 1D , 1D ]. 1D  and 1D  are respectively the minimum and maximum fractal dimensions of fault 

state 1. 

The division of state intervals is of critical importance in the single-fractal fault diagnosis of 

the nonlinear analog circuits. If the state intervals are clearly divided, it is much easier to identify 
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the fault state. During the division of circuit fault states, the sub-spaces should not overlap each 

other. If dimension intersections appear between different subintervals, i.e. the range of 

dimensionality is overlapped, it is impossible to tell which fault state the dimensions of the 

overlapping region belong to. In this case, such a division of fault state subintervals cannot 

distinguish different states or achieve the purpose of fault identification. Assume that the situation 

in Fig.2 occurs. 

 

State 1 State 2

State 3

State 4 State 5

State 6

State N

State space S

……

State？
State？

 

Fig.2. Sketch Map of Overlapping State Intervals 

 

In the overlapping region, fault state 1 and fault state 2 share the same fractal dimension. It is 

impossible to determine which state is represented by the fractal dimension within the 

intersection. As the fractal dimension within the intersection reflects the fault features of fault 

state 1 and fault state 2 at the same time, it is unreasonable to distinguish the fault state according 

to such a division. However, non-overlapping interval division is an ideal state and is 

unattainable in actual practice. Overlapping is a commonplace due to the signal difference and 

noise in the circuit and the fluctuation of dimension in fractal theory. Therefore, in the single-

fractal fault diagnosis, the requirements on interval division should be relaxed properly and 

special circumstances should be handled appropriately. For the single-fractal diagnosis of fault 

circuits, it is only necessary to extract the fault signal, calculate the single-fractal dimension, and 

find out the sub-interval that the dimension value falls into. In this way, it is possible to identify 

the fault status indicated by the subinterval of the current circuit. 

 

3.2 Mechanism of Generalized Multi-fractal Fault Diagnosis 

The generalized multi-fractal diagnosis is an extension of the single-fractal diagnosis. The 

single measure is expanded to multiple measures, and the point set is replaced with the sequence. 
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Different from the single-fractal diagnosis, the generalized multi-fractal fault diagnosis does not 

require the division of state intervals because it is impossible to distinguish the multi-fractal fault 

state based on the range of point value in single-fractal diagnosis. In generalized multi-fractal 

diagnosis, the generalized multi-fractal dimension sequence forms the state space with fractal 

value composition curves in different measures. See Fig.3. 
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Fig.3. Generalized Multi-fractal State Space 

 

In the generalized multi-fractal circuit fault diagnosis, the state space S of the fault state 

signal is regarded as a plane. In the state plane, the weight factor q serves as the x-axis, and the 

fractal dimension value corresponding to the weight factor serves as the y-axis. The generalized 

multi-fractal dimension sequence of each type of fault is presented as a curve in the state plane. 

The generalized multi-fractal dimension sequences are used as characteristic samples of all the 

fault states of the nonlinear analog circuit. Under the i -th fault state, the characteristic samples 

are: 

 n

i

q DDDD ,,, 10 =                                                                                                                (10) 

Where, the weight factor is q=0,1,..., n. 

In the state space of the generalized multi-fractal diagnosis, the weight factor q  is the a-axis 

of the state plane, indicating the measure of the different state signals. In some cases, different 

state signals in the same measure share the same fractal dimension. For example, in Fig.3, when 

the measure is q1, the fractal curve of state 1 intersects the fractal curve of state 3, that is, the two 

states share the same fractal dimension value; when the measure is q2, the fractal curve of state 2 



 

65 

 

intersects the fractal curve of state 3, that is, the two states share the same fractal dimension value. 

This means the single-fractal dimension method cannot distinguish between state 1 and state 2 

under the measure of q1, or distinguish between state 2 and state 3 under the measure of q2. After 

all, the single-fractal dimension method only supports measurements in the same measure. 

Adapted from the single-fractal dimension, the generalized multi-fractal dimension is capable of 

measuring the signal features in multiple measures. Thus, the generalized multi-fractal dimension 

has a better ability of identifying fault state. 

During the circuit fault diagnosis, the fractal dimension sequence of the circuit fault state is 

listed in the state space in the form of curve segment. As shown in Fig.4, there are four fault 

states of the analog circuit. Their sample sequence curve segments are 
1

qD , 
2

qD , 
3

qD  and 
4

qD . 

The curve segment of the dimension sequence of the circuit fault state is set as 
x

qD . Then, the 

generalized fractal dimension is used as the eigenvalue for state identification. In fact, the fault 

diagnosis is about finding out which curve segment of the state space is closest to the curve 

segment of the dimension sequence of the fault signal. In Fig.4, the curve segment 
x

qD of the 

signal is basically coincident with the curve segment of the sample sequence
4

qD . Hence, it is easy 

to conclude that the fault state of the non-linear analog circuit at this time is the same as the fault 

state at i = 4. The philosophy of generalized multi-fractal nonlinear analog circuit fault diagnosis 

is as follows: when the curve segment of the output signal dimension of the circuit of unknown 

state is close to that of a certain state sample sequence, the fault state of the circuit must be the 

same with that of the sample sequence. 
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Fig.4. General Multi-fractal Dimension Curve of Sample Sequence and Test State 
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4. Simulation and analysis of fractal dimension feature extraction 

In fractal theory, the key to the extraction of signal features lies in dimension values for 

fractal dimension helps identify fractal features. In the fault diagnosis, therefore, the fractal 

dimension is used as the eigenvalue to distinguish between different states. If two signals belong 

to the same state under the same measure, they have a lot in common and share very similar 

fractal features. In other words, their fractal dimension values are close to each other. Signals in 

different states exhibit different fractal features, and thus different fractal dimension values. 

Making use of this law, the fault diagnosis method based on fractal theory can distinguish 

different fault states. In the following section, an AC circuit is taken as an example. The author 

extracts the circuit features by single-fractal dimension and multi-fractal dimension methods 

respectively, and analyzes the influence of different input signal frequencies on the fractal 

features of circuit fault state. The circuit parameters and structure are shown in Fig.5. 

 

R1

5kΩ

R2 10kΩC 1µFui

L

0.02H

uo

 

Fig.5. AC Circuit 

 

The input signal is taken as 







−=

4
sin10


tui , and the tolerance of the resistive element 

and the capacitive element in the circuit is set to 5% of the nominal value. In this test, the fault 

state is set as a positive/negative deviation of 20% from the nominal value. The author only 

gathers and analyzes the signals at the output node ou , and does not take other measurable nodes 

into consideration. There are 2,048 sampling points. The cycle is 0.8 milliseconds. Table 1 lists 

the types of faults. In total, the author configures 6 types of fault. The fault state corresponding to 

each type is expressed as “element i ↑↓20%”, i.e. a positive/negative deviation of 20% from the 

nominal value of the element. For instance, “R1↑20%” means the type of fault that the resistance 

R1 deviates positively from the nominal value by 20%. 

The author places the circuit into different fault states with = 100, 500 and 1000 rad/s 

respectively, and calculates the outputted fault signal by the single-fractal box dimension method. 
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In the experiment, 5 groups of data are taken for each state to calculate the box dimension value 

and the mean value. See Tables 2, 3, and 4 for details. 

 

Table 1. Fault Type Setting 

State Code Fault State Fault Code Fault State 

1 Normal 4 R2↑20% 

2 R1↑20% 5 R2↓20% 

3 R1↓20% 6 C↓20% 

 

Table 2. Fault State Box Dimensions with = 100 rad/s 

Fault code Data 1 Data 2 Data 3 Data 4 Data 5 Mean value 

1 1.2471 1.2446 1.2483 1.2473 1.2465 1.2468 

2 1.2630 1.2671 1.2622 1.2654 1.2637 1.2643 

3 1.2942 1.2967 1.2995 1.3001 1.2925 1.2966 

4 1.2756 1.2732 1.2716 1.2769 1.2784 1.2751 

5 1.2164 1.2203 1.2175 1.2161 1.2158 1.2172 

6 1.2288 1.2285 1.2299 1.2275 1.2314 1.2292 

 

Table 3. Fault State Box Dimensions with = 500 rad/s 

Fault code Data 1 Data 2 Data 3 Data 4 Data 5 Mean value 

1 1.2754 1.2727 1.2761 1.2770 1.2739 1.2750 

2 1.3017 1.3032 1.3010 1.3024 1.3019 1.3020 

3 1.3316 1.3311 1.3325 1.3330 1.3309 1.3318 

4 1.3152 1.3146 1.3142 1.3159 1.3134 1.3147 

5 1.2481 1.2476 1.2503 1.2497 1.2488 1.2489 

6 1.2615 1.2617 1.2607 1.2619 1.2631 1.2618 

 

Table 4. Fault State Box Dimensions with = 1000 rad/s 

Fault code Data 1 Data 2 Data 3 Data 4 Data 5 Mean value 

1 1.3327 1.3334 1.3341 1.3325 1.3319 1.3329 

2 1.3630 1.3647 1.3623 1.3619 1.3642 1.3632 

3 1.3942 1.3935 1.3957 1.3944 1.3929 1.3941 

4 1.3702 1.3716 1.3709 1.3711 1.3695 1.3707 

5 1.3049 1.3028 1.3035 1.3047 1.3052 1.3042 

6 1.3221 1.3215 1.3209 1.3233 1.3227 1.3221 
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According to Tables 2, 3, and 4, the fractal box dimension of output signal varies with fault 

state and thus can be used for feature recognition. Fig.6. displays the comparison between the 

mean values of single-fractal box dimensions of the fault signal at different input frequencies. 

 

100 200 300 400 500 600 700 800 900 1000 1100

1.2

1.25

1.3

1.35

1.4

ω

D

 

 

Fault1

Fault2

Fault3

Fault4

Fault5

Fault6

 

Fig.6. Comparison of Fault Signal Box Dimensions with Different   Values 

As illustrated in Fig.6., when the frequency of the input signal remains constant, the mean 

value of fractal box dimension differ from fault state to fault state, indicating that each type of 

fault has its unique fractal features. As the frequency of the input signal rises, the mean value of 

the fractal box dimension of each fault state increases, and the increase does not blur the 

distinction of the fractal features of each fault state. Thus, the single-fractal box dimension is 

capable of extracting the features of fault state, thereby achieving the recognition of fault state. 

Next, the author uses the generalized multi-fractal dimension to calculate the dimension of 

the circuit state, and to analyze the influence of different input signal frequencies on the fractal 

characteristics of the circuit. Keeping the test parameters unchanged, the author still only gathers 

the signals at the output node u0, and does not take other measurable nodes into consideration. 

The circuit is put in different fault states with =100, 500, and 1000 rad/s respectively. The 

output fault signals are calculated by the generalized multi-fractal dimension. See Fig. 7, 8 and 9 

for the simulation results, in which q=0, 1, 2,…, 5. 



 

69 

 

-1 0 1 2 3 4 5 6

1.18

1.2

1.22

1.24

1.26

1.28

1.3

q

D

 

 

Fault1

Fault2

Fault3

Fault4

Fault5

Fault6

 

Fig.7. Generalized Multi-fractal Dimensions of Fault Signals with =100 rad/s 
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Fig.8. Generalized Multi-fractal Dimensions of Fault Signals with =500 rad/s 
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Fig.9. Generalized Multi-fractal Dimensions of Fault Signals with =1000 rad/s 
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Based on the simulation results in Fig. 7, 8 and 9, the author obtains the generalized multi-

fractal dimension eigenvalues of each fault state at three different frequencies. See Tables 5, 6 

and 7 for the results. 

 

Table 5. Generalized Multi-fractal Dimension Eigenvalue of Fault States with =100 rad/s 

Fault code D0 D1 D2 D3 D4 D5 

1 1.247 1.235 1.226 1.219 1.213 1.208 

2 1.263 1.251 1.242 1.233 1.226 1.218 

3 1.294 1.281 1.271 1.263 1.257 1.254 

4 1.276 1.262 1.247 1.234 1.221 1.212 

5 1.216 1.209 1.198 1.191 1.184 1.180 

6 1.229 1.216 1.207 1.201 1.195 1.192 

 

Table 6. Generalized Multi-fractal Dimension Eigenvalue of Fault States with =500 rad/s 

Fault code D0 D1 D2 D3 D4 D5 

1 1.275 1.264 1.255 1.246 1.242 1.237 

2 1.302 1.292 1.280 1.271 1.264 1.259 

3 1.332 1.322 1.311 1.305 1.296 1.291 

4 1.315 1.301 1.286 1.273 1.260 1.251 

5 1.248 1.238 1.227 1.221 1.214 1.210 

6 1.262 1.253 1.242 1.232 1.227 1.223 

 

Table 7. Generalized Multi-fractal Dimension Eigenvalue of Fault States with =1000 rad/s 

Fault code D0 D1 D2 D3 D4 D5 

1 1.333 1.321 1.311 1.302 1.297 1.293 

2 1.363 1.352 1.340 1.329 1.317 1.312 

3 1.394 1.383 1.372 1.365 1.358 1.354 

4 1.370 1.357 1.343 1.328 1.313 1.303 

5 1.305 1.294 1.283 1.279 1.272 1.268 

6 1.322 1.312 1.301 1.290 1.285 1.281 

 

It can be seen from Tables 5, 6 and 7 that the output signals of different fault states have 

different generalized multi-fractal dimensions. Even if the dimensions intersect under some 

measures, the signals are distinguishable by the dimension values under other measures, thereby 

supporting feature recognition. Comparing the generalized multi-fractal dimensions of fault 

signals at different input frequencies, it is concluded that the generalized multi-fractal dimensions 
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of different fault states are different under the same input signal frequency. This indicates that the 

fractal features of a fault state are different under different measures. Even if there are 

overlapping dimension values under some measures, the fractal features are different under other 

measures. Like the single-fractal box dimension, the generalized multi-fractal dimension of each 

fault state also increases with the input signal frequency. However, the increase does not affect 

the distinction of the generalized multi-fractal features of each fault state. Thus, the generalized 

multi-fractal dimension is also capable of extracting the features of fault state, thereby achieving 

the recognition of fault state. 

 

Conclusion 

Due to the nonlinear and unstable features of soft fault signals in nonlinear analog circuits, it 

is very difficult to extract fault features using traditional signal processing methods. In view of 

the problem, this paper analyzes the fault diagnosis of nonlinear analog circuits respectively by 

single-fractal theory and generalized multi-fractal theory. To fulfill the purpose of fault diagnosis, 

the author analyzes the single-fractal and generalized multi-fractal diagnosis mechanisms, 

extracts the soft fault features of the nonlinear analog circuit, divides the dimension range of the 

state intervals, and identifies the interval that the dimension of the signal falls into. Besides, the 

author probes into the fault diagnosis method which uses the generalized multi-fractal dimension 

to describe the fault features of the circuit. To complete fault diagnosis, the author identifies fault 

state based on the similarity of dimension sequences, i.e. the closeness between the original 

sample sequence and the fault sequence. The experiment results demonstrate the advantages and 

disadvantages of the single-fractal and generalized multi-fractal fault diagnosis methods for 

nonlinear analog circuits. It is concluded that the generalized multi-fractal fault diagnosis has a 

better effect. 
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